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Abstract—The modularization of hard- and software is one 

approach to handle the demand for increasing flexibility 

and changeability of automated material flow systems that 

are, for example, utilized in flexible production systems.  

Depending on the current system configuration, the position 

and number of entrances and exits of a module may vary. 

Subsequently, the feasible tasks and the internal execution 

order of operations within a module are affected. During 

design time, the later system configuration is unknown, 

therefore, a concept is proposed to generally describe a 

module’s internal logistical operations. After a system 

reconfiguration, the module’s internal function control 

automatically determines the execution order for active 

entrances, exits and tasks. Additionally, the function control 

is able to efficiently coordinate the execution of parallel 

transports on the same module to increase the throughput.  

 

Index Terms—convertible and flexible automated material 

flow systems, cyber-physical systems, decentralized control, 

execution coordination, execution schedule 

 

I. INTRODUCTION 

Present day automated material flow systems (aMFS) 

are mostly operated by an individual central control. 

Developing the specialized control software demands a 

manual effort, and flexibility is only facilitated within 

predefined limits. This is the case, for example, when a 

designated alternative route is temporarily used for a 

higher throughput. New demands on an existing aMFS 

that require flexibility not originally considered (e.g., an 

extension of the system) cannot be realized. In this case, 

an aMFS is not considered or supplemented by manual 

processes [1], [2]. An aMFS that provides flexibility 

beyond predefined limits is characterized as being 

convertible. Convertible aMFS are a response to 

reconfigurable manufacturing systems that increase the 

manufacturing responsiveness for a faster adaption to 

changing market conditions [3]. 

A convertible aMFS can be realized by means of 

function-oriented modularization of the hardware and 

software [4]. By adding, removing or changing modules, 
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the layout of an aMFS is adapted to the new demands. 

New demands arise from changing manufacturing or 

logistic processes, which are caused by new products 

requiring different operations, a fluctuating production 

volume, a modification of the layout in the production due 

to new machinery or other reasons. The control of 

convertible aMFS can be realized through local 

autonomous modules that cooperate with each other. 

Advantages are a reduced software complexity and eased 

re-configurability [5]. 

In this paper, a module is defined as an encapsulated 

unit that performs predefined tasks, such as conveying, 

buffering or identifying a transport unit (TU). A module 

possesses all the necessary information and software to 

control its hardware, to communicate with other modules 

or superior systems and to perform an autonomous self-

configuration. Standardized software interfaces and 

property descriptions enable collaboration between 

heterogeneous modules [6], for example, the combination 

of a conveyor with a crane. Consequently, autonomous 

self-controlled modules allow for convertible aMFS that 

can be changed during runtime [7]. 

This paper distinguishes between an external material 

flow control and an internal function control. The material 

flow control plans in which order the TUs need to pass 

through the modules and the tasks to be performed on the 

TUs by the modules in cooperation with the other 

modules. The function control independently executes the 

operations within a module, with the exception of a 

handshake with neighboring modules for a common 

transfer of a TU. For the execution of a transport, the 

function control has to derive the necessary operations and 

the execution sequence of these operations from the 

assigned TU order and tasks on the module. 

The execution sequence depends on the number of 

active entrances, exits, and tasks of a module as well as 

the position of the neighboring modules. Subsequently, 

predefined operation sequences cannot be created during 

design time but must be generated and parametrized 

dependent on the current system configuration. For design 

time, an approach is required to implement generalized 

operations that enable the performance of a wide variety 

of different operation sequences for different system 
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configurations. The approach should focus on general 

logistical operations while at the same time allowing for 

encapsulated complex module-specific operations (e.g. 

with requirements on precise timing) that can also be 

combined automatically with the general logistical 

operations. During run time, the function control should 

automatically derive a valid execution sequence for a 

given entrance, exit and task. Furthermore, the function 

control must be able to coordinate the execution 

sequences of different TUs on the same module in order to 

avoid blockades and optimize the throughput of the 

module. 

This paper focuses on the internal control of a module 

and not on the strategic planning processes for the 

material flow control. After an overview of the state of the 

art in controlling convertible aMFS and production 

systems consisting of separate modules, the general 

functionality of a material flow control and the benefits of 

an additional individual function control for each module 

is described. Following, the engineering process for a 

flexible function control is brought into focus. Also, the 

proposed concept is evaluated on a representative 

logistical module. Subsequently, the quantitative 

evaluation for the concept is shown with a simulation 

study. The last section concludes the proposed concept 

and gives an outlook on the planned future work. 

II. STATE OF THE ART 

Autonomous entities that are able to execute predefined 

tasks, such as the modules mentioned in this paper, can be 

realized by means of agents that control a module and 

communicate with other agents in order to accomplish a 

task. Vogel-Heuser et al. stated that the utilization of such 

agents allows for Cyber-Physical Production Systems for 

Industry 4.0 applications [8]. Mayer developed the 

hardware for autonomous material flow conveyor modules 

and the software for a decentralized routing and 

reservation process to avoid deadlocks [9]. Modules are 

reserved exclusively for one TU as long as the transport is 

not completed. In order to achieve a better utilization of a 

resource’s capacity, Mors introduces time slots [10]. 

Lieberoth-Leden et al. propose a communication ontology 

for a time-slot-based reservation process with absolute 

time in aMFS [11] and Seibold proposes a reservation and 

routing process using relative (logical) time, which is 

more robust concerning delays in the transport process 

[12]. 

Several approaches introduced standardized modules to 

build reconfigurable aMFS controlled by multiagent 

systems [13], decentralized controls [9] or a centralized 

control [14], [15]. All approaches have in common that 

TUs enter and exit modules through predefined and during 

design time known interfaces. A specific internal module 

control is developed for each module. Modules with 

multiple components and a varying number of entrances, 

exits or positions are not considered. Libert presents a 

procedure to develop an individual material flow control 

for aMFS realized with software agents. As an agent 

platform, his uses the PC-based JADE-Framework and not 

an implementation on industrial real time control 

hardware [16]. 

Beyer et al. present a multiagent system approach for 

designing and choosing a suitable layout for a MFS. The 

development engineer enters a set of requirements for the 

multiagent system to be designed in an assistance system, 

which generates alternative design solutions and rates 

them according to the specified requirements [17]. This 

approach can be applied when developing new MFS as 

well as to reconfigure or optimize existing MFSs. 

For decentralized controls, the control function of the 

system is split into several less complex control functions 

and distributed on various modules that communicate with 

each other. In most systems this leads to increased 

communication traffic compared to a central control [18]. 

Another approach to increase the flexibility of aMFSs 

is to substitute the commonly used stationary conveyor 

modules with a fleet of identical, automated guided 

vehicles (AGVs). For path planning and coordination of 

such AGVs in a warehouse, Digani et al. propose a two 

layer, hierarchical control architecture to reduce the 

complexity and simplify the control problem [19]. For 

control purposes, the global area of the warehouse is 

divided into smaller sectors. While the global path 

planning for the AGVs through the sectors is done in a 

centralized manner on top layer, the route planning and 

coordination inside a sector are performed in a 

decentralized manner by the AGVs on lower level. 

However stationary conveyor modules achieve a greater 

TU throughput and cannot always be substituted with 

AGVs.  

Armentia et al. present a concept to generate software 

for service-oriented systems and focus on the composition 

and dynamic reconfiguration of service-orientated 

applications [20]. In service-oriented applications, all 

software functionalities are defined as independent 

services that interact with each other and allow for a 

flexible adaptation of these applications to changing 

requirements. However, the approach from Armentia’s et 

al. is not focused on logistic functionalities where the 

services (functionalities) for different TUs have to be 

executed in a predefined sequence. Dorofeev et al. 

propose a device adapter to wrap the functions of a device 

and offer them as a service to the system and execute the 

internal device operations [21]. Only validated executions 

are allowed that are predefined manually. 

Aicher et al. propose a meta model to describe 

encapsulated modules in aMFS with standardized 

interfaces for code generation [6] and version 

compatibility [22]. The engineering process for logistical 

operations and the generation of execution sequences is 

not considered. 

Keddis et al. describe a capability-based approach and 

defines different functions for modules in adaptable 

manufacturing systems. The functions consist of one or 

more primitive operations. Keddis et al. describe that 

several primitive operations can be combined to allow for 

more complex operations such as combining different 

handling operations to an assembling operation. However, 

the process of combining primitive operations is not 
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further explained. For each product, a production plan is 

generated manually. The production plan lists the 

requested functions and determines the order of execution. 

The production plan is then mapped to suitable modules 

that can execute the requested function. Depending on the 

layout and the number of modules that can perform a 

function in the manufacturing system, there are several 

different paths. Valid paths are determined with the 

branch-and-bound and backtracking algorithm [23]. Later 

works focus on selecting a path that optimizes i.e. energy 

consumption, utilization, delivery time, etc. in correlation 

with other products [24]. The implementation process of 

module functions and the execution of assigned functions 

are not regarded. Furthermore, the approaches lack a 

concept for the coordination of the parallel execution of 

functions from different TUs. 

III. SOFTWARE INTERFACES OF MODULARIZED AMFS 

The material flow control determines the predecessor 

module, the successor module, the tasks to be performed 

for the TU and the TU sequence at the exit for each TU 

and module. The function control provides the module’s 

properties to the material flow control and executes the 

material flow. 

A. Material Flow Control 

The material flow control receives transport orders 

from superior systems i.e. an enterprise resource planning 

system (ERP) or a warehouse management system 

(WMS), or it generates its own orders during the transport 

process “Fig. 1”. Transport orders comprise information 

about the properties of the TU, source, destination, tasks 

(i.e. wrapping with foil) and material flow properties (i.e. 

required TU sequence at the destination). The material 

flow control conducts resource planning and schedules the 

transport orders. 

Independent from a centralized or decentralized 

implemented material flow control and the structure of the 

database, such as centralized or distributed, the outcome 

of the scheduling process is identical. The material flow 

control arranges a module sequence (transport from 

source to destination), a TU sequence at each module 

(satisfy the material flow properties) and assigns tasks to 

selected modules (fulfill the required tasks). In order to 

schedule transport orders, the material flow control 

requires knowledge about the linkage of modules and the 

feasible tasks of a module. 

B. Module Structure and Function Control 

Decentralized controlled logistical modules are made 

up of one or more components and the hardware control 

unit. A component consists of at least one sensor or 

actuator like a belt conveyor with a drive and a light 

barrier. A logistical component can perform an atomic 

operation (cf. primitive operations in manufacturing 

systems [23]) i.e. conveying. The general structure, 

operations, properties, etc. of a module can be described 

in a meta model [6]. Atomic operations describe general 

abilities but lack logistical relevance for the material flow 

control. In order to conduct a material flow through a 

module, several atomic operations must often be linked 

together. 
 

 
 

Figure 1.  Process of generating, scheduling and executing transport 
orders in an aMFS. 

Once a module is repositioned or added to an aMFS, it 

performs an autonomous self-configuration. After the 

identification of connected neighboring modules, feasible 

logistical offers (LO) are derived from the operations such 

as conveying a TU from neighbor A to neighbor B. LOs 

implicate through which neighbor a module can be 

entered and exited and the feasible tasks performable 

between entry and exit point. The accessible neighboring 

modules and the feasible tasks depend on the current 

system configuration and the entry point of a TU. For 

example, the balance of a unidirectional conveyor can 

only be utilized if the entrance is positioned ahead of the 

balance because reverse conveying is not allowed. 

Subsequently after reconfiguring an aMFS, the LOs of the 

affected modules have to be repeatedly determined. The 

material flow control selects a LO for a TU. When the TU 

arrives at the module, the predefined LO is executed by 

the locally assigned function control. 

C. Application of the Flexible Logistical Function 

Control 

In an aMFS containing solely modules with one 

operation, only a simple function control is needed that 

matches the connected neighboring modules to the 

operation in order to generate the module offer. The 

material flow control links the operations, or modules, 

respectively, together in the context of the scheduling 

process. 

Incorporating several components in one module and 

describing the capabilities with atomic operations leads to 

the following advantages: 
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 The number of decentralized control units is 
reduced, which leads to less traffic in the 
communication system. 

 Modules can be connected independently from 
predefined hardware interfaces and allow for 
more flexible system configurations and layouts. 

 Implementation of an individual execution 
strategy for transport tasks within a module 
independent from the general material flow 
strategy of the system. 

 More sophisticated operations can be realized 
efficiently utilizing several components in one 
module and combining operations. 

More sophisticated operations have, for example, 

constraints on timing and the interleaved collaboration of 

several components. For example, the discharging of a TU 

from a belt conveyor on the fly through a pusher requires 

precise timing and a defined setup such as a light barrier at 

an exact and known position, as shown in “Fig. 2”. 

Identifying the required interfaces, verifying the 

capabilities and executing the function with several 

separate modules is more complex and error-prone. 

Encapsulating a sophisticated operation and connecting it 

with defined interfaces to basic operations within one 

module enables neighboring modules to utilize the basic 

operations (e. g. conveying with constant speed) to 

configure a common material flow interface. Alternatively, 

a detailed description of valid system configurations for 

the operator is needed. Subsequently, modules with 

several components encapsulating sophisticated 

operations allow for more intuitive system configurations 

for the operator but also enable flexible system 

configurations with no predefined hardware interfaces by 

providing basic operations to establish a material flow 

interface between two modules. 

Defining only the operation discharging for the module 

implies that the hardware interfaces of the connected 

modules are set since the operation has a fixed starting 

and ending position (A to B and A to C). Describing the 

capabilities of the module with several atomic operations 

enables one to connect neighboring modules at points not 

originally designated (ANew). The function control verifies 

if TUs from ANew qualify for the operation discharging 

(TUs need to enter before the second light barrier from the 

left). 

For complex modules with many components and 

different transport options, one’s own material flow 

strategy might be more efficient than the general strategy 

of the material flow control. A module’s function control 

facilitates the utilization of internal material flow 

strategies for a more efficient material flow in the aMFS. 

IV. AUTOMATIC GENERATION OF LOGISTICAL 

FUNCTION SCHEDULES 

Modules are developed during design time with no 

specific knowledge about their later application in an 

aMFS. Subsequently, the number, the kind and the 

position of neighboring modules are unknown. But the 

information is needed to coordinate the internal material 

flow within a module. In order to cover as many variants 

of different applications as possible, the operations must 

be implemented generically. Furthermore, the execution 

of the operations must be adaptable to the current 

application. The coordination of the material flow within a 

module must satisfy a given TU sequence at the exits and 

avoid deadlocks independent from the current position or 

number of neighbors. 

The following subsections distinguish between the 

engineering process of self-configuring modules during 

design time, the automated configuration process after 

layout changes and the execution of operations during run 

time in order to accomplish a material flow. In this paper, 

a pusher module shown in “Fig. 2” is used to explain the 

concept and conduct a conceptual evaluation. 

 

Figure 2.  Example of a logistical module consisting of two conveyors 
and a pusher for discharging TU from one conveyor to another. 

A. Engineering Functions 

Each component of a module is able to execute a set of 

atomic operations with specific properties. In this paper, 

an area in which an operation is performed is called 

operating space (OS). Each operation is assigned to only 

one OS with a specified capacity for TUs. OSs with a 

capacity greater than one are able to simultaneously 

execute their operation on multiple TUs (e. g. to enable 

bulk conveying). “Fig. 3” shows the layout and coordinate 

system of the logistical module from “Fig. 2”. Three 

atomic operations and, subsequently, three OSs can be 

identified for the module: OS 1 for the operation 

conveying on conveyor 1 with the capacity three, OS 2 for 

the operation conveying on conveyor 2 with the capacity 

one and OS 3 for the operation pushing simultaneously 

allocating conveyor 1, conveyor 2 and the pusher with the 

capacity one. 

During design time, logistical functions (LF) are 

derived from one or more atomic operations. LFs provide 

the specific capabilities needed to realize a material flow 

in aMFS. The execution of a dynamic pusher function 

demands a conveying operation and a timed push 

operation in order to discharge a TU from conveyor 1. The 

operations are condensed and implemented in the LF inTD 

(internal transfer dynamic discharging). The LFs are 

constructed manually for each module during design time 

and implemented in a function list that is described in the 

following and shown in “Fig. 4”. A unique name identifies 

an LF within a module. Operations required to perform a 
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function are listed with their corresponding OS. The 

entrances and exits to an LF are described by value ranges 

and refer to the overall dimensions of the TU depending 

on the direction of movement. The LF C1 (Conveying 1) 

can be entered at each position between the coordinates x

∈{0-18} but only centered in the middle of the conveyor 

y∈{7} and on the conveyor z∈{0}. Whereas the LF 

inTD can only be entered at x∈{6} because it has to pass 

the light barrier to perform a pusher operation. Thus, the 

LF inTD can be performed on a TU entering the module 

anywhere before or at x={6}. 

Besides transporting a TU from an entrance to an exit, 

an LF can perform a handling task such as weighing or 

identifying a TU and is stated in the column Task. The 

transport and the task can be executed with different 

parameters, which are also stated in the function list. 

 

 

Figure 3.  Diagram showing the OSs and coordinates of the pusher 

module. 

Name Description OS Entrance Exit Parameter Task

x {0-18} {x-18}

y {7} {7}

z {0} {0}

x {10} {10}

y {5} {0}

z {0} {0}

x {6} {10}

y {7} {1}

z {0} {0}

x {0} {1}

y {7} {7}

z {0} {0}

x {17} {18}

y {7} {7}

z {0} {0}

x {10} {10}

y {1} {0}

z {0} {0}

External Transfer A

exTC 2 Speed {0.1}

exTB

External Transfer C

1 Speed {0.1}

exTA

External Transfer B

1 Speed {0.1}

inTD
Internal Transfer 

Dynamic Discharging
1,2,3

C2 Conveying 2 2 Speed {0.1;0.2}

C1 Conveying 1 1 Speed {0.1;0.2}

 

Figure 4.  Function list of the pusher module. 

LF can be performed in only one OS, in several OSs of 

one module for an internal transfer or in several OS of two 

modules for an external transfer. For reconfigurable aMFS, 

the external transfers are generated automatically and 

added to the function list during the configuration phase 

(cf. “Fig. 4” last three entries in the function list). The 

external transfer functions are generated for defined 

logistical transfers between modules in an aMFS and 

regarded in previous works [7]. LFs performed in several 

OSs link OSs together. The linkage is represented in the 

OS routing matrix shown in “Fig. 5”. 

Each OS and each connected neighboring module is 

stated in the first row and column of the matrix. The OS 

routing matrix is the basis for the automated configuration 

of different workflows through the module. The LFs are 

added manually to the matrix during design time. For the 

pusher module, the OS routing matrix states that from 

OS1 a transport to OS3 executed by the LF C1 and from 

OS3 a transport to OS2 executed by the LF inTD is 

available. The coordinates for the entrance and exit are 

given in the function list. 

B. Configuration of Logistical Offers 

The external material flow control selects a module for 

the transport sequence if the destination is accessible 

through the module and the requested tasks can be 

fulfilled. Further optimization like traffic balancing is 

considered after the key requirements are satisfied. 

Subsequently for each entrance, the reachable exits and 

feasible tasks are of interest for the external material flow 

control. 

 

OS 1 2 3 A B C

To

From

inTD

C exTC

exTBB

A

C13

2 C2

exTA1 C1

Generated 
automatically during 

configuration phase

 

Figure 5.  OS routing matrix of the pusher module. 

At configuration phase, neighboring modules are 

identified through a comparison of the module’s position 

coordinates within the system and the dimension of the 

module. After the position and type of a module interface 

(entrance or exit) are set, the external transfer functions 

are generated. The OSs are determined from the exit 

coordinates of the external transfer functions. The 

function control adds the generated external transfer 

functions to the LF list and OS routing matrix. Following 

the completion of the LF list and OS routing matrix for the 

current configuration, function control calculates 

executable logistical offers shown in “Fig. 6”. LOs consist 

of an entrance, exit, optional task, LF sequence and 

properties (i.e. process time). The LF sequence states the 

type of LF, order and properties (entrance and exit 

coordinates, speed, etc.) for a specific LO. 

First, the function control considers every theoretically 

possible combination of entrances, exits and tasks for a 

LO. Next, for each theoretical LO, an LF sequence is 

generated. A depth-first search is applied to the OS 

routing matrix to calculate every valid path from the 

entering to the exiting neighboring module. LO with no 

valid paths are not further considered in the calculation. 

The remaining valid paths are parametrized and validated. 

The entrance value range of an LF must match the exit 

value range of the predecessor function and the 

parameters (i.e. conveying speed) must be suitable. For 
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LOs with more than one valid path, the path with the most 

convenient properties is selected by the function control. 

Conclusively, the LOs with valid LF sequences are added 

to the LO list shown in “Fig. 6”. The function control is 

able to determine LOs and the corresponding LF sequence 

independent from predefined hardware interfaces for 

neighboring modules. For each entrance, the accessible 

exits and feasible tasks are assigned individually for the 

current configuration of the aMFS. Usually a logistical 

module connects two to four neighbors, performs one task 

and possesses a limited number of components. During 

the configuration phase, calculating time is not a critical 

shortage. Therefore, a heuristic procedure is applied to 

calculate valid LOs. 

C. Execution 

During scheduling, the material flow control selects a 

LO for a TU and informs the function control. When a TU 

arrives at a module, the function control prepares the 

execution of the assigned LO with the LF sequence. 

Entrance Exit Task OS LF Sequence

A B A,1,B

exTA({0,7,0};{1,7,0};0.1),

C1({1,7,0};{17,7,0};0.1),

exTB({17,7,0};{18,7,0};0.1)

A C A,1,3,2,C

exTA({0,7,0};{1,7,0};0.1),

C1({1,7,0};{6,7,0};0.1),

inTD({6,7,0};{10,1,0}),

C2({10,1,0};{10,1,0};0.1),

exTC({10,1,0};{10,0,0};0.1)  

Figure 6.  List of LOs of the pusher module. 

The parallel execution of multiple LOs for different 

TUs requires the coordination of common OS to avoid 

collisions or deadlocks. For this purpose, an LF schedule 

is established with a column for each OS and rows 

representing every single execution step. The LF of all 

arriving TUs is entered in the LF schedule according to 

the LF sequence. The order of the LF sequence of 

different TUs is scheduled according to the planned order 

of the TUs arriving at the module. LFs allocated to several 

OSs are assigned to several OSs’ columns but in the same 

row, since the OSs are required for the same execution 

step (parallel execution). 

The execution schedule shown in “Fig. 7” gives an 

overview about how the LF of a TU depends on the 

execution of the LF of another TU or which LFs can be 

performed independently in parallel execution. Adjoining 

LFs for different TUs in the same OS (same OS equals 

same underlying operation) can be checked for 

simultaneous execution. For example, on a long conveyor, 

several TUs can be transported at the same time rather 

than waiting till the transport of the successor TU exits the 

conveyor. 

For further internal optimization, a module-specific OS 

management system can be implemented. For example, an 

H-crossing (see “Fig. 8”) can be optimized by pooling TU, 

travelling the same direction in the mid section, for one 

consecutive transport. The constraints are that TUs arrive 

at the assigned exit in sequence. For a grid, the OS 

management system arranges the LF sequences in such a 

manner that interferences are reduced to a minimum to 

increase the throughput of the module. 

V. EVALUATION 

The evaluation of the engineering process is shown in 

the example of the pusher module in the previous section. 

In this section, the advantages of the concept in terms of 

TU throughput of a module are evaluated. The concept 

was implemented in a simulation model to prove that the 

concept can be implemented in code and to show the 

advantages in terms of throughput. 

1 2 3 4

1 exTA

2 C1

3 inTD inTD inTD

4 C2

5 exTC

6 exTA

7 C1

8 exTB

Possible parallel execution Possible simultaneous execution

OS
Step

 
 

Figure 7.  Exemplary execution schedule for the pusher module for two 
different TUs (marked with different colors). 

For the simulation model, the H-crossing (“Fig. 8” left) 

was chosen because the module consists of several 

components, allows for the parallel processing of different 

TUs, and a strategy can be applied to optimize the module. 

Three scenarios are distinguished for the evaluation of the 

throughput: 
 

1) Scenario 1: Logistical offers are implemented 

manually for the module and can only be executed 

serially to avoid conflicts such as deadlocks. 

2) Scenario 2: Logistical functions are manually 

implemented and different OSs are defined, such as those 

proposed in this paper. The function control coordinates 

parallel execution depending on the situation and avoids 

deadlocks. 

3) Scenario 3: In addition to scenario 2, the function 

control applies a module strategy. The mid section 

prioritizes successor TUs traveling in the same direction. 

The results of the simulation study are shown in “Fig. 

9”. Between scenario 1 and 2, a major difference of the 

throughput can be observed. Also, the maximum 

throughput can be increased because of the optimized 

utilization of the module through parallel execution. 

Scenario 3 differs from scenario 2 only in the maximum 

throughput. The sequence of the TU is mainly determined 

by the material flow control; therefore, the optimization 

with a local module strategy has only little influence on 

the throughput. 

VI. CONCLUSION AND OUTLOOK 

Flexible aMFSs consist of different module types with 

specific logistical functionalities. Modules with 

predefined entrances, exits and logistical functions 

contradict the concept of flexible aMFS. Depending on the 
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number and position of the entrances and exits, a module 

can offer different logistical functions and tasks to the 

system. In this paper, a concept is proposed that enables 

an engineer to parametrize general logistical functions for 

modules during design time. Value ranges describe valid 

entrance and exit points for the flexible combination of 

different logistical functions. Additionally, the concept 

enables the developer to implement sophisticated 

functions within a module that consists of different 

components. 

 

Figure 8.  Different logistical modules that request different OS 
management systems for an efficient exceution. 

 

Figure 9.  Comparison of the throughput for different scenarios for the 
H-crossing’s function control. 

Depending on the actual system configuration, a 

module’s function control automatically identifies 

logistical functions to offer to the material flow control 

during the configuration phase. For each entrance, the 

function control automatically derives execution 

sequences to all reachable exits and tasks of a module. 

Furthermore, a module is able to coordinate the execution 

of functions and optimize the throughput through the 

parallel or simultaneous execution of functions and the 

avoidance of blockades. The concept was implemented in 

a simulation model to proof the concept and examine the 

advantages in terms of throughput. 

The concept proposed in this paper is suitable for 

modules with several components and several options for 

placing entrances and exits that perform a material flow. 

For modules with only one component or fixed entrances 

and exits, predefined control code is sufficient. Also, for 

modules with a large number of components, the concept 

may lead to long configuration times because heuristic 

algorithms are applied. 

The local module strategy can be in contradiction to the 

material flow strategy. Therefore, only simple module 

strategies and modules with few components should be 

employed in the self-configuring aMFS. In contrast to the 

parallel execution of LFs, the local module strategies have 

only little influence on the throughput. Therefore, the local 

module strategies should be automatically adopted by the 

material flow control. In the future, suitable interactions 

between the function control and the material flow control 

to jointly optimize the system and module throughput will 

be investigated. 
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