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Abstract—To create robots able to generate expressive 

motions and improve human robot interaction (HRI). An 

innovative adaptive control system architecture for a robot 

arm is developed which can adapt the control parameters 

and motion trajectories according to the perception 

generated by the human, the environment, and the overall 

robot interaction. An adaptive fuzzy controller that maps 

environmental and HRI factors to the PAD emotional model 

(Pleasure, Arousal, and Dominance) is proposed. These PAD 

values are used to change the robot strategy to generate 

trajectories and control parameters, which are designed to 

express different emotional states. The robot motions are 

commanded by the Robust Generalized Predictive 

Controllers (RGPC), using optimization by Youla 

parameters, that involves robot regulation with adaptive 

motion. The optimization control uses an adaptive receding 

horizon designed according to the response of the human 

and environment interaction. This proposal allows to 

generate motions with more personalized characteristics for 

human robot interaction in a non-humanoid robots. 

 

Index Terms—robot arm, adaptive fuzzy control, adaptive 

robust predictive control, affective robotics 

 

I. INTRODUCTION 

Robots with the ability to cooperate with people and 

interact in social contexts are now being used in diverse 

scenarios. To enable long-term interactions, these robots 

must be able to convey a sense of believability, diversity 

and adaptation to environmental conditions [1]. It is often 

said that a key factor in creating intelligent social agents 

is the ability to express different affective states [2]. 

However, even when a large portion of human-human 

affective communication is expressed with gestures and 

postures [3], most studies related to emotional expression 

in robotics focused in artificially reproduced human-like 

facial expressions. Two notable examples are [4] and [5]. 

Moreover, many robots available on the market cannot 

perform facial expression due to the mechanical or 

technological limitations. Examples of these types of 

robots are mobile robots, manipulator robots, and 

quadropters, among others. Literature in affective 

computing reports very few works addressing the 

challenges that imply the use of non-zoomorphic robots, 
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and even fewer when they have no face [6], [7]. 

Furthermore, studies that use arm-robots to express 

emotions are still very rare.  

In this work, an interactive robot arm able to generate 

representative expressive states (postures/motions) while 

taking into account environmental factors and human 

interaction is created. For this, a new architecture is 

proposed where predictive controllers are designed and 

implemented to produce robot motion with expressive 

trajectories and postures, and the new adaptive receding 

horizon involving the human and environmental states is 

designed to execute the control optimization. We also 

propose a high-level, adaptive, fuzzy-based system that 

infers the internal emotion of the robot from both 

environmental conditions and human actions. The fuzzy 

system outputs are used as inputs of the low-level 

predictive controller to generate dynamic and 

personalized behaviors. 

 This paper is organized as follows. In Section II, 

related works and contributions are discussed. Section III 

describes the robot control architecture. Section IV 

develops the adaptive fuzzy controller. Section V 

presents the design of the robust predictive controller. 

Section VI describe the simulation results, Section VII 

presents the experimental and evaluation results. Finally, 

the conclusions are presented. 

II. RELATED WORKS AND CONTRIBUTIONS 

Emotions and mood are important elements in 

affective computing. While emotions are generally 

expressed using instantaneous behaviors, such as facial 

expressions or gestures, moods are longer-lived and 

affect human behaviors [8]. A well-known model used in 

affective computing for encoding both emotions and 

moods is the PAD (Pleasure-Arousal-Dominance) 

dimensional model [9], [10]. In this 3D model, general 

mood types are divided in eight octants, and emotional 

states are represented as moving vectors with the current 

pleasure, arousal and dominance values. The pleasure 

component of the PAD model represents an affective 

balance and varies from positive to negative. The arousal 

component indicates the degree of physical activity and 

varies from excited to calm. Finally, the dominance 

component represents the degree of control or influence 
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over the environment and varies from weak to strong [11]. 

Fig. 1 shows how some emotional states are mapped in 

the PAD model.  

 

 
Figure 1. PAD emotional model [10] 

 

The PAD model has been widely used in studies on 

virtual agents and computer gaming [12], [13] as well as 

robotics. A relevant example is described in [14], where 

the PAD model is mapped in motion features (jerkiness, 

activity and gaze) to generate affective movement of an 

anthropomorphic robot. Another approach is shown in 

[15], where the PAD model and fuzzy logic were applied 

in a humanoid robot to simulate internal emotional states 

and reach emotional coherence over time.  

Different controllers were proposed to enhance the 

robot arms’ performance [16], [17] in executing specific 

tasks. The predictive controllers are used extensively for 

other systems in industrial applications, but rarely for 

these kinds of expressive robots. Some other robot 

controllers [18], [19] were developed with focus on 

incremental precision during the tracking trajectory for 

manipulation tasks. However, using these controllers with 

robot arms to express motions with sensations according 

to the human interaction in a social context and relate to 

the environmental changes, is not widely developed.  

Our focus differs in the use of a non-humanoid robot, 

in this case a robot arm. Additionally, environmental 

conditions, such as temperature, humidity, and brightness 

as factors that affects the robot’s emotional states are 

considered. Even when these environmental variables are 

considered important moderators of emotional states [20], 

they are generally ignored in affective computing studies 

for human robot interaction.  

The proposed emotional system also uses the robot’s 

internal state (the robot temperature) and some social 

states of the human face (smiles and human engagement) 

to adapt the values of the membership functions in the 

proposed fuzzy-based model. Moreover, the design of 

robust predictive controllers for regulation and motion 

generation that produce the expressive states of a robot 

arm is also presented. 

The contributions of this paper are focused on creating 

expressive states for robots, taking into account the 

interaction not only of the human but also of the 

environment and the robot’s internal states, and creating a 

direct relation with the design of the adaptive controllers 

and motion generation. The contributions can be listed as 

follows:  

I. Development of an adaptive architecture based on 

the robotic framework using NEP (Node Primitives). 

II. Proposal of an Adaptive Fuzzy Inference System to 

represent perception and decision-making in cognitive 

controllers based on the emotional model PAD. The PAD 

is created with the human environment interaction and 

robot internal states. These inputs and adaptive 

parameters directly affect the standard deviation of the 

fuzzy membership functions, moving the final PAD to 

generate the robot’s expressive motions.  

III. Implementation of predictive controllers designed 

with an adaptive prediction horizon. The final prediction 

horizon is adapted according to the PAD information 

(human and environment). It is used to optimize the cost 

function and predict the robot’s control output signal. 

IV. Development of the control functions in the PAD 

and mapping calculation to personalize the robot arm’s 

expressive motions. 

III. ROBOT CONTROL SYSTEM ARCHITECTURE 

The system architecture developed is shown in Fig. 2. 

This modular architecture is composed of different levels 

to understand the robot’s interactions with the 

environment and the human. It converts these inputs into 

suitable actions for generating the representative states in 

the robot. The architecture has a perception level that 

combines the environment, the human, and the robot 

states. The other level is the robot cognition, which 

involves the fuzzy emotional system and the decision-

making process to create the strategic motion. Finally, in 

the architecture, the robot control system involves the 

predictive controllers to regulate and keep the motion 

trajectory in accordance with the adaptability of the 

perception states.  

In the perception level, three components are 

considered: environment, human, and robot states. The 

first component, denoted as environmental state 

component, reads the data via serial port provided by a 

microcontroller board STM32F446 Nucleo-64. This 

microcontroller processes the signals of some sensors 

which monitor environmental conditions (temperature, 

humidity and brightness for example). The temperature 

sensor works with a temperature range, 0–100 ºC, with a 

linear analogical output 10 mV/ºC, and error < 1.5ºmV. 

The humidity sensor has a range of 20–80% with ±5% of 

variation. The brightness is measured with a photo-

resistor that changes according to light intensity. 

Additional sensors can be added at will, to extend the 

capabilities and acquire more information of the 

environment and human interaction. 
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Figure 2. System architecture used for simulation and expression of 

robot states 

 

The second perceptual component, denoted as the 

human state component, reads the state of the interaction 

between a human and the robot. For this, an interface is 

developed based on C\# and the Microsoft Kinect 

Software development Kit to process the data obtained 

from a Microsoft Kinect V2. This kind of motion capture 

device, initially conceived for home gaming, is now 

widely used for human action recognition in 

biomechanical and robotic research [21]. This device can 

create a depth map and detect several human joints in the 

range of 0.5 to 8 m. These capabilities are used to 

estimate the distance between the human and the robot. 

Also, the device’s face recognition capabilities are 

applied to detect actions that can influence the robot’s 

emotional states, such as a human smile and direction of 

gaze.  

The last perceptual component is the robot state 

component, and it is used to get the current internal states 

that can affect the robot’s emotions or comfort. For the 

robot perception input, the motor’s average temperature 

is taken into account. This perceptual data is published to 

the local network for posterior processing. 

The architecture’s cognition level is based on Python 

modules; it is applied to perform the high-level emotional 

modeling using information from the perceptual 

components. This modeling uses an adaptive fuzzy logic 

controller to get the robot’s current PAD value in 

function of the perceptual inputs and k-nearest neighbors 

to classify emotion (detailed in section IV). It generates 

the robot’s current emotional state. This component 

publishes two outputs to the local network. The first is a 

string indicating the current emotional state, which is 

used to select the trajectories performed by the robot. The 

second is the current value of the robot's PAD model. 

This output is used to modify the motion parameters in 

the controller.  

Finally, the robot state expression level generates the 

control actions and the expressive motions through robust 

predictive controllers (RGPC), which use convex 

optimization to calculate the polynomials for regulating 

the dynamic of the emotional trajectory and the internal 

feedback for the robot motion. These controllers are 

based on GPC stable controllers, which are designed with 

an adaptive term (final predictive horizon) to execute the 

optimization. The final horizon is determined based on 

the human and environment interaction modeled by the 

PAD in the fuzzy system. The RGPCs are programmed in 

MATLAB and communicate with the other modules via 

TCP/IP. 

The NEP (Node Primitives) robotic framework is 

configured to communicate all the different components 

written in different programming languages by the 

publish-subscriber and client-server communication 

patterns [22]. This framework, proposed in [23], was 

developed to be easy to install, compatible with Robot 

Operating System (ROS) [24], human-centered and cross-

platform. In this work, a non-anthropomorphic robot arm 

with 5-DoF is used to express emotional states with the 

NEP robotic framework. 

An advantage of this architecture is the modularity of 

the proposed system architecture that makes practical the 

execution of the developed algorithms in any robot 

platform. 

The robot arm used for this work was previously 

identified using the inertial parameters identification of 

the standard base, and dynamic and geometrical 

identification of the end-effector. The modeling values 

are specified in [25]. 

The robot identification is implemented to determine 

the dynamic model related to the inertia matrix, Coriolis, 

gravitational and friction torque effects are shown in (1). 

The robust predictive controllers are designed according 

to the robot dynamic model, characterized by each joint 

motion.  

              

𝚪 = 𝐌�𝛉 𝛉 + 𝐂 𝛉, 𝛉  𝛉 + 𝐆�𝛉  + 𝚪𝒇   
   

𝚪𝒇 =  𝑑𝑖𝑎𝑔 𝛉  𝐅𝑣+ 𝑑𝑖𝑎𝑔  𝑠𝑖𝑔𝑛 𝛉   𝐅𝑐   

     

 

 

(1) 

Where θ,  and  are the (NJ × 1) vectors of joint 

angles, velocities and accelerations, M(θ) (NJ × NJ) is the 

robot inertia matrix, C(θ, ) (NJ × 1) are the Coriolis and 

centrifugal terms, and G(θ) (NJ ×1) is the gravitational 

term. Ff (NJ × 1) is the vector of friction torques due to Fc 

Coulomb and Fv Viscous friction effects. 

IV. ADAPTIVE FUZZY LOGIC CONTROLLER 

In natural conversation, affective states are always 

defined with linguistic variables. In fact, one often says 

things like: “you are very happy” or “he seems a little bit 

sad.” Moreover, these linguistic variables have 
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Figure 3. Control Architecture proposal for expression of emotional states in robot arm 

 

 
Figure 4. Environment parameters: modeling in the 

 Environmental -Fuzzy Inference System (EFIS) inputs definitions  

 

unclear boundaries between them and can vary depending 

on the human personality, the environment, or the context. 

A powerful approach that can be used to model this 

uncertainty is the fuzzy logic [26]. The advantage of this 

technique is that the solution of a problem can be defined 

in terms of unclear linguistic variables. Therefore, human 

experience can be modeled easily.  

Fig. 3 shows the proposed Adaptive Fuzzy Emotional 

Model (AFEM) scheme. This approach is composed of 

two Fuzzy Inference Systems (FIS). These blocks model 

the environmental conditions and human activities’ 

influence on the robot’s affective states. These blocks are 

Environmental Fuzzy Inference System (E-FIS) and 

Human-Interaction Fuzzy Inference System (HI-FIS), 

respectively. In the E-FIS, the environment temperature, 

humidity, and brightness were used as inputs. Fig. 4 

shows the membership functions of each input 

respectively. These linguistic variables can take the 

values of cold, comfortable, or hot for the 

    Figure 5. Human proximity membership functions for the Human-  

                       Interaction Fuzzy Inference System (HI-FIS) 

 
Figure 6. a) Pleasure PAD-output without adaptive input, b) Pleasure 

PAD-output with positive adaptive input 
 

temperature input; dry, comfortable and wet for humidity; 

and low or high for brightness. The ranges of these 

linguistic variables are defined based on [27] and [28]. 

The outputs of the E-FIS are PAD model values (Pleasure, 

Dominance and Arousal), which can take the values of 

low, neutral or high. The range of each PAD axis is from 

−10 to 10. Gaussian distributions are used to model the 

membership functions. The number of rules defined in 

the E-FIS is 18.  

The E-FIS system uses an adaptive function, which is 

modified according to the robot’s temperature. The 

output of this adaptation changes the membership 

functions in E-FIS generating new PAD values that 

produce a suitable robot motion. The main idea of this 

approach is to replicate, in the robot, the influence of 

body temperature on human thermal comfort perception 

[29], a physiological value that can be linked to affective 

states.  
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Figure 7. Robust Generalized Predictive Controller structure (RGPC) 

 

For the HI-FIS, the input is the distance between the 

human and the robot. This distance is calculated by the 

human state component as the average of the joint 

distances detected by the Kinect. The linguistic values 

were defined in human proxemics studies [30]. This 

variable can take values of personal, social, and public, 

as shown in Fig. 5. As the E-FIS, the PAD values are 

used as HI-FIS outputs. However, for the HI-FIS, the 

human state inputs detected by Kinect are used to change 

the membership function parameters in the output 

variables. An example is shown in Fig. 6 for the pleasure 

output. This figure shows how the values of the mean of 

the Gaussian functions of each linguistic value are 

changed to positive values when a smile is detected by 

the perceptual system. This makes the robot’s emotional 

state tend to be more positive when the human explicitly 

expresses a positive emotion. A total of three rules were 

used in the HI-FIS model.  

The outputs of the E-FIS and HI-FIS are represented 

by the vector PADenv = [Penv, Aenv, Denv]
T
 and PADhi = 

[Phi, Ahi, Dhi ]
T
 respectively. The current PAD value is 

calculated as:  

              

𝑃𝑐 = 𝛼𝑃ℎ𝑖 + 𝛽𝑃𝑒𝑛𝑣  

𝐴𝑐 = 𝛼𝐴ℎ𝑖 + 𝛽𝐴𝑒𝑛𝑣  

𝐷𝑐 = 𝛼𝐷ℎ𝑖 + 𝛽𝐷𝑒𝑛𝑣  
 

 

 

(2) 

where the Pc, Ac and Dc indicate the current value of 

Pleasure, Arousal and Dominance, respectively. The 

values of α and β are parameters that can be used to 

personalize the influence of the human actions and 

environmental conditions, and they affect the robot’s 

internal affective model. For this design, the values were 

set to α =1 and β =0.5. 

The current value of the PAD vector PADc is used to 

classify the current affect using the K-NN (k-nearest 

neighbors) algorithm [31]. In the proposed approach, the 

K-NN algorithm is trained, assigning a vector value 

inside of the 3-axis PAD space to each affect. In K-NN, 

an unlabeled vector is classified by assigning the label 

which is most frequent among the k training samples 

nearest to that query point. Using a value of k=1, a given 

PAD vector input can be assigned to a class (affect) of its 

single nearest neighbor. For this work, only the affects 

shown in Fig. 1 are used to train the K-NN algorithm. 

 

 

 

V. ADAPTIVE PREDICTIVE CONTROLLERS 

Predictive controllers are extensively developed for 

different industrial applications [32]. There are different 

kinds of predictive controllers using a reference system 

model (MPC). One of them is the Robust Generalized 

Predictive Control (RGPC), which is designed based on 

predictive controllers and robustified with optimization. 

For this work, we proposed an RGPC controller 

optimized by Youla parametrization (Fig. 7) to increase 

the robot motion performance for external perturbations 

and uncertainty parameters.  

The adaptive robust predictive controllers for sensitive 

robotics are a new application, and it is one of the work’s 

main contributions. RGPC is designed using the base of 

GPC controllers, and robustified by Youla parameters 

with convex optimization.  

The affective PAD model is used to design the control 

optimization parameters. The PAD values influence the 

horizons and the weighting signal control parameter to 

determine the GPC optimization’s cost function.  

The GPC control predicts the final signal control using 

the robot dynamic model, a receding horizon based on 

minimum time events, and a reference trajectory 

determined according to the PAD variation and adaptive 

FIS controller for the robot to express emotions. 

The predictive control strategy is described for the 

following sequence [33]: 1) definition of a model to 

predict the future, 2) minimization of a quadratic cost 

function over a finite future horizon, 3) calculation of a 

sequence of control values in the future, and 4) iteration 

of the procedure in each sampling period according to the 

receding horizon strategy. 

The GPC controller is designed using the CARIMA 

model (Controlled Auto-Regressive Moving-Average) 

[34], which is represented by the robot dynamics and 

external input (signal of the environment or human 

interaction) in an integrated model. The CARIMA model 

is given by 

 

𝐴�𝑧−1 𝑦�𝑡 = 𝐵�𝑧−1 𝑢�𝑡 − 1 +
𝐶�𝑧−1 

Δ
𝜉�𝑡  

 

(3) 

 

and  are the polynomials of the dynamic 

robot model simplified. u(t) is the robot joints torque, y(t) 

is the robot position, and is the perturbation modeled 

as a Gaussian noise. The polynomial  represents 

external influences. Δ is a difference operator to get 

minimal static error. The robot model was linearized as a 

nominal model for RGPC design. The models are 

converted to discrete time with a sample time Ts = 0.01s. 

By minimizing the cost function (4), the control signal 

is calculated. It is constituted by the optimum predictive 

output , the future reference trajectory , 

and the output prediction horizons: N1 (initial horizon), 

N2 (final horizon), and Nu (horizon over the control 

signal).  
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𝐽 = �  (𝑦 (𝑡 + 𝑗|𝑡) − 𝑤(𝑡 + 𝑗) 2

𝑁2

𝑗=𝑁1

+ � (𝜆(𝑗)Δ𝑢2(𝑡 + 𝑗 − 1))

𝑁𝑢

𝑗=𝑁1

 

       

 

 

(4) 

The optimization process is configured for each robot 

joint with N1, N2, Nu, and λ. The control parameters are 

designed to obtain expressive motions inside the stable 

criterium and response time with temporal and frequency 

constraints. The horizons were determined by minimum 

time events, occurring in a short time, to represent 

expressions in the robot. 

The Adaptive Robust GPC is designed using adaptive 

variables in the optimization process. These variables are 

N2 as the final horizon for the prediction and λ as the 

weighting parameter in the control signal. These 

parameters are modified according to the influence of the 

environment and human interaction (PADc). 

The final horizon for the prediction N2 is an adaptive 

term in the optimization process. N2 changes according to 

PADc, modifying the response velocity in the final robot 

expression by  

               

𝑁2 = 𝑓1(𝐏𝐀𝐃c ) 
 

 

(5) 

The other important parameter influencing the robot’s 

expressive response is λ, the weight on increments of the 

control signal. This parameter moves the controllers to 

get stable controllers and determines the robot 

oscillations; finally, it affects the robot expression. u(t) 

and u(t+j) are the control signal. PADc influences the 

value of the optimal λ to obtain the different final 

expressions of the robot (6). 

              

𝜆 = 𝑓2(𝐏𝐀𝐃c) 

 

 

(6) 

The functions f1 and f2 are determined as the mean 

value of the PADc, where the maximum and minimum 

values represent the maximum and minimum value for N2 

that guarantee stable controllers for the robot arm. For 

this work, the robot horizon changes in the range N2 = 

[10–200]. 

Equation (7) represents the signal control implemented 

in the robot to get the expressive motions using 

synthesized polynomials ,  and . They 

are calculated by minimizing the quadratic criterion in the 

GPC optimization. 

 
𝑆(𝑧−1)Δ(𝑧−1)𝑢(𝑡) = −𝑅(𝑧−1)𝑦(𝑡) + 𝑇(𝑧)(𝑤(𝑡) + 𝑁2) 

 

(7) 

The previous GPC is robustified by solving a convex 

optimization problem, using Youla parametrization to 

obtain robust predictive controllers  [35], [36]. 

 With the robot characteristic polynomial A0Ac=ΔAS+ 

z
−1

BR, the RGPC is calculated in a feedback 

compensation to determine the initial stabilizing 

controllers, where Ac represents the control dynamic and 

A0 is for observer dynamic. 

RGPC is defined by stable transfer functions as Q = 

[Q1 Q2] (8). 

  

𝐾(𝑧−1) = �
𝑇(𝑧−1) − 𝐴0𝑄2

𝑆 − 𝑧−1𝐵𝑄1
−

𝑅 + Δ𝐴𝑄1

𝑆 − 𝑧−1𝐵𝑄1
  

 

 

(8) 

 

 
Figure 8. Defuzzification example 

 

The RGPC structure is presented in Fig. 7, where the 

robot’s motion trajectory is adjusted to the PAD mapping 

with Q2 by the dynamic of the following reference, and 

Q1 modifies the internal regulation dynamics. The new 

RGPC controller is represented by , , and 

 as functions of Q1, Q2, and robot dynamics (9). 

 

         

𝑇𝑌(𝑧−1) = 𝑇(𝑧−1) − 𝐴0(𝑧−1)𝑄2(𝑧−1) 

𝑅𝑌(𝑧−1) = 𝑅(𝑧−1) + Δ(𝑧−1)𝐴(𝑧−1)𝑄1(𝑧−1) 

𝑆𝑌(𝑧−1) = 𝑆(𝑧−1) − (𝑧−1)𝐵(𝑧−1)𝑄1(𝑧−1) 
 

 

 

(9) 

Youla parameters Q = [Q1 Q2] are calculated by 

convex optimization, applying frequency and temporal 

constraints, according to the expressive motions and 

minimum time to produce the expressions in the robot. 

A. Frequency Constraints for the Optimization 

Frequency specifications are applied to make the 

control response more robust, using an uncertainty model 

and the small gain theorem which gives stability 

properties in each transfer function with uncertainty [34]. 

To analyze the controller’s stability, the Nyquist criterion 

is applied to the optimization. Frequency constraints are 

modeled by an unstructured uncertainty, where  is 

a robot model connected to Δu, an additive direct 

uncertainty. The robustification is maximized by 

minimizing the norm H∞ in (10). 

 

 

       

min
𝑄1∈ℜ𝐻∞

�𝑃(𝑧−1)𝑊(𝑧−1)�∞  

 

(10) 

 is a weighting transfer function with a 

frequency band where uncertainties due to environmental 

effects are considered. This specification is convex in Q1 

in a space H∞ where all transfer matrices are stable. 

B. Temporal Constraints for the Optimization 

To keep external inputs within temporal restrictions, 

the optimization is configured using constraints inside of 

a temporal template Ф(Q)ijoint for each robot joint with 
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maximum amplitude = [10–20], minimum amplitude = 

[−5, −30], time = [2s–5s], and order of Youla parameters 

= [5–50]. This order allows linear parametrization over 

each of the robot model’s transfer functions. 

The solution of Ф(Q)ijt is obtained by linear 

programming using convex optimization. The 

optimization minimizes the H∞ norm with constraints by 

a temporal template. Ф(Q1ijt) is a temporal template to 

manage external effects (environment or human activity), 

and Ф(Q2ijt) is a template to reject measurement noise (11) 

 

min
𝑄1∈ℜ𝐻∞

� 
−𝑅𝐴 − 𝐴2Δ𝑢𝑄1𝑖𝑗𝑡

𝐴0𝐴𝑐
 𝑊(𝑧−1)�

∞

 

min
𝑄2∈ℜ𝐻∞

� 
−𝑇𝐴 − 𝐴2𝐴0𝑄2𝑖𝑗𝑡

𝐴0𝐴𝑐
 𝑊(𝑧−1)�

∞

 

 

 

 

(11) 

 

Applying Q1, minimization of H∞ norm, and temporal 

constraints is solved the convex optimization. 

VI. S  

A. Adaptive Fuzzy Logic Controller 

This section shows the proposed adaptive fuzzy logic 

controller’s performance in modeling emotional states. 

Fig. 8 presents a defuzzification example acting in the 

Pleasure output with the adaptive input. Figs. 9, 10, and 

11 show how the Pleasure, Dominance and Arousal 

values produced by the HI-FIS change in function of the 

distance of the human approaching the robot.  

When no facial expressions are detected, the PAD 

value remains at 0 until the human approaches the robot’s 

social space, which increases the pleasure and arousal 

values. It produces the PAD vector to stay closer to a 

surprised emotional action. When a smile is detected, the 

three PAD values are increased, producing a closer 

tendency to a “Happy” affect. When the human ignores 

the robot with the gaze, the PAD values are adapted to 

get closer to the “Sad” affect. 

  Fig. 12 represents the robot’s adaptive response to 

environmental variations and changes in the robot PAD. 

The red circles in this figure represents the most 

significant changes in the surfaces of each PAD output, 

and the adaptive response to the temperature and 

humidity variation.    

 
Figure 9. Pleasure output of the HI-FIS with the influence of a 

positive adaptive input 

 

Figure 10. Arousal output of the HI-FIS with the influence of a 

positive adaptive input 

 

 

Figure 11. Dominance output of the HI-FIS with the influence of a 

positive adaptive input 

 

 
 

Figure 12. PAD in the robot motion with the influence of the 

adaptive controllers 
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B. Adaptive Robust Predictive Controllers 

The GPC controllers are designed with the parameters 

shown in Table I by each robot joint with an initial 

horizon N1=1 and control signal limit Nu=1. The values 

on this table represent an example of the GPC design 

control for a low and high PADc that produce a “Happy” 

state in the robot. N2a represents a PADc with high 

Arousal, N2b medium PADc, and N2c low Arousal in the 

PADc. In the horizons of prediction design, the values of 

Arousal that represent the velocity in robot states are 

taken into account. The initial horizon for the 

optimization N2 and the optimal λ1 change according to 

the adaptability of the PADc values.   

TABLE

 

I:

 

GPC

 

PARAMETERS FOR ROBOT STATES WITH PADC 

 

EFFECT

 
Joints

 
N2a

 

λ1

 
N2b

 

λ2

 
N2c

 

λ3

 
J1

 

20

 

0.33

 

70

 

42.7

 

120

 

124.7

 
J2

 

25

 

0.25

 

75

 

28.28

 

125

 

127.7

 
J3

 

11

 

2.02

 

61

 

65.52

 

111

 

114.5

 
J4

 

9

 

10.41

 

59

 

60.58

 

109

 

110.58

 
J5

 

10

 

11.8

 

60

 

61.78

 

110

 

111.78

 
  

Figs. 13 and 14 show the GPC stability and robustness 

responses in a Black and Bode diagrams for the base of 

initial horizon N2a

 
for high PADc and more Arousal value 

in the robot state. Table II shows the results of GPC 

stability in terms of the Margin of Gain (MG), Margin of 

Phase (MP), and Margin of delay (MD). The results 

present an incremental MG and MP when the PAD
 influence is reduced, indicating that the distance is large 

(human far from the robot, in a public zone), and it 

produces a low velocity in the robot motion. 

 

 

 
Figure 13. GPC responses (Black diagram) Robustness and 

sensibility for a high PAD

 

 
Figure 14. GPC responses (Bode diagram) frequency response for a 

high PAD 

 TABLE II: GPC VALUES OF THE STABILITY 

 N2a and λ1 N2c and λ3 

Joints MG 

[dB] 

MP 

[degree] 

MD 

[ms] 

MG 

[dB] 

MP 

[degree] 

MD 

[ms] 

J1 12.9 56.3 2.21 14.02 70.89 3.1 

J2 13 58.0 2.3 13.9 70.3 3.04 

J3 12.83 48.7 1.8 14.5 71.4 3.24 

J4 14.29 73.9 3.7 14.44 72.03 3.16 

J5 14.33 73.98 3.8 14.41 72.03 3.17 

  

 Figs. 15 and 16 show the GPC controller’s different 

responses (Black and Bode diagrams). When the PAD 

decreases the values, N2 is incremented, and it affects the 

complementary and direct robot sensibility (data circle in 

3 dB and 6 dB in the Black diagram). The robot shows a 

low velocity with the same emotion “Happy,” keeping a 

stable motion and producing a response more distributed 

for all joints (Fig. 15).  

 

 
Figure 15. GPC responses (Black diagram) Robustness and 

sensibility for a low PAD 
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Figure 16. GPC responses (Bode diagram) Frequency responses for a 

low PAD 
 

The Robust GPC is designed using the base of the 

GPC controllers (Table I), and is updated according to the 

PADc values. Table III shows the parameters used to 

design and optimize the RGPC. 

  TABLE III: RGPC DESIGN PARAMETERS 

Param. J1 J2 J3 J4 J5 

Max. TI 20 30 30 10 10 

Min TI −5 −10 −10 −10 −10 

Tr time 5s 2s 2s 2s 2s 

 

W(z−1) 

 1, −0.6 

0.3
 

 

 1, −0.8 

0.5
 

 

 1, −0.8 

0.5
 

 

 1, −0.7 

0.5
 

 

 1, −0.7 

0.5
 

 

Order Q 50 10 15 5 5 

 

 

Figure 17. Robust GPC for the robot motion 
 

Fig. 17. shows the robustification of the controllers 

RGPC. This response represents the initial GPC 

controllers with a temporal template, which is used as 

constraints in the optimization by Youla parametrization.  

  The stability and robustness results for the robot 

using RGPC with a high PAD are presented in Figs. 18 

and 19. These figures show that the controllers act with 

stability, and the high PAD’s influence produces different 

direct sensibility in all robot joints. This response is more 

pronounced when the PAD values decrease (Figs. 20 and 

21) in joint 1, 2 and 3.  

 
 

Figure 18. RGPC Black diagram for a high PAD 

 

 

Figure 19. RGPC Bode responses for a high PAD 

 

The final effect is represented directly with the 

velocity and smooth effect during the real robot motion, 

as shown by the errors explained in section VII 

(Experimental section). The temporal constraints for the 

optimization in the RGPC with the effect of the PAD are 

showed in Table IV. 
 

TABLE IV: RGPC PARAMETERS WITH PAD EFFECT 
 

Param. J1 J2 J3 J4 J5 

Max. TI 60 100 20 10 10 

Min TI −15 −30 −10 −10 −10 

Tr time 2.5s 3s 2s 1s 1s 

 
W(z−1) 

 1, −0.6 

0.3
 

 

 1, −0.8 

0.5
 

 

 1, −0.8 

0.5
 

 

 1, −0.7 

0.5
 

 

 1, −0.7 

0.5
 

 

Order Q 50 10 15 5 5 

VII. EXPERIMENTAL RESULTS AND VALIDATION 

The robot platform, explained previously, was used as 

the experimental setup. Three types of experiments were 

conducted, focusing on variations in environmental 

parameters, human interaction, and robot temperature to 

validate the control architecture and expressive robot 

motions. 
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Figure 20. RGPC Black diagram for a low PAD 

 

 

 

Figure 21. RGPC Bode diagram for a low PAD 

 

A. Variation of Environment Parameters 

In this experiment, the environmental parameters 

(temperature (T), humidity (H) and brightness (B)) are 

changed. A human in a public space distance was 

presented for this experiment. As mentioned in section VI, 

human presence will not affect the PAD value until 

human approaches the social space. The values of Phi, Ahi, 

Dhi are therefore zero.  

Robot motions generated by the PAD were chosen to 

represent four extreme affective motions: “Happy”, 

“Sad”, “Angry” and “Protected”. Table V shows the 

results of the robot PAD and response to each emotion 

with the control RMSE error.  

The “Happy” motion is expressed by the robot when 

the comfort values of temperature and humidity, together 

with enough brightness, are presented. The “Sad” motion 

is expressed when the environment temperature decreases 

to cold values and there is not enough brightness in the 

environment. The robot expresses “Angry” motions when 

the temperature reaches high values and low humidity 

with enough brightness.  

Finally, “Protected” motions are expressed in high 

temperatures, humidity, and low brightness. 

The “Happy” motion presented a high PAD robot 

values compared to the other motions and higher values 

in the control error. In this case, the velocity was 

increased, and it modified the mapping to produce the 

robot motions. 

B. Variation of Human Distance 

In this experiment, we want to detect the effect on the 

robot’s affective states when a human is approaching the 

robot’s social space. The environment is set to get the 

“Happy” emotion. The human distance varied in values 

of 402 cm, 350 cm and 180 cm, and generated the motion 

“Happy 1”, “Happy 2”, and “Happy 3” . In Table VII, it 

is shown how the HI-FIS has a larger influence on the 

robot’s emotional state for the pleasure and arousal 

components when the human gets closer to the robot. The 

results showed how the velocity varies, producing the 

same emotion “Happy”. It shows the control adaptation 

with predictive controllers, when the PADc changes the 

control parameters, and they are adapted, modifying the 

velocity according to the variation in the predictive 

horizon parameter. 

C. Variation of Robot Temperature 

This experiment was developed by moving the robot to 

get the joints temperature. To avoid damage to the system, 

this experiment was set to extreme values in the robot 

with minimum and maximum temperatures (exceeded 

34ºC). The robot temperature affects the adaptive FIS 

controller (AFEM) and modifies the PAD values. The 

control performance and robot motion were evaluated and 

are shown in Table VII.  

To detect variation in the robot states when the robot 

temperature changes, experiments were conducted using 

low and high robot temperature values. The values 

applied for the experiments were 10 and 40 ºC. The other 

perceptual inputs were set to fixed values, and only the 

robot temperature was changed. The robot temperature 

modifies the input in the adaptive FIS controller (Fig. 3). 

This input affects the standard deviation of the 

membership function in the E-FIS (Environment FIS). 

During the experiments, the human distance was set to a 

public zone value (405 cm) (Fig. 5), which has less 

impact on the final PADc caused by human interaction, 

and it allows more action of the robot temperature effect. 

From the robot sensors, the joints temperatures are sent 

for the perceptual module; this module takes the average 

value of the temperatures of all joints. Table II shows the 

experimental results. The output showed that the final 

PADc has negative values for a low robot temperature 

producing a low pleasure, arousal and dominance, and 

they represent a robot motion with a “Sad” state. In the 

other case, with a high temperature, the PAD had positive 

value in pleasure, and negative values in arousal and 

dominance. The robot with the high temperature 

represented a low pleasure state, with a result of 

“Protected” motion that also corresponded to the state to 

avoid damage inside of the robot system. This state 

causes less robot motion in terms of velocity compared to 

other states, such as “Happy”, and because of lower 

velocity and motion, the robot can balance the 

temperature in all joints, maintaining a safe state waiting 

for other motions.  

Fig. 22 shows the results of the robot in different 

expressive motions after executing the adaptive 

controllers HI-FIS, E-FIS and RGPC. This result shows 
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how the robot responds to different states according to the 

perceptual inputs (human interaction, environment and 

robot measurement), cognitive processes, and adaptive 

controllers. In this figure, the different robot motions are 

showed as resulted of the adaptive control system. These

TABLE V: RESULTS FOR VARIATIONS IN THE ENVIRONMENT PARAMETERS 

Perceptual Inputs Output of FIS and RGPC controllers 

Ds 
(cm) 

T 
(ºC) 

H 
(%) 

B 
(%) 

Penv Aenv Denv Phi Ahi Dhi Pc Ac Dc RMSE 

(rad) 
Robot 
state 

402 25 50 70 5.8 5.4 5.8 0.0 0.0 0.0 5.8 5.4 5.8 0.46 Happy 

408 5 80 10 −2.2 −3.5 −2.7 0.0 0.0 0.0 −2.2 −3.5 −2.7 0.23 Sad 

405 40 10 70 −4.2 5.49 5.43 0.0 0.0 0.0 −4.2 5.49 5.43 0.98 Angry 

402 38 78 10 5.6 −3.5 −2.7 0.0 0.0 0.0 5.6 −3.5 −2.7 1.7 Protected 

TABLE VI: RESULTS FOR VARIATIONS IN THE HUMAN DISTANCE 

Perceptual Inputs Output of FIS and RGPC controllers 

Ds 

(cm) 

T 

(ºC) 

H 

(%) 

B 

(%) 
Penv Aenv Denv Phi Ahi Dhi Pc Ac Dc RMSE 

(rad) 

Velocity 

(RMS) 
Robot 

state 

402 25 50 70 5.8 5.4 5.8 0.0 0.0 0.0 5.8 5.4 5.8 0.46 0.51 Happy 1 

350 25 50 70 5.8 5.4 5.8 2.0 2.0 0.0 6.8 6.4 5.8 0.53 0.59 Happy 2 

180 25 50 70 5.8 5.4 5.8 4.9 4.9 0.0 8.2 7.95 5.8 0.59 0.64 Happy3 

TABLE VII: RESULTS FOR VARIATIONS IN THE ROBOT TEMPERATURE 

Perceptual Inputs Output of FIS and RGPC controllers 

Ds 

(cm) 

T 

(ºC) 
Trobot 

(ºC) 
H 

(%) 

B 

(%) 
Penv Aenv Denv Phi Ahi Dhi Pc Ac Dc RMSE 

(rad) 
Robot 

state 

405 8 10 80 10 −3.7 −5.2 −2.7 0.0 0.0 0.0 −3.7 −5.2 −2.7 0.13 Sad 

405 8 40 80 10 1.7 −5.3 −2.7 0.0 0.0 0.0 1.7 −5.3 −2.7 0.19 Protected 

 

final expressions change with trajectories involving the 

robot’s dynamic information in position and velocity. The 

robot’s states are produced with a variation in robot’s 

parameters to give a different sensation when the robot’s 

adaptive system is activated. In this result, the variation 

produced in the end-effector is shown, which modified 

the robot expression significantly, as well as the other 

robot joints position that express the final state. The 

adaptive controllers allowed to generate robot motions 

with personalized interaction between human, 

environmental, and robot states. Experimental video of 

this work showing the expressive robot motion during the 

human and environmental interaction can be visualized in 

the link 
(1)

. 

VIII. CONCLUSIONS 

In this paper, a novel adaptive control architecture for 

simulation and expression of emotional states in a robot 

arm was developed, determined by perception, cognition 

and emotion expression levels. The adaptive system 

generates PAD values for the robot motion according to 

the environmental, human interaction, and robot current 

states.  

 
(1) https://youtu.be/q1DO4PBSA6M 

 

 

 
 

Figure 22. Expressive robot motions in the real robotic platform 

 

The control architecture is based on adaptive fuzzy 

System and Robust Predictive controllers by optimization 

with Youla parameters. The affective model PAD was 

used to determine perception inputs from the human and 

environment. The human interaction directly affected the 

PAD values and, therefore, the robot’s response via the 

adaptive controllers produces motion states with different 

positions and velocities. With this result, the robot is able 
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to engage with humans in different degrees of motion 

with the same expression or move for other expressive 

motions if the environment or robot parameters are 

modified by the perception level. It indicates that the 

robot can conduct state expressions in a wide range of 

possibilities, according to perceptual inputs, cognitive 

processes, and adaptive controllers. Also, the effects of 

the adaptive cognitive system by fuzzy algorithms and 

predictive controllers influence the result based on the 

affective PAD model, producing different kinds of 

motions. The adaptive parameters in the predictive 

control influence the motion velocity and change the 

robot’s final posture. 

Results showed a suitable performance of the adaptive 

control with variation in the PAD model to represent 

expressive robot states. The proposal allowed us to 

generate motions with more personalized characteristics 

in the robot to facilitate a better interaction between 

robots, humans, and the environment. Due to the 

developed architecture’s modular design, it can be easily 

adapted to other types of robots and sensors. Future work 

will be oriented toward applying the proposed adaptive 

controllers to multi-robot-multi-human environments. 
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