Mass Properties Estimation of a Satellite Simulator Based on the Integration Method

Jung-Hyung Lee, Hun-Jo Lee, Joon-Yong Lee, Hwa-Suk Oh*,
Korea Aerospace University, Goyang, 10540, Korea
Deok-Ki Song, Tae-Seong Song, Jeong-Min Kang
LIGNEX1 Co. Ltd, Pangyo, 13488, Korea
Joong-Bo Seo
Defense Industry Technology Center, Agency for Defense Development, Seoul, 04353, Korea
*e-mail: hsoh@kau.ac.kr

Abstract—A satellite ground simulator is used to verify the performance of newly developed attitude algorithms, sensors and actuators. An air-bearing platform simulator has recently been developed at Korea Aerospace University. It has a table-top configuration capable of floating a 100kg-class platform. The estimation of the moment of inertia and mass unbalance of the platform is necessary prior to test applications. The noise of a low-grade gyro degrades the estimation performance. To reduce the effects of the gyro noise on the estimation, the integration method with averaging is applied and verified in a computer simulation to adapt the recursive least square method. With a single large 3-dimensional maneuver performed using control moment gyros (CMGs), the inertia and mass-unbalance are identified theoretically within an acceptable accuracy even in the event of CMG singularity.

Index Terms—estimation, mass properties, satellite simulator, air-bearing, gyroscopes, control moment gyros

I. INTRODUCTION

New satellite algorithms, actuators and sensors must be tested on the ground prior to launch. A ground simulator is a test platform that is used to evaluate the performance of satellite hardware equipment and software algorithms [1,2]. It is equipped with actuators and sensors that need to be tested. Mass properties, such as inertia and mass distribution, are configured to scale in a fashion similar to the target satellite. Like the satellite, the simulator parameters are identified first. Among the parameters to be identified are the moment of inertia (MOI) and mass unbalance. Although the simulator is manufactured and assembled precisely following the design, the MOI and mass distribution might not match the design values. Thus, they should be adjusted and tuned if necessary. Before test applications, the simulator parameters are identified.

The methods employed to identify a simulator’s mass properties are very similar to those for a satellite, except for the existence of air-bearing support forces (torques) and the mass center deviation from the air-bearing center. Identification algorithms are mostly based on the modelling of dynamic equations and attitude data such as gyro and reference sensor data. Low-grade gyro, however, suffer from noise that hinders precise estimation. Using filters can reduce the noise effects, but this incurs costs in terms of extra data processing [3~5].

In this paper, we use the integration method to reduce the gyro noise effects [6~8]. The convectional integration method is adjusted slightly by adding an averaging technique for the application of low-cost noisy gyros. The estimation algorithm is developed for a satellite with control moment gyros, where the singularity problem occurs frequently [9]. The performance of the algorithm should thus first be verified theoretically by applying it to the simulator model with CMGs prior to the hardware application.

II. SIMULATOR CONFIGURATION

An air-bearing test platform has recently been designed at Korea Aerospace University as a satellite simulator. It is depicted in Fig.1.

The simulator has a table-top configuration capable of floating a 100kg-class platform, the scale model for a mid-class satellite. It is maneuvered via four single-gimbal CMGs installed in a pyramid configuration, as shown in Fig.2.
Attitude is measured using reference sensors – a sun-sensor and an accelerometer – which simulate the sun vector and earth vector, respectively. The angular velocity is measured via the gyros. All sensors and actuators are not space-flight grade. Rather, they are intended for ground vehicles and are accordingly lower grade. Because the accuracy of parameter estimation depends heavily on the sensor grade, some degradation on the estimation performance shall be tolerated but minimized via the proper algorithms.

III. DYNAMIC SIMULATOR EQUATION

A satellite equipped with four single-gimbal CMGs, as depicted in Fig. 2, is governed by the following equations.

\[
\begin{align*}
\dot{q} &= \frac{1}{2} E(q) \omega \\
I \dot{\omega} + \omega^T I \omega + \omega^T h &= u_c + c_1^c m_{rg} \\
D \dot{\sigma} &= -u_c
\end{align*}
\]

where \(q \) is the attitude quaternion, \(\omega \) the satellite angular velocity, \(u_c \) the control torque produced by steering the CMG gimbals as \(\sigma = \begin{bmatrix} \sigma_1 & \sigma_2 & \sigma_3 & \sigma_4 \end{bmatrix} \), \(c_i \) the roll component of the direction cosine matrix \(C = \begin{bmatrix} c_1 & c_2 & c_3 \end{bmatrix} \) of the platform with respect to the inertial frame, \(m_{rg} \) the mass unbalance due to the center of mass of the platform apart from the center of air-bearing and \(h \) the CMG cluster momentum. The output torque matrix \(D \) is composed of output torque vectors \(d_i \)'s as \(D = \begin{bmatrix} d_1 & d_2 & d_3 & d_4 \end{bmatrix} \). The satellite is maneuvered via the output torque generated by steering the gimbal angle rotation \(\sigma \). The required torque is calculated according to the proper feedback control law. If unbalance exists, it induces secular external torque on the platform. In this case, the feedback control law would be applied to reject the disturbance. In this study, we use the PID-type attitude stabilizing control law as

\[
u = \omega^T h - K_p \omega + 2K_p E^T(q) q_t + K_r \int E^T(q) \omega \, dt
\]

where \(q_t \) is the target attitude quaternion. The gains \(K_r \) are designed in accordance with the settling time.

IV. PARAMETER ESTIMATION

The parameters to be identified in the simulator are the MOI \(I \) and the mass unbalance \(m_{rg} \) where \(r \) is the position vector of the platform mass center of the total mass \(m \) from the center of the air-bearing platform. The parameter vector \(x \) to be identified is then defined as

\[
x = \begin{bmatrix} I_1 & I_2 & I_1 & I_{12} & I_{13} & I_{23} & m_{rg} & m_{rg} & m_{rg} \end{bmatrix}^T
\]

The dynamic equation in (1) can then be rewritten as a regression equation at time \(t_i \), as

\[
\Omega(t_i) x = y(t_i)
\]

where \(y(t_i) = -\omega^T h + u \) and the regression matrix \(\Omega(t_i) \) are a function of the angular velocity of the platform and the first column of the direction cosine matrix \(C \) as

\[
\Omega(t_i) = \begin{bmatrix} \Omega_1 & \Omega_2 & \Omega_3 \end{bmatrix}
\]

\[
\Omega_1 \triangleq \begin{bmatrix} \dot{\omega}_1 & -\omega_2 \omega_3 & \omega_2 \omega_3 & -\omega_2 \omega_3 \\
\omega_1 \omega_2 & \dot{\omega}_3 & -\omega_1 \omega_3 & -\omega_1 \omega_3 \\
-\omega_1 \omega_2 & \omega_1 \omega_3 & \dot{\omega}_3 & \omega_1 \omega_3 \\
-\omega_2 & \omega_3 & -\omega_2 & \dot{\omega}_2 \\
\end{bmatrix}
\]

\[
\Omega_2 \triangleq \begin{bmatrix} \dot{\omega}_1 - \omega_2 \omega_3 & \dot{\omega}_2 + \omega_1 \omega_3 & -\omega_1^2 + \omega_3^2 \\
\dot{\omega}_1 + \omega_2 \omega_3 & \omega_1 \omega_2 & -\omega_2^2 & \omega_1 \omega_3 \\
-\omega_2^2 & \omega_1 \omega_3 & \dot{\omega}_1 - \omega_2 \omega_3 & \omega_2 \omega_3 \\
0 & c_{11} & -c_{21} \\
-c_{31} & c_{11} & 0 \\
c_{31} & c_{11} & 0 \\
\end{bmatrix}
\]

The observation equation is then obtained as

\[
H_i x = y_i
\]

where \(H_i \) and \(y_i \) are derived by accumulating at least more than three sequential \(\Omega(t_i) \)'s and \(y(t_i) \)'s as

\[
H_i \triangleq \begin{bmatrix} \Omega(t_i) y(t_i) \Omega(t_{i-1}) y(t_{i-1}) \Omega(t_{i-2}) y(t_{i-2}) y(t_{i-3}) \end{bmatrix}
\]

The value of parameter \(x \) can be then estimated by the least square algorithm. The gyro noise degrades the performance and may lead to incorrect results. The acceleration term in the observation equation is then obtained as

\[
\int \Omega dt = \int y \, dt
\]

The acceleration term \(\dot{\omega} \) is then substituted as

\[
\dot{\omega} dt = \omega(t) - \omega(0)
\]

Because the gyro data includes the noises, here, the average value for \(\omega \) at time \(t \) is used instead of the noisy instantaneous value.

\[
\omega(t_i) = \frac{1}{n_{i-1,n}} \sum_{j=i-1}^{n_{i-1,n}} \omega(t_{i-1,j})
\]
In an assumption of no knowledge regarding the reliability data of the gyro, a batch estimation process is performed at the beginning of the estimation. The estimation is started from a nonzero angular velocity to avoid the ill-condition of the H matrix. This is subsequently followed by the usual recursive least square process, as follows.

\[
\dot{x}_{k+1} = \dot{x}_k + K_{k+1}(y_{k+1} - H_{k+1}\dot{x}_k) \\
K_{k+1} = P_{k+1}H^T_{k+1}W_{k+1} \\
P_{k+1}^{-1} = P_k^{-1} + H^T_{k+1}W_{k+1}H_{k+1} \\
\]

(8)

The goodness of the least-squares estimate can be evaluated by the error index defined in (9), which is the ratio between the residual error, that is, the total squared error, and the zero estimate [10].

\[
EI \triangleq \frac{E^2(x)_{k+1}}{E^2(0)} = \frac{\sum_{i=1}^{n} y_i^T H (H^T H)^{-1} H^T y}{y^T y} \\
\]

(9)

The parameter error index associated with the i-th parameter \dot{x}_i is also used due to its sensitivity to the total error index in Eq. (9).

\[
PEI(i) \triangleq \sqrt{E^2(x)(H^T H)^{-1}(i)} \\
\]

(10)

A small error index indicates that the estimated value may be considered more accurate.

V. SIMULATIONS

The algorithm is applied to a simulator model, as shown in Fig. 1, which is being manufactured at KAU. The nominal parameters of the simulator are given in Table 1.

<table>
<thead>
<tr>
<th>TABLE I. MODEL SIMULATION PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items</td>
</tr>
<tr>
<td>MOI I (kg·m²)</td>
</tr>
<tr>
<td>Unbalance mr (kg·cm)</td>
</tr>
<tr>
<td>Wheel momentum h_w (Nm/s)</td>
</tr>
<tr>
<td>Gyro noise σ^2</td>
</tr>
</tbody>
</table>

The platform starts a maneuver from rest as $\omega(0) = [0 0 0]$. To excite all of the axes, the initial attitude starts from the point $[\phi \theta \psi] = [70° 30° -30°]$, which is far from the target attitude $[0° 0° 0°]$. The attitude maneuver is performed in a slow mode to allow sufficient time for the estimation algorithm to converge to the real parameter values. To see the effects of the singularity in estimation, the gains are intentionally chosen to induce that singularity.

The attitude is stabilized to the origin, and as expected, the singularity is met at about 10–15 sec, as shown Figs. 3–6.
Near the singularity, the gimbal rate command is adjusted via the singular robust steering law [9], but the rate is still high, as shown Fig. 7. The generated torque subsequently differs from the required torque, as demonstrated in Figs. 8 and 9.

Despite the singularity phenomenon, the estimation algorithms work moderately well, as shown in Figs. 10~12. By choosing the large angle maneuver with the longer settling time, the satellite angular velocity is sufficiently sustained to reduce the gyro noise influence, as shown in Fig. 4.

The goodness of the estimates are evaluated based on (9) and (10) from the simulation data, as shown in Figs. 13~16. The total error index in Fig. 13 shows a much lower value than one, indicating that the estimate is reliable. Each parameter error index defined as (10) also shows tolerable accuracy, i.e. much lower than one, at the end of the maneuver. The mass unbalance is demonstrated in Fig. 16, which reveals much higher reliability in accuracy than the MOI.
If the maneuver starts from a smaller initial angle, then the effects of the gyro noise overwhelm the algorithm, and the estimation will not converge to the real values. Figs. 17 and 18 show the results when the maneuver commences from smaller angles as $[\phi \theta \psi] = [30^\circ \ 10^\circ \ -10^\circ]$ with the same gain conditions. The noise effects are clearly shown in Fig. 17, and the MOI estimate deviates from the real value. The importance of choosing the initial attitude condition is obviously shown for the convergence of the estimate.

VI. CONCLUSIONS

The estimation algorithm using the suggested integration method combined with averaging diminishes the effects of gyro noise, and it facilitates the convergence to real values with acceptable accuracy. A large angle maneuver with a long settling time improves the estimation performance by exciting all three axes. Singularity does not hinder estimation performance even though the output torque generated by the robust steering law of the CMG gimbals deviates from the required torque in the singularity. The suggested algorithm is expected to work well in a real hardware simulator test in the near future.

ACKNOWLEDGMENT

This study was supported by a research project entitled Analysis of Control Moment Gyro Development for LEO High Agility Satellite (2017-15-009) funded by LIG Nex1 in Korea.
REFERENCES

Jung-hyung Lee received his BS and MS in Aero & Mechanical Engineering in 2013 and 2015, respectively, from Korea Aerospace University. He is currently a Ph.D. candidate in the same department. His main research subjects are satellite attitude control and the fault detection/isolation/recovery of actuators.

Hun-jo Lee received his BS in Aero & Mechanical Engineering from Korea Aerospace University in 2017. He is currently an MS student in the same department. His main research subjects are satellite attitude dynamics and control.

Joon-yong Lee received his BS and MS in Aero & Mechanical Engineering in 2014 and 2016, respectively, from Korea Aerospace University. He is currently a Ph.D. candidate in the same department. His main research subjects are satellite attitude control and the design of momentum actuators.

Hwa-suk Oh received his BS in 1980 from Korea Aerospace University and MS in and Ph.D. in 1988 and 1992, respectively, in Aerospace Engineering from Texas A&M University. He is currently a professor with the School of Aero & Mechanical Engineering at KAU. His main research topics are satellite attitude control and actuators.

Tae-seong Song received his BS in 2014 from Kyunghee University. He is currently research engineer with the Mechanical R&D (space system) department of LIGNEX1 corporation. His main research topics are the design of momentum actuator and gimbal of seeker.

Joong-min Kang received his BS in Mechanical Engineering from Kumho National Institute of Technology. He is currently working as a research engineer in the mechanical R&D (space system) at LIGNEX1.

Deok-ki Song received the BS and MS in mechanical engineering from Han-Yang university, Seoul, South Korea, in 1999 and 2001, respectively. He joined the Mechanical R&D department of LIGNEX1 corporation in 2001. He is currently chief research engineer with the Mechanical R&D (space system) department of LIGNEX1 corporation. His main research topics are the design of mechanical driving system and gimbal actuators for satellite, seeker of missile and payload of UAV.

Joong-bo Seo received the B.S. degree in electronic engineering from Korea Advanced Institute of Science and Technology, Daejeon, South Korea, in 2006, and the M.S. and Ph.D. degrees in mechanical and aerospace engineering from Seoul National University, Seoul, South Korea, in 2008 and 2014, respectively. He joined the Defense Industry Technology Center, Agency for Defense Development in 2015. His research interests concern guidance and control, formation flight of unmanned aerial vehicles, and satellite attitude control.