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Abstract— Information about vehicle dynamics states is 

indispensable for modern dynamics control system on a 

vehicle today. Instead of using the expensive physical sensor 

to measure directly the states of a vehicle, this paper 

proposes a “virtual sensor” which bases on the dynamical 

model of vehicle and an observation algorithm. An observer 

based on Luenberger method is developed in 

Matlab/Simulink. To make the dynamics model consistent 

with a virtual vehicle in CarSim, the model parameters are 

identified at a pre-defined velocity using Parameter 

Identification toolbox of Simulink. The whole system is 

constructed by connecting Matlab/Simulink to CarSim to 

simulate a complete real system. The simulation results 

show the good performance of the observer when the 

estimated values are well converged to real values given by 

CarSim. The precision of results depends on what extent the 

velocity of the vehicle whether it is near the velocity of 

parameters identification or not. 

 

Index Terms—Vehicle dynamics, Luenberger observer, 

estimation, identification, simulation.   

 

I. INTRODUCTION 

Automatic control systems, such as anti-lock braking 

system (ABS) and electronic stability control system 

(ESC) play an important role in the modern vehicle today. 

To perform efficiently, these controllers require the exact 

information about vehicle dynamics states which come 

from the measurement system on a vehicle. However, 

equipping a commercial vehicle with expensive sensors 

leads to an increase in the cost for production, 

maintenance and as the results reducing the competence 

of the product. A solution for this problem is using the 

“software sensors” which based on the dynamics model 

of an object and the observer algorithms to estimate the 

real value of needed grandeur. This technique has been 

applied to vehicle control applications. In Tanoury’s 

work [1], high gain observer and second-order sliding 

mode (SOSM) for estimating rolling resistance force and 

detecting a sudden decrease of tire pressure had been 

developed. A quarter-car model had been used and its 

observability has been proved numerically by an 

evaluated determinant value of the transformation matrix 

during the simulation process. By comparing mean errors 

between real and estimated value, the author concluded 
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that sliding mode observer provides better results than 

high gain one thanks to its robustness properties. 

However, estimating the rolling resistance coefficient 

during real driving condition has not yet been 

implemented.  

The second order observer of a mechanical system has 

been presented in [2] is not only for states estimation but 

also for parameters identification and unknown input 

reconstruction. In [3], second order SMO is developed to 

estimate lateral force by using a bicycle model. However, 

this method does not allow to estimate the separately 

lateral force of each tire. In [4], the authors try to estimate 

individual lateral tire force thanks to the distribution of 

the vertical load of each tire. This estimation still exists 

significant errors between simulation and estimated value 

due to the nonlinear of lateral forces. In [5], the second 

order SMO in [6] has been applied to estimate wheel 

rotation speed from wheel angular measurement.  There 

are also other researches applying SMO to vehicle 

dynamics. In addition, the Kalman filter is also widely 

used to estimate the vehicle states and parameters [7][9]. 

This filter combining with SMO observer is used to 

estimate the side slide angle of the vehicle, traction force 

and cornering stiffness of tires. In [10], the authors used a 

system of observers, including Kalman filter and 

Luenberger observers to estimate the mass, roll and pitch 

angles of a vehicle. Reaction forces at wheels are also 

estimated. Experimental results show that there is an error 

of about 10% between measured and estimated values.   

In this paper, we use Luenberger observer to estimate 

the lateral acceleration of the vehicle due to the important 

role of this grandeur in vehicle dynamics control. The rest 

of this paper is organized as follows. Section II describes 

the dynamics model of a vehicle. CarSim and virtual 

vehicle with double-lane change test are presented in 

Section III. Section IV outlines the identification of 

model parameters. Section V focuses on designing a 

Luenberger observer using pole placement method. 

Finally, Section IV provides conclusions and future work. 

II. DYNAMICS MODEL OF VEHICLE 

Vehicle motions are very complicated in actual 

conditions. Therefore, to facilitate the research, in this 

paper, we use a flat model of a rigid bicycle-vehicle 

having forward, lateral, yaw, and roll motions presented 

in Fig. 1. The model of a roll-able rigid vehicle is more 
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exact and more effective compared to the rigid bicycle-

vehicle planar model. 

 

 

Figure 1. Rollable bicycle vehicle model.  

 

The dynamic equations of vehicle motion can be 

determined as the following equations  
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The formulas of symbols in system (1) are given below 

and described in Table 1. 

𝐶𝛽 = �−𝐶𝛼𝑓 − 𝐶𝛼𝑟   

𝐶𝑟 =  
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TABLE I. LIST OF SYMBOLS 

Symbol Definition Unit 

𝛽 Side slip angle of vehicle rad 

𝛿 Steering angle rad 

𝛿𝑓 Front Steering angle rad 

𝛿𝑟 Rear Steering angle rad 

𝜓 Yaw angle rad 

𝜓  Yaw velocity rad/s 

𝑙 Base length of vehicle m 

𝑎1 Distance from front wheel to CoG m 

𝑎2 Distance from rear wheel to CoG m 

𝐵 Base width of vehicle m 

𝑚 Vehicle mass kg 

𝐶𝛼𝑓 Cornering stiffness at front wheel N/rad 

𝐶𝛼𝑟 Cornering stiffness at rear wheel N/rad 
𝐶𝛿𝜑𝑓 Front roll-steering coefficient  

𝐶𝛿𝜑𝑟 Rear roll-steering coefficient  

𝐶𝛽𝑓 Front tire roll rate coefficient   

𝐶𝛽𝑟 Rear tire roll rate coefficient   

𝐶𝜑𝑓 Front tire camber thrust coefficient   

𝐶𝜑𝑟 Rear tire camber thrust coefficient   

𝑘𝜑 Roll stiffness  Nm/rad 

𝑐𝜑 Roll damping Nms/rad 

𝐼𝑥 Moment of inertial around x axis kg.m2 

𝐼𝑧 Moment of inertial around z axis kg.m2 

𝑣 Motion velocity of vehicle m/s 

𝑣𝑥 Longitudinal velocity m/s 

𝑣𝑦 Lateral velocity m/s 

𝑎𝑦 Lateral acceleration  m/s2 

𝜔𝑥 roll rate rad/s 

𝜔𝑧 Yaw rate rad/s 

𝜑 Roll angle rad 

u Steering angle rad 

System (1) can be described in state space as 

{
𝑥 = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢

                             (2) 

where 𝑥 = [𝑣𝑦 , 𝑝, 𝜑, 𝑟]
𝑇

  is state vector, 𝑢 = 𝛿   is input 

vector, 𝑦 = (𝑎𝑦 , 𝑝, 𝑟)  is output vector with assumption 

that lateral acceleration, roll rate and yaw rate are 

measurable.  
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 is state matrix 
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 is input matrix;  𝐶 =  
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matrix and 𝐷 =  

𝐶𝛿
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0
0

  is feedforward matrix. 

 

The system (2) is the linear invariant time at a 

predefined longitudinal velocity of the vehicle. It means 

that the model of the system varies with the change of 

vehicle speed. Therefore, to evaluate the performance of 

Center of gravity 

of vehicle 

 

Center of gravity 

of suspended mass 
 

Rotation 
center 
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this model, it is necessary to fix the longitudinal velocity 

of the vehicle.  

III. CARSIM AND VIRTUAL VEHICLE 

CarSim has been developed by Mechanical Simulation 

Corporation (an American company) since 1996. By 

using multibody dynamics modeling, this software allows 

to recreating the behavior of passenger vehicles and light-

duty trucks. One advantage of CarSim is its module 

structure including many sub-models of each component 

of vehicles. This allows users to modify and test a vehicle 

in many different configurations. In addition, it integrates 

inside many types of test including the road surface, ISO 

lane change test. 

 

 

Figure 2. Reference vehicle in CarSim.  

Fig. 2 shows the vehicle using in this study, and Table 

II presents the parameters of the reference vehicle. 

TABLE II. PREDEFINED PARAMETERS OF REFERENCE VEHICLE 

Parameters Value Parameters Value 

𝑚 1412 𝐼𝑥 536.6 

𝑚𝑠 1270 𝑎1 1.015 

𝐼𝑧 1536.7 𝑎2 1.8950 

Because CarSim uses different models, the parameters 

of the model (2) should be identified so that this model 

can be valid to a real vehicle. This step will be presented 

in the following section. 

IV. VEHICLE PARAMETER IDENTIFICATION 

Simulink parameter identification is a useful tool to 

determinate the parameters of a model. Its principle is 

simple: both reference and research model are excited by 

the same input signals. Then the parameters of the 

research model will be changed by a recursive algorithm 

so that the outputs of the research model converge to ones 

of the reference model. In this case, the input signal is the 

steering angle  during the double lane change test and 

the outputs are lateral acceleration and velocity, yaw and 

roll rate. The longitudinal velocity is fixed at 65 km/h. 

Fig. 3 shows the main interface of this tool during the 

initial configuration process. 

 

Figure 3. The interface of Simulink parameter identification tool.  

TABLE III. INITIAL AND IDENTIFIED VALUES OF VEHICLE PARAMETERS 

Symbol Initial value Identified value 

𝐶𝛼𝑓 2 x 28648 150000 

𝐶𝛼𝑟 2 x 26356 47222 

𝐶𝛿𝜑𝑓 0.01 -0.063 

𝐶𝛿𝜑𝑟 0 0.7679 

𝐶𝛽𝑓 0.01 -1.2293 

𝐶𝛽𝑟 0.01 1.2247 

𝐶𝜑𝑓 2 1.99 

𝐶𝜑𝑟 1 0.99 

ℎ 0.54 0.5 

𝑘 50000 94169 

𝑐 2000 17802 

Figs. 4 and 5 show the comparisons between the 

performance of the reference vehicle and the model (2) 

with initial values of parameters are given in the second 

column of Table III. The results show that there are 

significant errors between the two models. Therefore, the 

identification process is necessary. 

 

Figure 4. Roll and yaw rate of reference and model vehicles.  

 

Figure 5. Lateral acceleration and velocity of reference and model 
vehicles.  
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Figs. 6 and 7 show the comparisons between the 

performance of the reference vehicle and the model after 

identification. The results reveal that the outputs of the 

model now match well with ones of the reference vehicle. 

Up to now the model of vehicle is complete and the next 

step is to design observer.  

 

Figure 6. Roll and yaw rate of reference and model vehicles after 
identification parameters.  

 

Figure 7. Lateral velocity and acceleration of reference and model 
vehicles after identification parameters.  

V. OBSERVER DESIGN AND SIMULATION RESULTS 

The system now is linear invariant time and therefore a 

linear Luenberger observer will be used. Firstly, the 

observability of the system will be discussed. The 

observability matrix is built from A and C matrix as 

𝑂𝑏 = �𝐶, 𝐴𝐶,𝐴2𝐶, …𝐴𝑛−1𝐶   It can be tested using 

Matlab that rank of observability matrix, in this case, is 4 

(full rank) and therefore the system is observable. The 

structure of the observer is presented in (3) where the 

main part of the system is conserved and added a 

correction term 𝐿(𝑦 − �̂�)  which makes system 

convergence. Fig. 8 presents the structure of the observer 

where the input of the observer is input u and output y of 

the system.  

 

{
�̂� = 𝐴�̂� + 𝐵𝑢 + 𝐿(𝑦 − �̂�)

𝑦 = 𝐶�̂� + 𝐷𝑢
                (3) 

 

 

 

Figure 8. Structure of observer 

It can be seen that the error dynamics of observer and 

model can be described as (4).  
 

 𝑥 − �̂� = 𝐴(𝑥 − �̂�) − 𝐿(𝐶𝑥 − 𝐶�̂�)            (4) 

= (𝐴 − 𝐿𝐶)(𝑥 − �̂�) 
 

The problem now is to determine the value of L to 

stabilize the system (4). This can be done by using pole 

placement method where the pole of the error dynamics 

system can be chosen arbitrarily. In most of the cases, the 

recommended values of observer poles are 5 times the 

poles of the original system so that the estimated values 

can converge rapidly to real ones. Matrix 𝐿  was 

determined by using Matlab, the final structure of the 

system is presented in Fig. 9. 

 

𝐿 = [

1.3137
−0.1084
0.5995
−1.9779

   

−18.2159 
28.4993
−3.8569
3.5376

   

−63.1412
3.2035

−11.3383
58.5043

]        (5) 

           
 

 
 

Figure 9. Structure of Luenberger state observer. 
 

Figs. 10 and 11 compare the results of reference and 

estimated lateral velocity and roll angle at longitudinal 

velocity 35 km/h. The result reveals that lateral velocity 

is very well estimated with a small error. The roll angle is 

also well estimated with the only small error at the end of 

the experiment.  
 

 

Figure 10. Estimation of lateral velocity (at a longitudinal velocity of 35 

km/h).  

 

      (Input) 
  

     (Output)  
  

   System 
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Figure 11. Estimation of roll angle (at a longitudinal velocity of 35 

km/h). 

 

 
Figure 12. Estimation of lateral velocity (at a longitudinal velocity of 45 

km/h).  

 

Figure 13. Estimation of roll angle (at a longitudinal velocity of 45 
km/h). 

The similar results are obtained at a longitudinal 

velocity of 45 km/h which are shown in Figs 12 and 13. 

The results reveal that the velocity in the lateral direction 

is estimated accurately. There is only a small error of 

estimation of roll angle at about time instant 9s. This can 

be explained that at that time, the vehicle is recovering to 

the straight path from curvature path and therefore the 

response of roll angle may be more complex than a linear 

invariant model and it causes that error. 

However, when the longitudinal velocity increase, the 

estimation results have different behaviours. Fig. 14 and 

shows the estimation of lateral velocity during a double 

lane change test at 65 km/h. The results reveal that the 

estimation which is good, but there are some moments 

when the errors become more important than the case 35 

km/h and 45 km/h. This can be explained that at this 

velocity, the dynamics of the vehicle have a change in the 

sign of the side slip angle during the second cornering of 

double lane change test and that creates the abnormal 

behaviours. However, there is no influence on the 

estimation of the roll angle as shown in Fig. 15 where the 

result is still perfect. 

 
Figure 14. Estimation of lateral velocity (at a longitudinal velocity of 65 

km/h).  

 

 
Figure 15. Estimation of roll angle (at a longitudinal velocity of 65 

km/h).  
 

Increasing longitudinal velocity to 110 km/h, the 

estimation results of lateral velocity in Fig. 16 shows 

clearly the errors in comparisons with the lower 

longitudinal velocity cases. This phenomenon happens 

not only to lateral velocity, but also in lateral acceleration 

in Fig. 17 and the roll angle in Figure 18. These errors 

can be explained by the modeling errors of our linear 

invariant time model. This model is created by 

identifying the parameters of the vehicle at 65 km/h. But 

in the case the velocity is near two times by this point, the 

precision of this model is reduced significantly. One other 

important factor is that when maneuvering double lane 

change at 110 km/h the lateral acceleration is excess 0.4g, 

the threshold of the linear model and therefore the linear 

model is not valid in this case. 
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Figure 16. Estimation of lateral velocity (at a longitudinal velocity of 

110 km/h). 

 

Figure 17. Estimation of lateral acceleration (at a longitudinal velocity 

of 110 km/h). 

 
Figure 18. Estimation of roll angle (at a longitudinal velocity of 110 

km/h).  

 

VI. CONCLUSION 

This paper presents an approach for estimating vehicle 

dynamical states using a Luenberger observer. Firstly, the 

dynamics model is developed and then the model 

parameters are identified using an identification toolbox 

of Matlab/Simulink. Finally, the Luenberger observer is 

designed by the pole placement method. The simulation 

results show that the estimated values are consistent with 

the data from the CarSim simulator in a wide range of 

longitudinal velocity. However, when longitudinal speed 

increase, the errors become considerable. Future work 

will concentrate on developing a suitable model to cover 

problems of varying longitudinal speed. 
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