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Abstract— The out of plane free vibrations of planar parallel 

cable robots possess a long duration, this is a problem for 

applications that require a fast settling time, which 

corresponds to the time necessary for the vibration to stop. 

We evaluated the effectiveness of a tuned mass damper 

(TMD) as a solution to minimize the settling time of these 

nonlinear vibrations. This paper presents a dynamical 

model of a two degree of freedom nonlinear mechanical 

system. Using this model, a numerical search was conducted 

to identify the optimal set of design parameters. During our 

investigations, it was observed that with an optimized tuned 

mass damper reductions of 96.51% of the settling time in 

the best case can be achieved and that the effectiveness of 

this optimized TMD is relatively homogeneous in the 

workspace with the exception of the workspace corners.1 

 

Index Terms—Cable robots, Tuned mass damper, nonlinear 

vibrations, Optimization. 

 

I. INTRODUCTION 

Cable-driven parallel robots henceforth referred to as 

CDPRs, are a relatively new type of robotic manipulator 

in which wired transmission is used in place of rigid links. 

One end of each cable is attached to an actuator, and the 

other end is attached to an end effector and through the 

coordinated extension and retraction of the cables, the 

position of the end effector can be controlled [1], [2] and 

[3]. CDPRs possess a number of advantages including 

simple structure, lightweight, small inertia, fast response, 

high-speed performance and large operating workspace. 

With these advantages, CDPRs have been applied to a 

wide range of applications including the control of radio 

telescopes [4], biomechanical modeling rehabilitation [5] 

and [6], and high-speed manufacturing [7]. 

Due to their low stiffness and flexible actuating cables, 

the use of CDPRs is often limited by the effect of 

vibration. Kawamura et al. first experimentally studied 

the effects of the nonlinear elasticity of high-speed cable 

                                                           
Manuscript received March 31 2018; revised April 15, 2019. 

 

robots [8]. The particular problem of vibration for 

hardware in the loop cable robot simulation was further 

studied by Ma and Diao [9]. Tang et al. [10] found 

through numerical simulations that the mass and 

eccentricity of the end effector contribute to instability. 

In the specific case of planar parallel cable robots, 

Diao and Ma [11] found that the transversal vibration of 

the wire in their line of equilibrium represented only the 

1.4% of the total vibration in the end effector. The 

deflection caused for a force applied normal to the 

working plane was also further studied by Smith et al. [12] 

in which it was observed that the CDPR deflection differs 

throughout the workspace and that the oscillation 

frequencies are in general within the range of 0.5 - 1 Hz. 

These specific out of plane vibrations possess a long 

settling time and therefore subsequently bring undesirable 

consequences to applications that require a fast operation. 

To address the vibrations that occur in CDPR 

operation, the use of pretension has been proposed [8] 

and [12]. This solution, however, possesses some 

disadvantages including increased energy consumption, 

increased actuator torque requirements and a reduction of 

the load capacity of the robot. These disadvantages have 

an impact on the manufacturing cost, where there is the 

necessity of bigger actuators, and in the operation costs, 

where the robot needs more energy. 

Due to the lack of actuation orthogonal to the work 

plane, out of plane vibrations for planar CDPRs represent 

the most common form of CDPR vibration. Specifically, 

when the end effector is in a static position of the 

workspace, perturbation of the end effector results in out 

of plane vibrations. These vibrations usually have a long 

settling time and therefore limit the effectiveness of the 

CDPRs in applications that require a quick settling time. 

One possible option to attenuate the out of plane 

vibrations of CDPR end effectors is the implementation 

of a damper. However, such a damper must not be 

connected to the mechanical ground since for planar 

CDPRs the end effector moves throughout the workspace. 

As a result, a floating damper is needed, where one 

candidate is the use of a tuned mass damper, referred 
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from now on as TMD. The linear TMD is a well-studied 

option to mitigate vibrations in structures [13], [14] and 

[15]. Typically parameters of a TMD are optimized to 

minimize the magnitude of the vibration over a range of 

specified frequencies. For planar CDPRs, however, it is 

necessary to optimize the parameters in the time domain 

to minimize the settling time of the vibration after an end 

effector perturbation. 

In this paper, the performance of a tuned mass damper 

as a potential solution of the out of plane vibrations of 

planar CDPRs is investigated. The focus of this study is 

the mitigation of vibration from positions of the static 

equilibrium. This is evaluated throughout the CDPR 

workspace where it is shown that the use of a TMD 

results in a substantial reduction of out of plane 

vibrations. 

The remainder of this paper is organized as follows: 

Section II describes the configuration of the studied cable 

robot and provides a derivation of the dynamical model 

for this class of robot. The algorithms used for the 

optimization procedure and the evaluation of the behavior 

of the TMD in the workspace of the planar CDPR is 

presented in Section III. Section IV presents the results of 

the optimization algorithm applied to the case study 

CDPR. Finally, the discussion and the pertinent 

conclusions are provided in Section V. 

II. THE MATHEMATICAL MODEL 

In the case of a planar CDPR with one rigid end 

effector, the principal vibration is in the out of plane 

direction. This is because the restoration force resulting 

from the cable elasticity is higher in the cable’s axial 

direction than in the transversal directions of the work 

plane [16]. These vibrations have a larger amplitude and 

duration compared with the vibrations in the other five 

degrees of freedom [12]. In this paper, the study of a case 

study four cables planar CDPR is considered. For 

illustrative purposes, the explanation of the mathematical 

model will be made using two cables and one mass case. 

The model is subsequently extended through the 

superposition of additional cable dependent terms in the 

model. 

A. The Configuration of the Planar CDPR 

Fig. 1 depicts the planar CDPR that is used throughout 

this study. This CDPR is actuated by four cables attached 

to the corners of the 1m by 1m frame and the 0.1m by 

0.1m end effector. As shown in the figure, the working 

plane is 𝑥𝑓 − 𝑦𝑓and is denoted by ℎ𝑓. As a result,  𝑧𝑓 is 

the direction of the out of plane vibrations of the end 

effector, where there is no restriction. 

In this study, the out of plane vibrations that happen 

when the end effector is in a static position in the working 

plane are considered. This means that the vibrations occur 

in the 𝑧𝑓 direction when the end effector is not moving in 

the work space. This vibration could be caused by 

momentary external disturbances or misalignments in the 

mechanical assembly. 

 

Figure 1.  Cable driven parallel robot configuration. 

B. The Modeling of the Out of Plane Vibrations 

The cables are modeled as a spring and damper in 

parallel with negligible mass. This is consistent with the 

approach of [17] and the resulting cable model is 

illustrated in Fig. 2. The cable presents not only axial 

vibrations but also present transversal vibrations to their 

line of equilibrium. However, it has been demonstrated 

analytically that these transversal vibrations represent 

only the 1.4% of the vibration of the end effector [11] and 

therefore the transversal vibration is neglected from this 

analysis. The values of the spring constant and the 

coefficient of viscous friction for each cable are 

represented as 𝑘𝑐𝑛  and 𝑏𝑐𝑛 , respectively, where these 

values vary as a function of the cable lengths. The rigidity 

of the cable in the axial direction decreases with the 

increase of the length of the cable, while the energy 

dissipation of the cable increases with the increase of the 

cable length. A linear relation between these parameters 

and the length of the cable us assumed such that 𝑘𝑐𝑛 and 

𝑏𝑐𝑛are given by 

 𝑘𝑐𝑛 = 𝑐1𝑙𝑜𝑛 + 𝑐2, (1) 

 𝑏𝑐𝑛 = 𝑐4𝑙𝑜𝑛 + 𝑐4, (2) 

where 𝐶1, 𝐶2, 𝐶3 and 𝐶4 are modeling constants and 𝑙𝑜𝑛 is 

the length of the cables in their steady state. 

A simple cable robot with two cables and one end 

effector is now presented to explain the model of the out 

of plane vibrations. There is a fixed reference ℎ𝑓 in which 

the displacement of the end effector is in the 𝑥𝑓 direction 

through the coordinated changes in the lengths𝑙𝑜𝑛 . The 

𝑘𝑐𝑛  and 𝑏𝑐𝑛  are parameters of stiffness and damping as 

previously explained, and the end effector is represented 

as a mass𝑚𝑒. The magnitude 𝑙𝑛 is the length of the cables 

in each instant time. 

Fig. 3 shows the same system in a perturbed state 

induced by a force 𝐹 = 𝑓(𝑡) in the 𝑧𝑓 direction. There is 

a displacement 𝑧1 induced by the force. Due to this force, 

the springs and dampers present an elongation and a 

rotation resulting in a geometrically induced nonlinear 

behavior. This results in new values of 𝐿𝑛 . In this case 

study, the force 𝐹 = 𝑓(𝑡) is an impulse force. This will 

result in an oscillatory movement of the end effector in 

the 𝑧𝑓  direction. These free vibrations represent the 

geometrically nonlinear out of plane vibrations. 
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Figure 2.  Simplified cable robot consisting of two cables and one end 
effector. 

 

Figure 3.  The simplified CDPR system in a perturbed state. 

These are geometrical because the elements are linear 

but their response is nonlinear due to their geometric 

displacement. 

The total cable force consists of two elements: the 

spring force𝑓𝑐𝑘𝑛and the damper force 𝑓𝑐𝑏𝑛. Each of these 

elements varies as a function of the displacement in 𝑧𝑓 

direction. In the case of the force of the spring, the 

pretension 𝑓𝑝𝑡𝑛must also be considered. Noting that the 

spring force 𝑓𝑐𝑘𝑛 is a linearly dependent function of 𝑧𝑓 it 

can therefore be seen that  

 𝑓𝑐𝑘𝑛 = (𝑓𝑟𝑛 + 𝑓𝑝𝑡𝑛)𝑠𝑖𝑛(𝜃𝑛). (3) 

Where the force of the spring due its elongation is 

described by 

 𝑓𝑟𝑛 = 𝑘𝑐𝑛(𝐿𝑛 − 𝑙𝑜𝑛). (4) 

The elongation and contraction of the spring as a 

function of the 𝑧𝑓 displacement is described by 

 𝐿𝑛 = √𝑙𝑜𝑛
2 + 𝑧2. (5) 

The angle 𝜃𝑛 of the cable with respect to the 

equilibrium as a function of the 𝑧𝑓  displacement is 

described by. 

 𝜃𝑛 = 𝑡𝑎𝑛−1(𝑧 𝑙𝑜𝑛⁄ ). (6) 

Replacing (4), (5) and (6) in (3) it can be seen that the 

geometrically nonlinear behavior of the spring is given by 

 𝑓𝑐𝑘𝑛 = (𝑘𝑐𝑛 (√𝑙𝑜𝑛
2 + 𝑧2 − 𝑙𝑜𝑛) + 𝑓𝑝𝑡𝑛)𝑆𝑖𝑛(tan−1(𝑧/

                                                 𝑙𝑜𝑛)). (7) 

In the case of the geometrically nonlinear damping, a 

given model is showed in [18] and [19] as 

 𝑓𝑐𝑏𝑛 = 𝑏𝑐𝑛 (
𝑧2

𝑙𝑛
2+𝑧2)

𝑑𝑧

𝑑𝑥
. (8) 

Taking into account that the lengths of the cables are 

changing all the time due to their axial elasticity, it can be 

seen that 

 𝑙𝑛 = √𝑙𝑜𝑛
2 + 𝑧2. (9) 

As a result, the final equation of the force in the 𝑧𝑓 

direction due to the dampers is a function of the velocity 

and the position is 

 𝑓𝑐𝑏𝑛 = 𝑏𝑐𝑛 (
𝑧2

𝑙𝑜𝑛
2+2𝑧2)

𝑑𝑧

𝑑𝑥
. (10) 

Finally, the friction with the air as a force 𝑓𝑟, which is 

a function of the velocity of the end effector in the 𝑧𝑓 

direction is given by 

 𝑓𝑟 = 𝑏𝑟 (
𝑑𝑧1

𝑑𝑡
). (11) 

where 𝑏𝑟 is the viscous friction coefficient. 

With the equations of the forces in the 𝑧𝑓 direction due 

to the springs and dampers, a dynamical model of one 

degree of freedom including the four cables can be 

constructed as 

 𝑚𝑒
𝑑2𝑧

𝑑𝑡2 + 𝐹𝑟𝑧 + 𝐹𝑏𝑧 + 𝑓𝑟 = 𝑓(𝑡), (12) 

in which 𝐹𝑟𝑧 and 𝐹𝑏𝑧are composed of four terms each one, 

related to each cable of the robot configuration. 𝐹𝑟𝑧  is 

composed of the sum of the spring force (7) for each 

cable such that 

 𝐹𝑟𝑧 = 𝑓𝑐𝑘1 + 𝑓𝑐𝑘2 + 𝑓𝑐𝑘3 + 𝑓𝑐𝑘4. (13) 

Similarly, the term 𝐹𝑏𝑧 is composed of the sum of the 

spring force (10) for each cable such that 

 𝐹𝑏𝑧 = 𝑓𝑐𝑏1 + 𝑓𝑐𝑏2 + 𝑓𝑐𝑏3 + 𝑓𝑐𝑏4. (14) 

C. The Integration of a Tuned Mass Damper 

The most common representation of a linear TMD 

consists of a two degree of freedom spring-mass-damper 

model. The diagram is presented in Fig. 4. The 𝑚𝑒 , 𝑘𝑒 

and 𝑏𝑒  represent the mass, stiffness and damping 

parameters of the structure, respectively, and the 𝑚𝑎, 𝑘𝑎 

and 𝑏𝑎 are the equivalent parameters of the damper. The 

objective is to tune in the last three parameters in order to 

minimize the settling time of the free vibration of the 

coordinate𝑥1. 

The mathematical model that defines the dynamics of this 

system is the set of two differential equations 

𝑚𝑒
𝑑2𝑥1

𝑑𝑡2 + (𝑏1 + 𝑏2)
𝑑𝑥1

𝑑𝑡
+ (𝑘1 + 𝑘2)𝑥1 − 𝑏2

𝑑𝑥2

𝑑𝑡
−

                                      𝑘2𝑥2 = 0.  (15) 

         𝑚𝑎
𝑑2𝑥2

𝑑𝑡2 + 𝑏2
𝑑𝑥2

𝑑𝑡
+ 𝑘2𝑥2 − 𝑏2

𝑑𝑥1

𝑑𝑡
− 𝑘2𝑥1 = 0. (16) 

Fig. 5 shows the implementation of a linear TMD in 

the previously explained geometrically nonlinear system. 

The model must now consist of two degrees of freedom, 

where the additional degree of freedom is denoted𝑧2. 
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The final model is then given by the integration of the 

TMD dynamics (15) and (16) with the total force terms 

(13) and (14). This results in the system dynamics shown 

in equations (17) y (18). 

 

 

Figure 4.  Scheme of a linear TMD. 

 

Figure 5.  The implementation of a tuned mass damper in the out of 
plane vibrations. 

𝑚𝑒
𝑑2𝑧1

𝑑𝑡2 + 𝐹𝑟𝑧 + 𝐹𝑏𝑧 + 𝑏𝑎
𝑑𝑧1

𝑑𝑡
− 𝑏𝑎

𝑑𝑧2

𝑑𝑡
+ 𝑘𝑎𝑧1 − 𝑘𝑎𝑧2 =

                                               𝑓(𝑡).  (17) 

              𝑚𝑎
𝑑2𝑧2

𝑑𝑡2 + 𝑏𝑎
𝑑𝑧2

𝑑𝑡
− 𝑏𝑎

𝑑𝑧1

𝑑𝑡
+ 𝑘𝑎𝑧2 − 𝑘𝑎𝑧1. (18) 

Fig. 6 depicts the spring force in the 𝑧𝑓 direction as a 

function of the displacement of the end effector in the𝑧𝑓 

direction for different values of 𝑘𝑐𝑛, while Fig. 7 displays 

the damping forces in the 𝑧𝑓 direction due to a damper as 

a function of the displacement of the end effector in the 

𝑧𝑓  direction for different velocities of the displacement. 

From the graphs, two interesting points can be observed. 

First, the graphs displays geometrically induced 

nonlinearities. Second, there is a zone of low stiffness and 

low damping near the equilibrium point, this is the cause 

of the small amplitude and low duration free vibrations in 

the 𝑧𝑓 direction of the end effector after a perturbation. 

III. THE PROCEDURE FOR THE NUMERICAL 

SIMULATIONS 

Computational numeric methods were used to do the 

optimizations and simulations. This made use of the 

software Matlab® version R2013a to schedule scripts 

which call functions of the dynamic models. The 

dynamical models are solved with the ode45 function of 

Matlab®. 

The goal for the optimization is to find the values of 

𝑚𝑎 and 𝑘𝑎 for the tuned mass damper in the four cable 

one end effector case presented in Section II. The 𝑏𝑎  is 

not a usual parameter to optimize, this should be first 

determined experimentally from the mechanical assemble 

and then established in the model for the optimization 

procedure. 

 

Figure 6.  The force in the zf direction due to the springs. 

 

Figure 7.  The force in zf direction due to the dampers. 

This optimization was made in the center of the 

workspace of the CDPR with the objective to minimize 

the settling time of the vibrations in𝑧1, the coordinate of 

the end effector. A calculation of the lengths of the cables 

is made using the CDPR inverse kinematics. To calculate 

the values of the 𝑘𝑐𝑛  and 𝑏𝑐𝑛 , (1) and (2) are used as 

explained in the previous section. Finally,  to determine 

the values 𝑐1, 𝑐2, 𝑐3  and 𝑐4  two hypothetical points are 

used  for each parameter, 𝑝1 = (0.05,30000)  and 

𝑝2 = (1,5000)  in the case of the parameter 𝑘𝑐𝑛 , 𝑝1 =
(0.05,0.2)  and 𝑝2 = (1,1)  in the case of the 𝑏𝑐𝑛 

parameter. The final value of the parameters is showed in 

table 1. 

TABLE I.  PARAMETERS FOR THE MODEL OF FOUR CABLES AND 

ONE END EFFECTOR 

Parameter Value 

𝑚𝑒  1 Kg 

𝑝𝑡 50 N 

𝑘𝑐1 to 𝑘𝑐4 12840 N/m 

𝑏𝑐1 to 𝑏𝑐4 0.7148 N s/m 

𝑙𝑜1 to 𝑙𝑜4 0.6364 m 
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The algorithm for the optimization uses a sweep 

parameter methodology, two “for” cycles sweep the 

parameters for the desired range of mass values 𝑚𝑎 and a 

desired range of stiffness values 𝑘𝑎. In each iteration, the 

settling time is computed and saved in a matrix, finally, 

these values are plotted in a 3D surface to locate the 

lowest value of the settling time and the corresponding 

optimized values of 𝑚𝑎  and 𝑘𝑎. For the optimization a 

mass range of 0.05 Kg to 0.15 Kg was used with a 

resolution of 3 g and a stiffness range of 1 N/m to 15 N/m 

with a resolution of 0.4 N/m. 

______________________________________________ 

For (Minimum 𝑚𝑎 to Maximum 𝑚𝑎) 

       For (Minimum 𝑘𝑎 to Maximum 𝑘𝑎) 

Run the simulation 

 Get the settling time 

 Save the settling time in a matrix 

       end 

end 

Graph surface___________________________________ 

Figure 8.  Algorithm for the optimization of the tuned mass damper. 

The data of this optimization were analyzed evaluating 

the percentage of reduction of the settling time, and the 

mass ratio. 

Through numerical simulations, the behavior of the 

system without a tuned mass damper and with an 

optimized tuned mass damper are compared in different 

points of the workspace. A map of the percentage of 

attenuation of the vibration in different points of the 

workspace can, therefore, be constructed, from which 

different regions of the effectiveness of the optimized 

tuned mass damper can be identified. 

For the given case study, this analysis only uses the IV 

quadrant of the workspace due to the symmetric 

distribution of the cables. In this IV quadrant, 625 points 

to evaluate the settling time without TMD and the settling 

time with the optimized TMD were used. Using this data 

a calculation of the percentage of reduction can be 

conducted in each one of the 625 points. 

The algorithm used for the evaluation of the tuned 

mass damper in the work space is given below 

______________________________________________ 
For (first point – last point) 
      Get the parameters of the cable with inverse cinematic 

      Run a simulation without TMD 

      Get the settling time. 
      Save the settling time in a matrix 1 

      Run a simulation with TMD 

      Get the settling time. 
      Save the settling time in a matrix 2 

End 

Compute the percentage of reduction in each point 
Graphic Matrix 1 (Settling time without TMD) 

Graphic Matrix 2 (Settling time with TMD) 

Graphic percentage of reduction.____________________ 

Figure 9.  Algorithm for the evaluation of the tuned mass damper in the 
IV quadrant of the workspace. 

IV. RESULTS 

In this section, the application of an optimized TMD is 

illustrated in the case study planar four cable planar 

CDPR. The effectiveness of the TMD is evaluated firstly 

at a single pose before being subsequently evaluated over 

the complete CDPR workspace. 

 

Figure 10.  Settling time of the TMD for different spring stiffness and 
damping values. 

 

Figure 11.  Time response of free vibration of the end effector along the 
zf direction without the optimized tuned mass damper. 

 

Figure 12.  Time response of a free vibration of the end effector along 
the zf direction with the optimized tuned mass damper. 

A. The Effectiveness of a TMD in the Nonlinear 

Vibrations. 

Fig. 10 shows the results of the sweep process, where 

the settling time is plotted as a surface on the 𝑘𝑎  and  

𝑚𝑎 axes. The optimal values were found as 𝑚𝑎 =
0.057𝐾𝑔  and 𝑘𝑎 = 22.6 𝑁 𝑚⁄ , respecitvely, in which 

these parameters achieved a settling time of 5.699𝑠 and a 

mass ratio of 0.057. 
Fig. 11 depicts the time response without the TMD. It 

can be seen that without the TMD the system possesses 

settling time of 162.66𝑠. In contrast, Fig. 12 shows the 

time response with the TMD in which the resulting 

settling time is found to be 5.69𝑠 . This represent a 

reduction of 96.51 % of the settling with the use of an 

optimized TMD in the center of the work space. 

B. The Effectiveness of a TMD in the CDPR Work 

Space 

The effectiveness of the optimized TMD in all the 

workspace can be evaluated by looking at Fig. 13. This 

figure shows the value of the settling time over 625 
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distinct points located throughout quadrant IV of the 

workspace. 

Fig. 14 represents the settling time in 625 places of the 

workspace with the use of the optimized TMD. It can be 

seen that the use of the optimized TMD results in a 

significant reduction of the settling time over most of the 

workspace. This is further visualized through the use of  

Fig. 15, which represents the percentage of reduction in 

the IV quadrant of the workspace. 

V. DISCUSSION AND CONCLUSIONS 

In this work, the effectiveness of a TMD as a solution 

for the out of plane vibrations in planar CDPRs has been 

evaluated. The vibration of the robot in the out of plane 

direction was modeled and it was found that there are 

geometrically induced nonlinearities. To attenuate these 

nonlinearities a TMD was introduced into the model and 

optimized in order to reduce the settling time of the out of 

plane vibrations. Finally, through numerical simulations, 

we evaluated the behavior of the optimized TMD in 

different points of the workspace. 

It was found that the use of a TMD can significantly 

reduce the settling time of out of plane vibrations induced 

by an impulse force in the end effector. In the center of 

the workspace, where the TMD was optimized, there is a 

reduction of 96.51%. This significant reduction is 

consistently observed throughout the workspace with the 

exception of the workspace corners. This is likely 

because in the corners the shorter cable presents a high 

rigidity. Since CDPRs are typically operated away from 

the workspace boundary, the effects of this smaller 

reduction are likely to be minimal. 

The required TMD mass ratio was observed to be quite 

low. As a result, it is unlikely that the load capacity of the 

robot will be significantly affected. However, It should be 

noted that due to the small dimensions required, there 

could be some challenges in the fabrication of a suitable 

TMD for real-world applications. 

Future work will investigate the implementation of an 

electromagnetic tuned mass damper, to harvest energy 

instead of dissipating it. Additionally, the results of this 

theoretical study will be evaluated on an experimental 

prototype. 

 

Figure 13.  Settling time in different points of the workspace of the IV 
quadrant without a TMD. 

 

Figure 14.  Settling time in different points of the workspace of the IV 
quadrant with an optimized TMD. 

 

Figure 15.  Graph of the percentage of reduction of the settling time in 
different points of the workspace. 
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