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Abstract—This work presents an adaptive optimal control 

algorithm-based integral sliding mode control law for a 

class of continuous-time systems with input disturbance or 

uncertain and unknown parameters. The primary objective 

is to find a general form of integral sliding mode control law 

can assure that the system states are forced to reach a 

sliding surface in a finite time. Then, an adaptive optimal 

control based on the adaptive dynamic programming 

method is responsible for the robust stability of the closed-

loop system. Finally, the theoretical analysis and simulation 

results demonstrate the performance of the proposed 

algorithm for an inverted pendulum system.  

 

Index Terms—adaptive dynamic programming, Integral 

sliding mode control, Robust control, Unknown system 

dynamics, Inverted pendulum 

 

I. INTRODUCTION 

Your Sliding mode control was first proposed in the 

early 1950s (Utkin, 1977, 1992; Pisano and Usai, 2011), 

and many studies about the sliding mode control method 

have been published in recent years (Man and Yu, 1997; 

Drakunov, 1992; Ting et al., 2012). The most positive 

feature of sliding mode control consists of the complete 

compensation of the so-called matched disturbances (i.e. 

disturbances acting on the control input channel) when 

the system is in the sliding phase, and a sliding mode is 

enforced. The latter takes place when the state is on a 

suitable subspace of the state space, called sliding 

manifold. 

The integral sliding mode (ISM) technique was first 

proposed in [1], [2] as a solution to the reaching phase 

problem for systems with matched disturbances only. The 

ISM has found many applications in industrial processes 

like robots and electromechanical systems, [6], [7]. To 

avoid the phase and let robustness from the initial time, 

the concept of ISM has been introduced [3], [4], [5]. 

In this paper, we propose the combined idea of 

adaptive dynamic programming and ISM control for 

introducting controllers for unknown systems. At that 
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time, besides our concern for system stability, we also 

pay attention to the bound of the cost function that other 

articles have been not mentioned. 

II. PROBLEM STATEMENTS 

We study a class of continuous-time systems described 

by: 

  , ,x Ax B u f x u t     (1)

 
Where nx  is the measured component of the state 

available for feedback control and   mu m n  is the 

input. Suppose that  n nA  is an unknown constant 

matrix and  , ,  mf x u t  is the disturbance or/and 

uncertain of system.  

The control objective is to find an adaptive optimal 

control based ISM control law ensures that that the 

closed-loop system  1  is robustly stable and the cost 

function  
0

T TJ x Qx u Ru d


  is bounded with ,Q R  

are the symmetric definite matrices 0, 0Q R  .  

Assumption 1: The matrix B  has linearly 

independent columns, i.e.  rank B m . 

Assumption 2: There exists a constant value 0  , a 

continuous function  .  and a continuous function  t  

such that  0 1;t t   , and the disturbance and 

uncertain of system satisfied: 

      ; ;f x u t x t t u      

We define B  as the Moore–Penrose pseudoinverse of 

matrix B . By assumption 1, B  can be computed as: 

 
1

T TB B B B


  . 

Assumption 3: There exists a number 0   such 

that: MA  , where  
1

T TM B B B B


  . 
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III. CONTROL DESIGN 

Define the sliding mode  S t  as follows: 

    : s 0nS t x t      (2) 

Where  s t  is defined as: 

   
0

  

t

s t Mx v d       (3) 

with v  is later designed. 

Theorem 1: The control signal  
s

u v k t
s

  , with: 

 
 

      
1

1
k t x x t v t c

t
    


   


(4) 

and c  is a positive constant, can be guaranteed that the 

system states are forced to reach the sliding surface at 

time 
st   . 

Proof: 

The time derivative of  3  given by: 

    Ts B B Ax B u f v t     

 s MAx u f v       (5) 

It follows from assumption 2, we have: 

           1 k t x t x t v t c           

           k t x t v t k t x t c           

         k t x t u t MA x t c         

     , ,k t f x u t MA x t c      (6) 

We consider a Lyapunov function candidate:

 
1

 
2

TV s s     (7) 

The derivative of V  is computed as: 

 T TV s s s MAx u f v        

 . .T s
V s MAx v k t f v

s

  
       

   

 

   TV s MAx f k t s    

   V s MA x f k t s    

1/2V c s cV      (8)

 

Integrating  8  over the time interval 0 t  we 

obtain:  

     1/2 1/2 1
0

2
V t V ct     

Consequently,  V t  can reach zero in a finite time 
st , 

that is bounded by: 

 1/22 0
s

V
t

c
  

When 0s s  , from  5  we have: 

 , ,eq equ f x u t MAx v     

The system can be rewritten: 

   x Ax B MAx v A BMA x Bv        

x Ax Bv     (9) 

where ;A A BMA B B   . 

Remark 1: It is necessary to ensure that the time of 

convergence of sliding surface is finite. The fact is 

described based on the following example: 

We consider the system as follows: 

dx
Ax Bs

dt

ds
Cx Ds

dt

 

where: , , ,
n n n r r n r r

A B C D , s is the 

sliding surface. Selecting A  is Hurwitz matrix and 

A B

C D
 is not Hurwitz matrix. We obtain that although s  

converges to zero in infinite time, x  does not converge to 

zero. 

Theorem 2: Let 
0K  be any matrix such that 0A BK  

is Hurwitz, and repeat the following steps for 0,1,...k    

Step 1: Solve for the real symmetric positive definite 

solution 
kP  of the Lyapunov equation: 

0T T

k k k k k kA P P A Q K RK     (10) 

where k kA A BK  . 

Step 2: Update the matrix by: 

1

1

T

k kK R B P

                  (11) 

Then, the following properties hold: 

 1  kA BK  is Hurwitz 

 2  
*

1k kP P P    

 3  * *lim ; limk k
k k

K K P P
 

    

with * 1 *TK R B P  and *P  is a unique symmetric, 

positive, definite matrix such that: 

* * * 1 * 0T TA P P A Q P BR B P                  (12) 

Now, we find an approximate optimal control policy 

by using the online measurements of the closed-loop 

system  9 . 

We consider that:   T

kV x x P x                  (13) 

So, we have: 

          
t T

T T

k k

t

x t T P x t T x t P x t V x d



        

    02

t T
TT T

k k k k k k

t

x A P P A x B v K x P xd



       
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     02    14

t T
TT T T

k k k k

t

x Q K RK x v K x B P x d


     
 

Applying

 Kronecker product representation gives:

 

          1, 1, , ,

T T T T

j k j k j k j k kx t x t x t x t vec P    

   

    

    

1,

,

02

2

j k

j k

T T T

k k
t

T T

k

t
T T

k k

x x vec Q K RK

x v B I vec P d

x x BK I vec P




   
 
   
 
   
 

   

Define: 

         1 , 1, 1, , ,

T T T T

j k j k j k j k j kI t x t x t x t x t      

    
1,k

,

2 , 02

j

j k

x

T T

j k

x

I t x v B I d


     

    
1,

,

3 , 2

j k

j k

t

T T

j k k

t

I t x x BK I d


     

       , 1 , 2 , 3 ,j k j k j k j kI t I t I t I t     

     
1,

,

,

j k

j k

t

T T T

j k k k

t

J t x x vec Q K RK d


      

Consequently, we have: 

 

 

 

 

 

 

 

1, 1,

2, 2,

, ,

k k

k k

k

s k s k

I t J t

I t J t
vec P

I t J t

   
   
   

   
   
   
      

 

So  k k kvec P                  (15) 

with: 

 

 

 

 

 

 

1, 1,

2, 2,

, ,

;

k k

k k

k k

s k s k

I t J t

I t J t

I t J t

   
   
   

      
   
   
      

 

Assumption 4: There exists a number 0s  such that 

k has full column rank for all k Z  . 

By using assumption 4,
kP can be uniquely determined 

by:  

   
1

T T

k k k k kvec P


                   (16) 

Algorithm 1: 

 1  Select 
0K  such that 0A BK  is Hurwitz and a 

threshold 0v  . Let 0k  . 

repeat 

 2  Solve 
kP  from  16   

 3  Update 
1kK 

 by using  11 . 

1k k    

until 1k kP P     

*k k   

We obtain the approximated optimal control policy:  

*k
v K x   

Lemma 1: Under assumption 4, by using algorithm 1, 

we have * *lim ; limk k
k k

K K P P
 

  . 

Proof: 

From    13 , 14 one can see that the  1;k kP K   

obtained from    10 , 11  must satisfy the 

condition    14 , 15 . In addition, by assumption 4, it is 

unique determined by  16 . Therefore, from theorem 2, 

we obtain that * *lim ; limk k
k k

K K P P
 

  . 

Lemma 2: There exists a sufficiently small constant 

0   such that for all symmetric matrix 0P   satisfying 
*P P    the system  9  can be stable by 

1 Tu R B Px  . 

Proof: 

Because
* 1 * 0TQ P BR B P  , there exists 0   such 

that
* 1 *TQ P BR B P I  . For any symmetric matrix 

0P  we have: 
1 0T TA P PA Q PBR B P     

where: 

     

   

1 * 1 * *

* 1 * 1 *2

T T

T T T

Q PBR B P Q P BR B P P P A

A P P PBR B P P BR B P

 

 

     

  
 

Because of continuity, there exists a sufficiently small 

constant 0   such that for all symmetric matrix 0P   

satisfying *P P   we have: 

1 * 1 * 0T TQ PBR B P Q P BR B P I       

 We consider the Lyapunov function 
1

2

TV x Px , we 

have: 

    1 1
T

T T TV x A BR B P P P A BR B P x      

 1T TV x Q PBR B P x    

From 
1 0TQ PBR B P  so the system  9  is globally 

asymptotically stabilises. 

Theorem 3: The feedback control designed from 

theorem 1 and algorithm 1 can make sure that the 

closed-loop system  1  is robustly stable and the cost 

function  
0

T TJ x Qx u Ru d


  is bounded. 

Proof: 

From theorem 1, the system states are forced to reach 

a sliding surface in a finite time. When on the sliding 

surface, the control designed by algorithm 1 can make 

the system is globally stable. Therefore, the closed-loop 

system  1  is robustly stable. 

Moreover, by continuity we infer that: 

 
0

T TJ x Qx u Ru d



    
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   
0

s

s

t

T T T T

t

J x Qx u Ru d x Qx v Rv d



       

 
0

T TJ x Qx v Rv d


    

where: 

    2 2

max max
0 0
max max

s s

s
t t t t

t Q x R u 
   

    

Due to the relation *

*

k
v K x K x   , there exists a 

positive number  such that J  . 

IV.  SIMULATION 

TABLE I. 
 

PARAMETERS AND VARIABLES OF AN INVERTED 

PENDULUM SYSTEM

 
M

 
Weight of car

 
0.5

 
kg

  
m

 
Weight of link

 
0.2

 
kg

  
B

 
Friction coefficient

 
0.1

 
/Ns m

  
L

 
½ length of link

 
0.3

 
m

  
I
 

Inertial moment of link
 

0.006
 

2.kg m
  

G
 

Gravity
 

9.8
 

2/m s
  

In this section, we apply the proposed an adaptive 

optimal control based ISM control law to an inverted 

pendulum on a cart described as (17) and Table 1. Fig. 1 

and Fig. 2 show the control and states of system using 

theorem 1 and algorithm 1. On the other hand, Fig. 3 and 

Fig. 4 show the control and states of system when 

algorithm 1 has not been used. Fig. 5 and Fig. 6 show the 

convergence of matrix P and K  of proposed algorithm 1, 

and the tracking errors converge to zero. 

 
   

 

 

 

 

 

2 2 2

2 2

2 2

2

2

2

0 1 0 0

0 0

0 0 0 1

0 0

0

                    
0

I ml bx xm gl

x xI M m Mml I M m Mml

mgl M mmlb

I M m Mml I M m Mml

I ml

I M m Mml
u

ml

I M m Mml

 

 

 
 

     
           
    
    

    
     

 
 

 
  

  
 
 
 

   

           17

1 0 0 0 0

0 0 1 0 0
y x u

   
    
   

 

 
Figure 1.  The control input 

 
Figure 2.  The states of system 

 
Figure 3.  The control input 

 
Figure 4.  The states of system 

 
Figure 5.  The convergence of proposed algorithm 

V. CONCLUSION 

This paper presents an adaptive optimal control 

algorithm-based ISM control law for continuous-time 
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systems with unknown system dynamics and external 

disturbance. The proposed algorithm pointed out the 

robust stability of system and the bound of cost function. 

The theory analysis and simulation results illustrate the 

effectiveness of proposed algorithm. 

 
Figure 6.  The convergence of proposed algorithm 
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