
Implementation, Self-Configuration and

Coordination of Logistical Functions for

Autonomous Logistics Modules in Flexible

Automated Material Flow Systems

Christian Lieberoth-Leden, Juliane Fischer, Birgit Vogel-Heuser, Johannes Fottner
Technical University of Munich, Munich, Germany

Email: lieberoth-leden@fml.mw.tum.de, juliane.fischer@tum.de, vogel-heuser@tum.de, kontakt@fml.mw.tum.de

Abstract—The modularization of hard- and software is one

approach to handle the demand for increasing flexibility

and changeability of automated material flow systems that

are, for example, utilized in flexible production systems.

Depending on the current system configuration, the position

and number of entrances and exits of a module may vary.

Subsequently, the feasible tasks and the internal execution

order of operations within a module are affected. During

design time, the later system configuration is unknown,

therefore, a concept is proposed to generally describe a

module’s internal logistical operations. After a system

reconfiguration, the module’s internal function control

automatically determines the execution order for active

entrances, exits and tasks. Additionally, the function control

is able to efficiently coordinate the execution of parallel

transports on the same module to increase the throughput.

Index Terms—convertible and flexible automated material

flow systems, cyber-physical systems, decentralized control,

execution coordination, execution schedule

I. INTRODUCTION

Present day automated material flow systems (aMFS)

are mostly operated by an individual central control.

Developing the specialized control software demands a

manual effort, and flexibility is only facilitated within

predefined limits. This is the case, for example, when a

designated alternative route is temporarily used for a

higher throughput. New demands on an existing aMFS

that require flexibility not originally considered (e.g., an

extension of the system) cannot be realized. In this case,

an aMFS is not considered or supplemented by manual

processes [1], [2]. An aMFS that provides flexibility

beyond predefined limits is characterized as being

convertible. Convertible aMFS are a response to

reconfigurable manufacturing systems that increase the

manufacturing responsiveness for a faster adaption to

changing market conditions [3].

A convertible aMFS can be realized by means of

function-oriented modularization of the hardware and

software [4]. By adding, removing or changing modules,

Manuscript received October 16, 2018; revised May 2, 2019.

the layout of an aMFS is adapted to the new demands.

New demands arise from changing manufacturing or

logistic processes, which are caused by new products

requiring different operations, a fluctuating production

volume, a modification of the layout in the production due

to new machinery or other reasons. The control of

convertible aMFS can be realized through local

autonomous modules that cooperate with each other.

Advantages are a reduced software complexity and eased

re-configurability [5].

In this paper, a module is defined as an encapsulated

unit that performs predefined tasks, such as conveying,

buffering or identifying a transport unit (TU). A module

possesses all the necessary information and software to

control its hardware, to communicate with other modules

or superior systems and to perform an autonomous self-

configuration. Standardized software interfaces and

property descriptions enable collaboration between

heterogeneous modules [6], for example, the combination

of a conveyor with a crane. Consequently, autonomous

self-controlled modules allow for convertible aMFS that

can be changed during runtime [7].

This paper distinguishes between an external material

flow control and an internal function control. The material

flow control plans in which order the TUs need to pass

through the modules and the tasks to be performed on the

TUs by the modules in cooperation with the other

modules. The function control independently executes the

operations within a module, with the exception of a

handshake with neighboring modules for a common

transfer of a TU. For the execution of a transport, the

function control has to derive the necessary operations and

the execution sequence of these operations from the

assigned TU order and tasks on the module.

The execution sequence depends on the number of

active entrances, exits, and tasks of a module as well as

the position of the neighboring modules. Subsequently,

predefined operation sequences cannot be created during

design time but must be generated and parametrized

dependent on the current system configuration. For design

time, an approach is required to implement generalized

operations that enable the performance of a wide variety

of different operation sequences for different system

498

International Journal of Mechanical Engineering and Robotics Research Vol. 8, No. 4, July 2019

© 2019 Int. J. Mech. Eng. Rob. Res
doi: 10.18178/ijmerr.8.4.498-505

configurations. The approach should focus on general

logistical operations while at the same time allowing for

encapsulated complex module-specific operations (e.g.

with requirements on precise timing) that can also be

combined automatically with the general logistical

operations. During run time, the function control should

automatically derive a valid execution sequence for a

given entrance, exit and task. Furthermore, the function

control must be able to coordinate the execution

sequences of different TUs on the same module in order to

avoid blockades and optimize the throughput of the

module.

This paper focuses on the internal control of a module

and not on the strategic planning processes for the

material flow control. After an overview of the state of the

art in controlling convertible aMFS and production

systems consisting of separate modules, the general

functionality of a material flow control and the benefits of

an additional individual function control for each module

is described. Following, the engineering process for a

flexible function control is brought into focus. Also, the

proposed concept is evaluated on a representative

logistical module. Subsequently, the quantitative

evaluation for the concept is shown with a simulation

study. The last section concludes the proposed concept

and gives an outlook on the planned future work.

II. STATE OF THE ART

Autonomous entities that are able to execute predefined

tasks, such as the modules mentioned in this paper, can be

realized by means of agents that control a module and

communicate with other agents in order to accomplish a

task. Vogel-Heuser et al. stated that the utilization of such

agents allows for Cyber-Physical Production Systems for

Industry 4.0 applications [8]. Mayer developed the

hardware for autonomous material flow conveyor modules

and the software for a decentralized routing and

reservation process to avoid deadlocks [9]. Modules are

reserved exclusively for one TU as long as the transport is

not completed. In order to achieve a better utilization of a

resource’s capacity, Mors introduces time slots [10].

Lieberoth-Leden et al. propose a communication ontology

for a time-slot-based reservation process with absolute

time in aMFS [11] and Seibold proposes a reservation and

routing process using relative (logical) time, which is

more robust concerning delays in the transport process

[12].

Several approaches introduced standardized modules to

build reconfigurable aMFS controlled by multiagent

systems [13], decentralized controls [9] or a centralized

control [14], [15]. All approaches have in common that

TUs enter and exit modules through predefined and during

design time known interfaces. A specific internal module

control is developed for each module. Modules with

multiple components and a varying number of entrances,

exits or positions are not considered. Libert presents a

procedure to develop an individual material flow control

for aMFS realized with software agents. As an agent

platform, his uses the PC-based JADE-Framework and not

an implementation on industrial real time control

hardware [16].

Beyer et al. present a multiagent system approach for

designing and choosing a suitable layout for a MFS. The

development engineer enters a set of requirements for the

multiagent system to be designed in an assistance system,

which generates alternative design solutions and rates

them according to the specified requirements [17]. This

approach can be applied when developing new MFS as

well as to reconfigure or optimize existing MFSs.

For decentralized controls, the control function of the

system is split into several less complex control functions

and distributed on various modules that communicate with

each other. In most systems this leads to increased

communication traffic compared to a central control [18].

Another approach to increase the flexibility of aMFSs

is to substitute the commonly used stationary conveyor

modules with a fleet of identical, automated guided

vehicles (AGVs). For path planning and coordination of

such AGVs in a warehouse, Digani et al. propose a two

layer, hierarchical control architecture to reduce the

complexity and simplify the control problem [19]. For

control purposes, the global area of the warehouse is

divided into smaller sectors. While the global path

planning for the AGVs through the sectors is done in a

centralized manner on top layer, the route planning and

coordination inside a sector are performed in a

decentralized manner by the AGVs on lower level.

However stationary conveyor modules achieve a greater

TU throughput and cannot always be substituted with

AGVs.

Armentia et al. present a concept to generate software

for service-oriented systems and focus on the composition

and dynamic reconfiguration of service-orientated

applications [20]. In service-oriented applications, all

software functionalities are defined as independent

services that interact with each other and allow for a

flexible adaptation of these applications to changing

requirements. However, the approach from Armentia’s et

al. is not focused on logistic functionalities where the

services (functionalities) for different TUs have to be

executed in a predefined sequence. Dorofeev et al.

propose a device adapter to wrap the functions of a device

and offer them as a service to the system and execute the

internal device operations [21]. Only validated executions

are allowed that are predefined manually.

Aicher et al. propose a meta model to describe

encapsulated modules in aMFS with standardized

interfaces for code generation [6] and version

compatibility [22]. The engineering process for logistical

operations and the generation of execution sequences is

not considered.

Keddis et al. describe a capability-based approach and

defines different functions for modules in adaptable

manufacturing systems. The functions consist of one or

more primitive operations. Keddis et al. describe that

several primitive operations can be combined to allow for

more complex operations such as combining different

handling operations to an assembling operation. However,

the process of combining primitive operations is not

499

International Journal of Mechanical Engineering and Robotics Research Vol. 8, No. 4, July 2019

© 2019 Int. J. Mech. Eng. Rob. Res

further explained. For each product, a production plan is

generated manually. The production plan lists the

requested functions and determines the order of execution.

The production plan is then mapped to suitable modules

that can execute the requested function. Depending on the

layout and the number of modules that can perform a

function in the manufacturing system, there are several

different paths. Valid paths are determined with the

branch-and-bound and backtracking algorithm [23]. Later

works focus on selecting a path that optimizes i.e. energy

consumption, utilization, delivery time, etc. in correlation

with other products [24]. The implementation process of

module functions and the execution of assigned functions

are not regarded. Furthermore, the approaches lack a

concept for the coordination of the parallel execution of

functions from different TUs.

III. SOFTWARE INTERFACES OF MODULARIZED AMFS

The material flow control determines the predecessor

module, the successor module, the tasks to be performed

for the TU and the TU sequence at the exit for each TU

and module. The function control provides the module’s

properties to the material flow control and executes the

material flow.

A. Material Flow Control

The material flow control receives transport orders

from superior systems i.e. an enterprise resource planning

system (ERP) or a warehouse management system

(WMS), or it generates its own orders during the transport

process “Fig. 1”. Transport orders comprise information

about the properties of the TU, source, destination, tasks

(i.e. wrapping with foil) and material flow properties (i.e.

required TU sequence at the destination). The material

flow control conducts resource planning and schedules the

transport orders.

Independent from a centralized or decentralized

implemented material flow control and the structure of the

database, such as centralized or distributed, the outcome

of the scheduling process is identical. The material flow

control arranges a module sequence (transport from

source to destination), a TU sequence at each module

(satisfy the material flow properties) and assigns tasks to

selected modules (fulfill the required tasks). In order to

schedule transport orders, the material flow control

requires knowledge about the linkage of modules and the

feasible tasks of a module.

B. Module Structure and Function Control

Decentralized controlled logistical modules are made

up of one or more components and the hardware control

unit. A component consists of at least one sensor or

actuator like a belt conveyor with a drive and a light

barrier. A logistical component can perform an atomic

operation (cf. primitive operations in manufacturing

systems [23]) i.e. conveying. The general structure,

operations, properties, etc. of a module can be described

in a meta model [6]. Atomic operations describe general

abilities but lack logistical relevance for the material flow

control. In order to conduct a material flow through a

module, several atomic operations must often be linked

together.

Figure 1. Process of generating, scheduling and executing transport
orders in an aMFS.

Once a module is repositioned or added to an aMFS, it

performs an autonomous self-configuration. After the

identification of connected neighboring modules, feasible

logistical offers (LO) are derived from the operations such

as conveying a TU from neighbor A to neighbor B. LOs

implicate through which neighbor a module can be

entered and exited and the feasible tasks performable

between entry and exit point. The accessible neighboring

modules and the feasible tasks depend on the current

system configuration and the entry point of a TU. For

example, the balance of a unidirectional conveyor can

only be utilized if the entrance is positioned ahead of the

balance because reverse conveying is not allowed.

Subsequently after reconfiguring an aMFS, the LOs of the

affected modules have to be repeatedly determined. The

material flow control selects a LO for a TU. When the TU

arrives at the module, the predefined LO is executed by

the locally assigned function control.

C. Application of the Flexible Logistical Function

Control

In an aMFS containing solely modules with one

operation, only a simple function control is needed that

matches the connected neighboring modules to the

operation in order to generate the module offer. The

material flow control links the operations, or modules,

respectively, together in the context of the scheduling

process.

Incorporating several components in one module and

describing the capabilities with atomic operations leads to

the following advantages:

500

International Journal of Mechanical Engineering and Robotics Research Vol. 8, No. 4, July 2019

© 2019 Int. J. Mech. Eng. Rob. Res

 The number of decentralized control units is
reduced, which leads to less traffic in the
communication system.

 Modules can be connected independently from
predefined hardware interfaces and allow for
more flexible system configurations and layouts.

 Implementation of an individual execution
strategy for transport tasks within a module
independent from the general material flow
strategy of the system.

 More sophisticated operations can be realized
efficiently utilizing several components in one
module and combining operations.

More sophisticated operations have, for example,

constraints on timing and the interleaved collaboration of

several components. For example, the discharging of a TU

from a belt conveyor on the fly through a pusher requires

precise timing and a defined setup such as a light barrier at

an exact and known position, as shown in “Fig. 2”.

Identifying the required interfaces, verifying the

capabilities and executing the function with several

separate modules is more complex and error-prone.

Encapsulating a sophisticated operation and connecting it

with defined interfaces to basic operations within one

module enables neighboring modules to utilize the basic

operations (e. g. conveying with constant speed) to

configure a common material flow interface. Alternatively,

a detailed description of valid system configurations for

the operator is needed. Subsequently, modules with

several components encapsulating sophisticated

operations allow for more intuitive system configurations

for the operator but also enable flexible system

configurations with no predefined hardware interfaces by

providing basic operations to establish a material flow

interface between two modules.

Defining only the operation discharging for the module

implies that the hardware interfaces of the connected

modules are set since the operation has a fixed starting

and ending position (A to B and A to C). Describing the

capabilities of the module with several atomic operations

enables one to connect neighboring modules at points not

originally designated (ANew). The function control verifies

if TUs from ANew qualify for the operation discharging

(TUs need to enter before the second light barrier from the

left).

For complex modules with many components and

different transport options, one’s own material flow

strategy might be more efficient than the general strategy

of the material flow control. A module’s function control

facilitates the utilization of internal material flow

strategies for a more efficient material flow in the aMFS.

IV. AUTOMATIC GENERATION OF LOGISTICAL

FUNCTION SCHEDULES

Modules are developed during design time with no

specific knowledge about their later application in an

aMFS. Subsequently, the number, the kind and the

position of neighboring modules are unknown. But the

information is needed to coordinate the internal material

flow within a module. In order to cover as many variants

of different applications as possible, the operations must

be implemented generically. Furthermore, the execution

of the operations must be adaptable to the current

application. The coordination of the material flow within a

module must satisfy a given TU sequence at the exits and

avoid deadlocks independent from the current position or

number of neighbors.

The following subsections distinguish between the

engineering process of self-configuring modules during

design time, the automated configuration process after

layout changes and the execution of operations during run

time in order to accomplish a material flow. In this paper,

a pusher module shown in “Fig. 2” is used to explain the

concept and conduct a conceptual evaluation.

Figure 2. Example of a logistical module consisting of two conveyors
and a pusher for discharging TU from one conveyor to another.

A. Engineering Functions

Each component of a module is able to execute a set of

atomic operations with specific properties. In this paper,

an area in which an operation is performed is called

operating space (OS). Each operation is assigned to only

one OS with a specified capacity for TUs. OSs with a

capacity greater than one are able to simultaneously

execute their operation on multiple TUs (e. g. to enable

bulk conveying). “Fig. 3” shows the layout and coordinate

system of the logistical module from “Fig. 2”. Three

atomic operations and, subsequently, three OSs can be

identified for the module: OS 1 for the operation

conveying on conveyor 1 with the capacity three, OS 2 for

the operation conveying on conveyor 2 with the capacity

one and OS 3 for the operation pushing simultaneously

allocating conveyor 1, conveyor 2 and the pusher with the

capacity one.

During design time, logistical functions (LF) are

derived from one or more atomic operations. LFs provide

the specific capabilities needed to realize a material flow

in aMFS. The execution of a dynamic pusher function

demands a conveying operation and a timed push

operation in order to discharge a TU from conveyor 1. The

operations are condensed and implemented in the LF inTD

(internal transfer dynamic discharging). The LFs are

constructed manually for each module during design time

and implemented in a function list that is described in the

following and shown in “Fig. 4”. A unique name identifies

an LF within a module. Operations required to perform a

501

International Journal of Mechanical Engineering and Robotics Research Vol. 8, No. 4, July 2019

© 2019 Int. J. Mech. Eng. Rob. Res

function are listed with their corresponding OS. The

entrances and exits to an LF are described by value ranges

and refer to the overall dimensions of the TU depending

on the direction of movement. The LF C1 (Conveying 1)

can be entered at each position between the coordinates x

∈{0-18} but only centered in the middle of the conveyor

y∈{7} and on the conveyor z∈{0}. Whereas the LF

inTD can only be entered at x∈{6} because it has to pass

the light barrier to perform a pusher operation. Thus, the

LF inTD can be performed on a TU entering the module

anywhere before or at x={6}.

Besides transporting a TU from an entrance to an exit,

an LF can perform a handling task such as weighing or

identifying a TU and is stated in the column Task. The

transport and the task can be executed with different

parameters, which are also stated in the function list.

Figure 3. Diagram showing the OSs and coordinates of the pusher

module.

Name Description OS Entrance Exit Parameter Task

x {0-18} {x-18}

y {7} {7}

z {0} {0}

x {10} {10}

y {5} {0}

z {0} {0}

x {6} {10}

y {7} {1}

z {0} {0}

x {0} {1}

y {7} {7}

z {0} {0}

x {17} {18}

y {7} {7}

z {0} {0}

x {10} {10}

y {1} {0}

z {0} {0}

External Transfer A

exTC 2 Speed {0.1}

exTB

External Transfer C

1 Speed {0.1}

exTA

External Transfer B

1 Speed {0.1}

inTD
Internal Transfer

Dynamic Discharging
1,2,3

C2 Conveying 2 2 Speed {0.1;0.2}

C1 Conveying 1 1 Speed {0.1;0.2}

Figure 4. Function list of the pusher module.

LF can be performed in only one OS, in several OSs of

one module for an internal transfer or in several OS of two

modules for an external transfer. For reconfigurable aMFS,

the external transfers are generated automatically and

added to the function list during the configuration phase

(cf. “Fig. 4” last three entries in the function list). The

external transfer functions are generated for defined

logistical transfers between modules in an aMFS and

regarded in previous works [7]. LFs performed in several

OSs link OSs together. The linkage is represented in the

OS routing matrix shown in “Fig. 5”.

Each OS and each connected neighboring module is

stated in the first row and column of the matrix. The OS

routing matrix is the basis for the automated configuration

of different workflows through the module. The LFs are

added manually to the matrix during design time. For the

pusher module, the OS routing matrix states that from

OS1 a transport to OS3 executed by the LF C1 and from

OS3 a transport to OS2 executed by the LF inTD is

available. The coordinates for the entrance and exit are

given in the function list.

B. Configuration of Logistical Offers

The external material flow control selects a module for

the transport sequence if the destination is accessible

through the module and the requested tasks can be

fulfilled. Further optimization like traffic balancing is

considered after the key requirements are satisfied.

Subsequently for each entrance, the reachable exits and

feasible tasks are of interest for the external material flow

control.

OS 1 2 3 A B C

To

From

inTD

C exTC

exTBB

A

C13

2 C2

exTA1 C1

Generated
automatically during

configuration phase

Figure 5. OS routing matrix of the pusher module.

At configuration phase, neighboring modules are

identified through a comparison of the module’s position

coordinates within the system and the dimension of the

module. After the position and type of a module interface

(entrance or exit) are set, the external transfer functions

are generated. The OSs are determined from the exit

coordinates of the external transfer functions. The

function control adds the generated external transfer

functions to the LF list and OS routing matrix. Following

the completion of the LF list and OS routing matrix for the

current configuration, function control calculates

executable logistical offers shown in “Fig. 6”. LOs consist

of an entrance, exit, optional task, LF sequence and

properties (i.e. process time). The LF sequence states the

type of LF, order and properties (entrance and exit

coordinates, speed, etc.) for a specific LO.

First, the function control considers every theoretically

possible combination of entrances, exits and tasks for a

LO. Next, for each theoretical LO, an LF sequence is

generated. A depth-first search is applied to the OS

routing matrix to calculate every valid path from the

entering to the exiting neighboring module. LO with no

valid paths are not further considered in the calculation.

The remaining valid paths are parametrized and validated.

The entrance value range of an LF must match the exit

value range of the predecessor function and the

parameters (i.e. conveying speed) must be suitable. For

502

International Journal of Mechanical Engineering and Robotics Research Vol. 8, No. 4, July 2019

© 2019 Int. J. Mech. Eng. Rob. Res

LOs with more than one valid path, the path with the most

convenient properties is selected by the function control.

Conclusively, the LOs with valid LF sequences are added

to the LO list shown in “Fig. 6”. The function control is

able to determine LOs and the corresponding LF sequence

independent from predefined hardware interfaces for

neighboring modules. For each entrance, the accessible

exits and feasible tasks are assigned individually for the

current configuration of the aMFS. Usually a logistical

module connects two to four neighbors, performs one task

and possesses a limited number of components. During

the configuration phase, calculating time is not a critical

shortage. Therefore, a heuristic procedure is applied to

calculate valid LOs.

C. Execution

During scheduling, the material flow control selects a

LO for a TU and informs the function control. When a TU

arrives at a module, the function control prepares the

execution of the assigned LO with the LF sequence.

Entrance Exit Task OS LF Sequence

A B A,1,B

exTA({0,7,0};{1,7,0};0.1),

C1({1,7,0};{17,7,0};0.1),

exTB({17,7,0};{18,7,0};0.1)

A C A,1,3,2,C

exTA({0,7,0};{1,7,0};0.1),

C1({1,7,0};{6,7,0};0.1),

inTD({6,7,0};{10,1,0}),

C2({10,1,0};{10,1,0};0.1),

exTC({10,1,0};{10,0,0};0.1)

Figure 6. List of LOs of the pusher module.

The parallel execution of multiple LOs for different

TUs requires the coordination of common OS to avoid

collisions or deadlocks. For this purpose, an LF schedule

is established with a column for each OS and rows

representing every single execution step. The LF of all

arriving TUs is entered in the LF schedule according to

the LF sequence. The order of the LF sequence of

different TUs is scheduled according to the planned order

of the TUs arriving at the module. LFs allocated to several

OSs are assigned to several OSs’ columns but in the same

row, since the OSs are required for the same execution

step (parallel execution).

The execution schedule shown in “Fig. 7” gives an

overview about how the LF of a TU depends on the

execution of the LF of another TU or which LFs can be

performed independently in parallel execution. Adjoining

LFs for different TUs in the same OS (same OS equals

same underlying operation) can be checked for

simultaneous execution. For example, on a long conveyor,

several TUs can be transported at the same time rather

than waiting till the transport of the successor TU exits the

conveyor.

For further internal optimization, a module-specific OS

management system can be implemented. For example, an

H-crossing (see “Fig. 8”) can be optimized by pooling TU,

travelling the same direction in the mid section, for one

consecutive transport. The constraints are that TUs arrive

at the assigned exit in sequence. For a grid, the OS

management system arranges the LF sequences in such a

manner that interferences are reduced to a minimum to

increase the throughput of the module.

V. EVALUATION

The evaluation of the engineering process is shown in

the example of the pusher module in the previous section.

In this section, the advantages of the concept in terms of

TU throughput of a module are evaluated. The concept

was implemented in a simulation model to prove that the

concept can be implemented in code and to show the

advantages in terms of throughput.

1 2 3 4

1 exTA

2 C1

3 inTD inTD inTD

4 C2

5 exTC

6 exTA

7 C1

8 exTB

Possible parallel execution Possible simultaneous execution

OS
Step

Figure 7. Exemplary execution schedule for the pusher module for two
different TUs (marked with different colors).

For the simulation model, the H-crossing (“Fig. 8” left)

was chosen because the module consists of several

components, allows for the parallel processing of different

TUs, and a strategy can be applied to optimize the module.

Three scenarios are distinguished for the evaluation of the

throughput:

1) Scenario 1: Logistical offers are implemented

manually for the module and can only be executed

serially to avoid conflicts such as deadlocks.

2) Scenario 2: Logistical functions are manually

implemented and different OSs are defined, such as those

proposed in this paper. The function control coordinates

parallel execution depending on the situation and avoids

deadlocks.

3) Scenario 3: In addition to scenario 2, the function

control applies a module strategy. The mid section

prioritizes successor TUs traveling in the same direction.

The results of the simulation study are shown in “Fig.

9”. Between scenario 1 and 2, a major difference of the

throughput can be observed. Also, the maximum

throughput can be increased because of the optimized

utilization of the module through parallel execution.

Scenario 3 differs from scenario 2 only in the maximum

throughput. The sequence of the TU is mainly determined

by the material flow control; therefore, the optimization

with a local module strategy has only little influence on

the throughput.

VI. CONCLUSION AND OUTLOOK

Flexible aMFSs consist of different module types with

specific logistical functionalities. Modules with

predefined entrances, exits and logistical functions

contradict the concept of flexible aMFS. Depending on the

503

International Journal of Mechanical Engineering and Robotics Research Vol. 8, No. 4, July 2019

© 2019 Int. J. Mech. Eng. Rob. Res

number and position of the entrances and exits, a module

can offer different logistical functions and tasks to the

system. In this paper, a concept is proposed that enables

an engineer to parametrize general logistical functions for

modules during design time. Value ranges describe valid

entrance and exit points for the flexible combination of

different logistical functions. Additionally, the concept

enables the developer to implement sophisticated

functions within a module that consists of different

components.

Figure 8. Different logistical modules that request different OS
management systems for an efficient exceution.

Figure 9. Comparison of the throughput for different scenarios for the
H-crossing’s function control.

Depending on the actual system configuration, a

module’s function control automatically identifies

logistical functions to offer to the material flow control

during the configuration phase. For each entrance, the

function control automatically derives execution

sequences to all reachable exits and tasks of a module.

Furthermore, a module is able to coordinate the execution

of functions and optimize the throughput through the

parallel or simultaneous execution of functions and the

avoidance of blockades. The concept was implemented in

a simulation model to proof the concept and examine the

advantages in terms of throughput.

The concept proposed in this paper is suitable for

modules with several components and several options for

placing entrances and exits that perform a material flow.

For modules with only one component or fixed entrances

and exits, predefined control code is sufficient. Also, for

modules with a large number of components, the concept

may lead to long configuration times because heuristic

algorithms are applied.

The local module strategy can be in contradiction to the

material flow strategy. Therefore, only simple module

strategies and modules with few components should be

employed in the self-configuring aMFS. In contrast to the

parallel execution of LFs, the local module strategies have

only little influence on the throughput. Therefore, the local

module strategies should be automatically adopted by the

material flow control. In the future, suitable interactions

between the function control and the material flow control

to jointly optimize the system and module throughput will

be investigated.

ACKNOWLEDGMENT

We thank the German Research Foundation (DFG) for

funding this project (GU 427/25-1, VO 937/24-1).

REFERENCES

[1] X. L. Hoang, A. Fay, P. Marks, and M. Weyrich, “Systematization

approach for the adaptation of manufacturing machines,” in Proc.
2016 IEEE 21st International Conference on Emerging

Technologies and Factory Automation (ETFA), 2016, pp. 1–4.

[2] K. Furmans, F. Schönung, and K. Gue, “Plug-and-work material
handling systems,” in Proc. International Material Handling

Research Colloquium (IMHRC), Milwaukee, Wisconsin, 2010.

[3] Y. Koren et al., “Reconfigurable manufacturing systems,” CIRP
Annals - Manufacturing Technology, vol. 48, no. 2, pp. 527–540,

1999.

[4] M. Wilke, “Control concept for autonomous changeable material
flow systems,” Logistics Journal, 2008.

[5] D. M. Dilts, N. P. Boyd, and H. H. Whorms, “The evolution of

control architectures for automated manufacturing systems,”
Journal of Manufacturing Systems, vol. 10, no. 1, pp. 79–93, 1991.

[6] T. Aicher et al., “Increasing flexibility of modular automated

material flow systems: A meta model architecture,” in Proc. 8th
IFAC Conference on Manufacturing Modelling, Management and

Control (MIM), Troyes, France, 2016, pp. 1543–1548.

[7] D. Regulin, D. Schutz, T. Aicher, and B. Vogel-Heuser, “Model
based design of knowledge bases in multi agent systems for

enabling automatic reconfiguration capabilities of material flow

modules,” in IEEE International Conference on Automation
Science and Engineering (CASE), 2016, pp. 133–140.

[8] B. Vogel-Heuser, J. Lee, and P. Leitão, “Agents enabling cyber-

physical production systems,” at - Automatisierungstechnik, vol.
63, no. 10, 2015.

[9] S. H. Mayer, “Development of a completely decentralized control

system for modular continuous conveyor systems,” Dissertation,
Institut für Fördertechnik und Logistiksysteme, Karlsruher Institut

für Technologie, Karlsruhe, 2009.

[10] A. W. t. Mors, “The world according to MARP: Multi-Agent
Route Planning,” Dissertation, Technische Universiteit Delft,

Delft, 2010.

[11] C. Lieberoth-Leden, D. Regulin, W. A. Günthner, M. Figueira,
and Z. Guo, “Efficient Messaging through Cluster Coordinators in

Decentralized Controlled Material Flow Systems,” MATEC Web

Conf., vol. 81, p. 6005, 2016.
[12] Z. Seibold, “Logical time for decentralized control of material

handling systems,” Dissertation, Institut für Fördertechnik und

Logistiksysteme, Karlsruher Institut für Technologie (KIT),
Karlsruhe, 2016.

[13] G. Black and V. Vyatkin, “Intelligent component-based

automation of baggage handling systems With IEC 61499,” IEEE
Transactions on Automation Science and Engineering, vol. 7, no.

2, pp. 337–351, 2010.
[14] S. Haneyah, Generic Control of Material Handling Systems.

Enschede: University of Twente, 2013.

[15] A. Brusaferri, A. Ballarino, F. A. Cavadini, D. Manzocchi, and M.
Mazzolini, “CPS-based hierarchical and self-similar automation

architecture for the control and verification of reconfigurable

manufacturing systems,” in Proc. the 2014 IEEE Emerging

504

International Journal of Mechanical Engineering and Robotics Research Vol. 8, No. 4, July 2019

© 2019 Int. J. Mech. Eng. Rob. Res

Technology and Factory Automation (ETFA), Barcelona, Spain,
2014, pp. 1–8.

[16] S. Libert, “Contribution for designing agent based material flow

controls,” “Beitrag zur agentenbasierten Gestaltung von
Materialflusssteuerungen,” Dissertation, Lehrstuhl für Förder- und

Lagerwesen, Technischen Universität Dortmund, Dortmund, 2011.

[17] T. Beyer, P. Gohner, R. Yousefifar, and K.-H. Wehking, “Agent-
based dimensioning to support the planning of Intra-Logistics

systems,” in Proc. 2016 IEEE 21st International Conference on

Emerging Technologies and Factory Automation (ETFA), 2016,
pp. 1–4.

[18] R. Jünemann and A. Beyer, “Control of material flow and logistics

systems,” Steuerung von Materialfluß- und Logistiksystemen:
Informations- und Steuerungssysteme,” Automatisierungstechnik.

Berlin, Heidelberg: Springer, 1998.

[19] V. Digani, L. Sabattini, C. Secchi, and C. Fantuzzi, “Towards
decentralized coordination of multi robot systems in industrial

environments: A hierarchical traffic control strategy,” in 2013

IEEE 9th International Conference on Intelligent Computer

Communication and Processing (ICCP), 2013, pp. 209–215.

[20] A. Armentia et al., “Achieving reconfigurable service oriented

applications using model driven engineering,” in ETFA 2011,
Toulouse, France, 2011, pp. 1–4.

[21] K. Dorofeev et al., “Device adapter concept towards enabling

plug&produce production environments,” in Proc. the IEEE

International Conference on Emerging Technologies And Factory
Automation (ETFA), Limassol, Cyprus, 2017.

[22] T. Aicher, D. Schütz, M. Spindler, and B. V. H. W. Günthner,

“Automatic analysis and adaption of the interface of automated
material flow systems to improve backwards compatibility,” in

20th IFAC World Congress (IFAC 2017), 2017.

[23] N. Keddis, G. Kainz, and A. Zoitl, “Capability-based planning and
scheduling for adaptable manufacturing systems,” in Proc. IEEE

International Conference on Emerging Techologies and Factory

Automation (ETFA), Barcelona, Spain, 2014, pp. 1–8.
[24] N. Keddis, B. Javed, G. Igna, and A. Zoitl, “Optimizing schedules

for adaptable manufacturing systems,” in Proc. IEEE

International Conference on Emerging Techologies and Factory
Automation (ETFA), Luxembourg, 2015, pp. 1–8.

Christian Lieberoth-Leden graduated in mechanical engineering from
the Technical University of Munich in 2014. Since 2015 he is a research

assistant at the chair of Materials Handling, Material Flow, Logistics

with Professor Fottner at the Technical University of Munich. His main
research interest is the design of modular control software for flexible

automated material flow systems in automated production and logistics

systems.

505

International Journal of Mechanical Engineering and Robotics Research Vol. 8, No. 4, July 2019

© 2019 Int. J. Mech. Eng. Rob. Res

