
Real Time Multi Target Capturing Using

Partitioning in Robot Vision

Davood Pour Yousefian Barfeh
College of Engineering and Computer Studies, Lyceum of the Philippines University-Laguna, Calamba, Philippines

Department of Computer Science, Adamson University, Manila, Philippines

Email: davoodpb@gmail.com

Patrice Xandria Mari A. Delos Reyes
Graduate School, University of the Philippines-Los Baños, Philippines

Email: padelosreyes@up.edu.ph

Myrna A. Coliat
College of Informatics and Computing Sciences, Batangas State University, Batangas, Philippines

Email: myrna_coliat@yahoo.com

Abstract— In this study, the authors design and implement a

real time system as an autonomous robot–camera to capture

many targets in the scene. The robot has only one camera,

but it is capable of capturing more than one moving object

through proper movement. The system uses Gaussian

Filtering for motion detection and then performs

partitioning to grab location of all targets in the scene. Due

to partitioning, the scene has three major regions while each

of which has different sub-regions. Based on the partitioning

and position of all targets, the system might be in three

states of unsafe state, safe state, and over-safe state. In each

state regarding specific regions or sub-regions, the system

picks appropriate movement not only to be capable of

capturing all moving objects, but also to give equal chance

of capturing to new targets entering to the scene from

different direction. The system is tested in both of indoor

and outdoor with different values for different parameters

such as resolutions, fps (frame-per-second), minimum

number of motion frames, and minimum areas of motion.

Index Terms— Motion detection, Gaussian filtering, multi

target tracking, moving objects, partitioning, digital image

processing

I. INTRODUCTION

There are three different levels of algorithms in the

field of digital image processing; low level, intermediate

level, and high level vision algorithms [1][2]. In low level

vision algorithms, both of the input and output are digital

images same as converting an ordinary colored image to a

grayscale image or even to a binary image. In

intermediate level vision algorithms, the inputs are digital

images, but the outputs are symbolic description of

images’ features same as contours detection in an image.

In high level vision algorithms, both of the input and

output are symbolic representation of images’ features

[1,2]. As the names of these three levels show, high level

vision algorithms are more difficult and more important,

since they are dealing with perception and the context.

Because of being context based, high-level vision

algorithms play vital roles in object recognition and

image understanding. The best examples of high level

vision algorithms are motion detection or tracking in

which the goal is to detect objects which are moving [1]

[2].

There are many challenges and complications in

motion detection and tracking such as changes in

illumination, dynamic background, occlusion, clutter,

camouflage, presence of shadow, motion of camera, noise

of video, challenging weather, speed of the moving

objects and intermittent object motion [3]. Despite of

these problems, motion detection and tracking are

fascinating arenas in computer vision and digital image

processing, since they are bases in many fields such as

supplying advanced interfaces between humans or

between humans and devices, military, medicine, sports,

and specifically smart surveillance cameras or PTZ (Pan-

Tilt-Zoom) cameras [3–5].

II. RELATED STUDIES AND PRODUCTS

With a simple search many studies or products can be

found in the field of target (moving object) tracking and

capturing. All of these researches and products can be

categorized into four groups.

Group-1 contains researches and studies which are not

performed based on camera, but researchers try to detect

and track many moving objects in videos [6–12]. Here,

the term “track” means that path of moving objects. In

this group, the systems do not work real-time and in

result, the systems do not pay attention to the motion of

camera.

Group-2 contains researches and studies that work

real-time. Here, the researchers focus on detecting and

tracking of many moving objects using stationary

cameras [13–15]. In these studies same as studies in

group-1, the term “track” means that path of moving

objects. It means these studies try to find the paths of

moving objects. Moreover, in these researches, motion of

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 1, January 2020

© 2020 Int. J. Mech. Eng. Rob. Res

camera is not considered, since the studies are based on

fixed cameras.

Group-3 consists of researches performed based on a

moving camera. Here, the researchers consider detecting

and tracking of many moving objects while the camera

has an unknown (random) motion [16–18]. In group-3

same as the studies in group-1 and group-2, the term

“track” means that path of moving objects. In addition,

the motion of camera is not dependent on motion of

moving objects.

Group-4 contains industrial products and the studies in

which the researchers used non-stationary cameras to

detect and track moving object [19–21]. Cameras in this

group are capable not only to detect the moving object,

but also to track and capture the moving object by motion

or by focal zooming. Products and systems of this group

are able to capture and follow only one target.

III. STATEMENT OF THE PROBLEM

In reality, when we talk about motion and detection of

motion, most of the time there are many objects which

are moving – not only one object. Therefore, we need a

multi-target capturing system that can capture many

moving objects. Moreover, the system must be capable of

moving to continue capturing of targets, since targets

move and their movements might be in different

directions.

As explained earlier, there exist numerous studies,

systems and potent products regarding multi-target

detection and tracking, but none of them is suitable for

multi-target capturing, since studies in group-1 detect and

track motions in a captured video. These studies do not

care about capturing and following of targets, but detect

targets and then find paths of the targets. Studies in

group-2 can find track of targets. In fact, the focus of

studies in group-2 is not capturing and following of

targets that is why in these studies, systems cannot move.

Studies in group-3 are able to find paths of targets while

camera has some motion. In fact, studies in group-3 are

more intelligent than studies in group-2, they can find

paths of targets while system has a random movement.

Although the systems in group-3 have movement, the

movement is not for capturing the targets, but an input

parameter. Finally, systems and products in group-4 are

able to perform target capturing and following, but only

over one target. If there are many targets in the scene,

they select one of the targets, then focus on the target and

then follow and capture it. In fact, studies in group-4 pay

attention to only one target, and leave other targets.

After considering all groups of studies and products,

the researchers observed that there is no algorithm or

system to capture many moving objects (targets).

IV. PROPOSED SYSTEM

To solve the problem mentioned, the researchers

propose Real Time Multi-Target Capturing using

Partitioning in Robot Vision (RTMTCPRV). The system

RTMTCPRV is a robot having a camera that not only

detects multiple moving objects, but also can move

forward, backward, left or right to continue capturing of

the moving objects.

Specifically in this study, researchers design and

implement an algorithm that;

1) Performs multiple moving objects detection

(motions detection), and

2) Tries to maintain capturing of the moving objects.

For each of which, the system needs some algorithm.

First, the system uses an algorithm to find all targets in

the scene and then uses some algorithm to move (if

needed) such that to be able to continue capturing of the

targets.

A. Motions Detection

There are many approaches for motion detection in a

continuous video stream. All of them are based on

comparing of the current video frame with one frame (or

more) from the previous frame (or frames) that is called

as background [22]. In particular, this study uses

Gaussian filtering for motions detection. In digital image

processing, Gaussian filtering (also known as Gaussian

smoothing) is the result of blurring an image by a

Gaussian function that is widely used in graphics tools to

reduce noise of image or even reduce some details in

image. The influence of the Gaussian filtering is

producing a smooth blur resembling image [22–26].

B. Movement

When the scene is captured and some motions are

detected, then the system may need to move. The system

tries to follow all of the moving objects using movement.

In other words, the system may move forward, backward,

right or left to maintain capturing all targets in the scene.

In this regard, the scene is parted into three major

partitions; unsafe area, safe area and over-safe area as

shown in Fig. 1.

Figure 1. Three major partitions

There are two important areas inside the safe area;

right side and left side. Moreover each area in safe area

(right side and left side) has two parts. Totally, safe area

has four important sub-areas; sLL (safe, left side of left

side), sLR (safe, right side of left side), sRR (safe, right

side of right side) and sRL (safe, left side of right side.

There are also four important sub-areas inside unsafe area;

uLL (unsafe, left side of left side), uLR (unsafe, right side

of left side), uRR (unsafe, right side of right side) and

uRL (unsafe, left side of right side) as shown in Fig. 2.

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 1, January 2020

© 2020 Int. J. Mech. Eng. Rob. Res

Figure 2. Sub-areas inside safe area and unsafe area

All movements of the system are based on two rules

regarding their priorities;

Rule-1. Keep the targets in the safe area, and

Rule-2. Keep the targets in the center (not left and not

right).

Rule-1 that is always prior to Rule-2, is equivalent to

two sub-rules regarding their priorities;

a) Not to keep any target in unsafe area for not

losing the target, and

b) Not to keep any target in over-safe area for

capturing the target better, having more details.

When some target is inside unsafe area, there is a risk

that the target gets out of scene especially when the target

is moving fast. On the other hand, when all targets are

inside over-safe area, system can get closer to them and

can capture them with more details.

Rule-2 says that if there is no target in unsafe area and

all targets are inside only one of the four sub-areas of safe

area, then the system moves such that all targets are

placed inside the center of the scene. We use Rule-2 to

give equal chance of capturing to all targets that will

come inside the scene from different directions.

Based on partitioning and position of the targets, the

system can be in three states; unsafe sate, safe state and

over-safe state.

Unsafe state is the case in which there exists at least

one target in unsafe area. In this case, system has to move

backward, right or left to follow the Rule-1, part a. In fact,

system decreases the risk of losing the targets via not

including targets in unsafe area.

Safe state is the case in which there is no target (there

is no motion in the scene) or there is at least one target in

safe area while there is no target in unsafe area. System is

said to be in SSNM (safe state and no move) when;

a) The system is in safe state and there exist at least

one target in the left side of safe area and at least

one target in the right side of safe area, or

b) The system is in the safe state and there is no

target in the right side of safe area and there is

no target in the left side of safe area.

When the system is in SSNM, it does not move.

System is said to be in SSM (safe state with move) when

the system is not in SSNM. When the system is in SSM,

it moves toward occupied side (left or right) to follow

Rule-2.

The system is said to be in over-safe state when the

system is neither in unsafe sate nor in safe state. In this

case, system moves forward to follow the Rule-1, part b.

In fact, system increases the details of capturing via

getting closer to the targets.

When system starts, the variable target is false, since

there is no detected target yet. The function

motion_detection detects all targets among all areas in the

scene. This function changes the variable target to true if

there is a motion. This function also returns the areas of

all targets. Then the system realizes its state based on the

areas of the targets.

If the system is in unsafe state, then follows Rule-1

(part a) and changes the state to the safe state using

move_right, move_left, or move_backward.

If the system is in SSM, then follows Rule-2 using

move_right or move_left. It is noticeable when the

system is in SSM, there is no need to pay attention to

Rule-1, since the system is neither in unsafe state nor in

over-safe state. In other words, both part of Rule-1 (part a

and part b) are already followed.

If there is some motion – the value of variable target is

true – and the system is neither in unsafe state nor in safe

state, then the system is surely in over-safe state. In this

case, system follows Rule-1 (part b) using move_forward

to change the state from over-safe state to the safe state.

C. Unlimited Backward

If the system is in SSM, then follows Rule-2 using

move_right or move_left. It is noticeable when the

system is in SSM, there is no need to pay attention to

Rule-1, since the system is neither in unsafe state nor in

over-safe state. In other words, both part of Rule-1 (part a

and part b) are already followed.

As mentioned earlier, generally motion detection is

based on comparing of the current video frame with one

frame (or more) from the previous frame (or frames) that

is called as background. In other words, when there is

some difference in some pixels in two (or more)

consequent frames, then the system considers the

difference as a motion. In other hand, when system

moves, almost the entire scene changes and in result

pixels of almost all areas of consequent frames change. In

this case, system adjudges to have motions in all areas

including sub-areas of unsafe area. Here, system proceeds

to unsafe state and has to perform move_backward to

change the state to safe state while the result of

movement is unsafe state again. It means that, with first

movement, the system falls in an unlimited loop of unsafe

state and then move_backward.

To eliminate this problem, the simple idea is that the

system should not perform motions detection during its

movement.

D. Algorithm

To eliminate this problem, the simple idea is that the

system should not perform motions detection during its

movement.

The overall algorithm for the system RTMTCPRV is in

the following.
target = false

motion_detection()
while (target == true){

if (unsafe_state == true){
if (uLL == true AND sRR == false AND sRL == false)

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 1, January 2020

© 2020 Int. J. Mech. Eng. Rob. Res

{ move_left; move_left;
stop motions detection; }

elseif (uRR == true AND sLL == false AND sLR == false) {

 move_right; move_right;
 stop motions detection; }

elseif (uLR == true AND sRR == false) {
 move_left;

 stop motions detection; }

elseif (uRL == true AND sLL == false) {
 move_right;

 stop motions detection; }
else {

 move_backward;

 stop motions detection; }
exit;

} // end of if unsafe_state
if (safe_state == true){

if ((sRR == true OR sRL == true) AND sLL == false AND sLR ==

false){
move_right;

stop motions detection; }
elseif ((sLL == true OR sLR == true) AND sRR == false AND sRL ==

false) {

move_left;
stop motions detection; }

exit;
} // end of if safe_state

move_forward; // over-safe_sate

stop motions detection;
} // end of while

When the robot starts, no moving object has been

detected that is why the value of the variable target is

false. The function motion_detection has responsibility of

detecting all targets (motions) and then changing the

value of the variable target to true in the case of detecting

motion. Then regarding the state and particular areas and

sub-areas based on position of the target, the robot moves

to keep capturing the target s. As seen in algorithm, when

the robot is moving, the function motion_detection stops

because of the danger of unlimited backward.

E. Implementation

The system RTMTCPRV was implemented as a robot

camera consisting a Raspberry Pi 3 Model B with a

camera module v1, two TowerPro SG5010 servo motors

each of which connected to a wheel, and power supplies.

Researchers used Raspbian Jessie as operating system,

OpenCV as library, and Python as programming language.

To implement the algorithm into the actual system,

there are four major concepts which need to be explained

in details. These concepts consist of partitioning, motions

detection, movement unit, and stop motion detection.

1) Partitioning

The system uses the width and the height of the image

(frame) to divide the scene to different areas and sub-

areas. Each frame of the scene is divided to many regions

vertically based on the height of the frame and

horizontally based on the width of the frame. Desirable

areas and sub-areas can be achieved using intersection

(AND) and union (OR) of the regions vertically and

horizontally.

2) Motions detection

As mentioned earlier in 4.1, the system uses Gaussian

filtering to detect all targets in the scene. The researchers

used the function “GaussianBlur”, for Gaussian filtering.

Afterwards, functions “accumulateWeighted”, and

“absdiff” are used to accumulate the weighted average

between the current frame and previous frames due to

compute the difference between the current frame and

running average. Then the functions “threshold” and

“dilate” are used to threshold the delta image and dilate

the thresholded image to fill the holes in the image.

Finally the functions “findContours” and “contourArea”

are used to find area of each motion.

The actual values of the parameters used in the

functions mentioned above include; width and height of

kernel size = 21, Gaussian kernel standard deviation in X

direction and Y direction = 0, weight of input image = 0.5,

threshold value = 5, maximum value of thresholding =

255, thresholding type = THRESH_BINARY, size of

structuring element in dilation = 21, contour retrieval

mode = RETR_EXTERNAL, and contour approximation

method = CHAIN_APPROX_SIMPLE.

3) Movement unit

After detecting targets in the scene, system may need

to move to right, to left, forward or backward. Since the

system does not have any movement in vertical axis, the

unit of movement is based on horizontal angle of view of

the camera. As Figures 1 and 2 show, the scene is

basically partitioned into a 10×10-unit page, while

horizontal angle of view of the camera is 53.50 [27].

Hence, the movement unit is equal to 5.35 degrees.

Generally the formula of horizontal movement unit is:

 HMU = HAV/HBP (1)

Where HMU represents horizontal movement unit,

HAV represents the horizontal angle of view, and HBP

represents the horizontally basic partitioning of the scene.

4) Stop motion detection

When system is moving, it has to stop detecting

motions for not going inside the unlimited backward loop.

To perform this, the function “time.sleep(t)” is used to

make a delay in which from software view, the system

performs nothing. To compute the parameter “t” that

represents the desirable delay time in second, speed of the

servo motor is used as the basis that is equal to 0.19

seconds/60 degrees, when the input voltage is 4.8 volts

[28] [29]. This speed means that 0.19 seconds are needed

to move 60 degrees that is equivalent to 0.00317 seconds

per degree. Hence, the time needed to have 5.35 degrees

(movement unit) is about 17 milliseconds. In other words,

each movement of system lasts for 17 milliseconds.

Thereupon, the parameter t is equal to 0.017.

V. RESULT AND DISCUSSION

Researchers tested the system RTMTCPRV in outdoor

and indoor with different resolutions, fps (frame-per-

second), minimum number of motion frames, and

minimum areas of motion.

In indoor whilst the lights are on and the maximum

number of moving objects is 6 – containing electrical fans,

dogs and humans while their distances from system are in

the range of 0.5 to 5 meters, the best results are obtained

when the resolution is at least set to 640×480, fps is at

least set to 16, minimum number of motion frames is set

to 8, and minimum area of motion is set to 1500 pixels.

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 1, January 2020

© 2020 Int. J. Mech. Eng. Rob. Res

In outdoor – an open parking area, the story is

complicated. In fact, the problem in outdoor is related to

the motions detection in wide range of distance. In this

case if the minimum area of motion is set to a low value

(for example, 500) to detect targets while they are far

more than 9 meters, then the system detects many illusory

targets. On the other side, if the minimum area is not set

to a low value, then the targets more than 9 meters far

cannot be detected. Aside from the problem, if the

maximum number of moving objects is 10 – containing

cars, motorcycles, dogs and humans while their distances

from system are in the range of 5 to 9 meters, the best

results are obtained when the resolution is at least

1296×972, fsp is between 16 and 42, minimum number

of motion frames is 8, and minimum area of motion is

1500.

REFERENCES

[1] P. Y. Barfeh, D. Balba, N. Bustamante, R. Jose, E. Albacea, and V.

Mariano, 2017. “Multi-informational auto tracking algorithm,” in

Proc. 2nd International Conference on Information in Business
and Technology Management (I2BM 2017).

[2] L. Pitas, Digital Image Processing Algorithms and Applications,

2000.
[3] L. Wang, W. Hu, and T. Tan, “Recent developments in human

motion analysis,” Pattern Recognition, vol. 36, no. 3, 2003.
[4] H. Lina, I. Shafranb, D. Yuhc, and G. Hagera, “Towards

automatic skill evaluation: Detection and segmentation of robot-

assisted surgical motions,” Taylor&francisOnline, pp. 220-230,
2010.

[5] A. Caballeroa, J. Castilloa, J. Cantosc, and R. Tomasd, “Optical
flow or image subtraction in human detection from infrared

camera on mobile robot,” Robotics and Autonomous Systems, vol.

58, no. 12, pp. 1273–1281, 2010.
[6] W. Choi and S. Savarese, “A unified framework for multi-target

tracking and collective activity recognition,” in Proc. 12th
European Conference on Computer Vision, Florence, Italy, 2012.

[7] A. Butt and R. Collins, “Multi-target tracking by lagrangian

relaxation to min-cost network flow,” in Proc. IEEE Conference
on Computer Vision and Pattern Recognition, 2013.

[8] A. Andriyenko, K. Schindler, and S. Roth, “Discrete-Continuous
Optimization for Multi-Target Tracking,” in Proc. IEEE

Conference on Computer Vision and Pattern Recognition, 2012.

[9] Z. Qin and C. Shelton, “Improving multi-target tracking via social
grouping,” in Proc. IEEE Conference on Computer Vision and

Pattern Recognition, 2012.
[10] B. Yang, C. Huang, and R. Nevatia, “Learning Affinities and

Dependencies for Multi-Target Tracking using a CRF Model,” in

Proc. IEEE Conference on Computer Vision and Pattern
Recognition, 2011.

[11] A. Andriyenko and K. Schindler, “Multi-target tracking by
continuous energy minimization,” in Proc. IEEE Conference on

Computer Vision and Pattern Recognition, 2011.

[12] B. Benfold and I. Reidstable, “Multi-target tracking in real-time
surveillance video,” in Proc. IEEE Conference on Computer

Vision and Pattern Recognition, 2011.
[13] S. Sridhar, F. Mueller, A. Oulasvirta, and C. Theobalt, “Fast and

robust hand tracking using detection-guided optimization,” in

Proc. Conference on Computer Vision and Pattern Recognition,
2015.

[14] S. Melax, L. Keselman, and S. Orsten, “Dynamics based 3d
skeletal hand tracking,” Canadian Information Processing Society,

2103.

[15] J. Xing, H. Ai, and S. Lao, “Multi-object tracking through
occlusions by local tracklets filtering and global tracklets

association with detection responses,” in Proc. IEEE Conference
on Computer Vision and Pattern Recognition, 2009.

[16] B. Jung and G. Sukhatme, “Real-time motion tracking from a

mobile robot,” International Journal of Social Robotics, vol. 2, no.
1, pp. 63–78, 2010.

[17] W. Choi, C. Pantofaru, and S. Savarese, “Detecting and tracking
people using an RGB-D camera via multiple detector fusion,” in

Proc. International Workshops on Computer Vision, Daejeon,

Korea, November 5-6, 2012.
[18] B. Yang and R. Nevatia, “Multi-target tracking by online learning

of non-linear motion patterns and robust appearance models,” in
Proc. IEEE Conference on Computer Vision and Pattern

Recognition, 2012.

[19] Axis. [Online]. Available:
http://www.axis.com/files/datasheet/ds_215ptz_34462_en_0902_l

o.pdf (Accessed August 22, 2017).
[20] Bhphotovideo. [Online]. Available:

https://www.bhphotovideo.com/c/product/752624-

REG/Samsung_SPU_3750T_1_4_Vertical_Double_Density.html
(Accessed August 22, 2017).

[21] Bkgrupe. [Online]. Available:
http://www.bkgrupe.lt/uploads/docs/Hikvision/DS-2DF8836IV-

AELW.pdf (Accessed August 22, 2017).

[22] L. Shapiro and G. Stockman, Computer Vision, 2001.
[23] M. Nixon and A. Aguado, Feature Extraction and Image

Processing, Academic Press, 2008.
[24] K. Ahi, “Modeling of terahertz images based on x-ray images: a

novel approach for verification of terahertz images and

identification of objects with fine details beyond terahertz
resolution,” in Proc. SPIE 9856, Terahertz Physics, Devices, and

Systems X: Advanced Applications in Industry and Defense, 2016.
[25] E. Reinhard, High dynamic range imaging: Acquisition, display,

and image-based lighting, Morgan Kaufmann, 2006.

[26] R. Fisher, S. Perkins, A. Walker, and E. Wolfart, Spatial Filters -
Laplacian of Gaussian, 2003.

[27] Raspberrypi. [Online]. Available:
https://www.raspberrypi.org/documentation/hardware/camera/

(Accessed August 22, 2017).

[28] Towerpro. [Online]. Available:
http://www.towerpro.com.tw/product/sg5010-4/ (Accessed August

22, 2017).
[29] Servodatabase. [Online]. Available:

https://servodatabase.com/servo/towerpro/sg-5010 (Accessed

August 22, 2017

Davood Pour Yousefian Barfeh is a Persian

(Iranian) researcher who was born in Iran. He
studied BS Computer Engineering and BS

Computer Science. He also studied MS IT and
MS Computer Science. He finished his PhD

Computer Science in 2018. His fields of interest

are; Digital Image Processing, Robotics and
Theoretical Algorithms.

Patrice Xandria Mari A. Delos Reyes is a

Filipino researcher. She finished BS in Biology

and MS in Development Communication with a
minor in Computer Science. She is a member of

the UPLB Society of Pre-Med Students and the
Philippine Society of Microbiology Inc. She is

currently studying PhD in Development Studies

with minors in Environmental Science and
Strategic Planning and Policy Studies.

Myrna A. Coliat is an Associate Professor at

Batangas State University, where she is the
Director for Institutional Planning and

Development. She obtained her Master’s degree

in Computer Science from De La Salle University,

Manila, Philippines. She is presently pursuing

Doctor of Technology at Batangas State
University.

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 1, January 2020

© 2020 Int. J. Mech. Eng. Rob. Res

