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Abstract—This study aims to find a simple rule to see if a 

freezer door is left open, or if refrigerant is insufficiently 

charged. We devised a comparative experiment to find an 

opportunity where the simple rule is able to replace the 

machine learning approach. In contrast to the previous 

study performed with the machine learning approach, this 

paper has derived more explanatory variables and rules for 

diagnosing the operation faults of a freezer. i) Freezer wall 

temperature is found to be the most sensitive variable for 

diagnosing the door opening. When the open door rule 

based on the freezer wall temperature is applied to the 

actual state, however, only 62.4% of windows are assessed 

as “True”. In other words, there is 37.6% chance of a false 

alarm. ii) We also assume that refrigerant mass is 

proportional to the ratio of accumulated power to power 

factor. However, only 51.5% of windows turn out “True” 

when the insufficient refrigerant rule is applied to the actual 

state. When refrigerant is actually insufficient, there is a 

33% chance that critical false alarms still occur, which can 

harm the credibility of the insufficient refrigerant rule. iii) 

To diagnose if the door is left open by means of using 

machine learning, all three variables (Active Power, 

Laboratory indoor temperature, Refrigerator wall 

temperature) may not be necessary. Only the refrigerator 

wall temperature framed within a 3 minute window appears 

sufficiently credible, rather than the refrigerator wall 

temperature at each time step. iv) To diagnose if the 

refrigerant is insufficiently charged, instead of using the 

three variables, only power related variables including 

active power and power factor would be sufficient for 

simpler monitoring and more accurate assessment.   
 

Index Terms— FDD, fault detection, rule, diagnosis, 

machine learning 

I. INTRODUCTION 

Freezer malfunctions most frequently occur when 
refrigerant leaks and/or when the door is left open by 
mistake. The most frequent freezer malfunctions are 
caused when refrigerant leaks and/or the door is left open 
by mistake. The first of these factors can occur with 
secondhand freezers which are not under proper 
maintenance or attention. The latter can occur with 
almost all freezers. While the first factor causes 
refrigeration to be delayed, the latter causes a sudden 
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temperature rise. Both cases can eventually cause 
unexpected Faults and a subsequent deterioration of the 
content. If the freezer contains temperature-sensitive 
foods and ice, this can result in serious financial loss. 

In the previous study, we developed a freezer 

monitoring system called the Freezer Keeper, as shown in 

Fig. 1. The Freezer Keeper monitors the freezer 

temperature, power consumption and power-related 

variables; such that when it appears to work abnormally, 

alarms are sent to the client before any damage occurs. 

One of the research issues was how to diagnose the 

operation fault as quickly as possible. To address this 

issue, we adopted machine learning algorithms. Since the 

previous work is still under publication [1], a brief 

description of the process and selected machine learning 

algorithms and summary of the results can be found in 

Section 2. 

 

Figure 1. System architecture of the freezer keeper [1]. 

The machine learning algorithms showed an 
outstanding performance in predicting and detecting the 
operation fault [1]. However, only the well-trained 
machine learning model with accurately “labelled” data 
can assure its rated accuracy when the model is actually 
applied in this field. This raises a question concerning 
what would happen if a freezer expert needed long term 
monitored data to make a state judgement for training the 
machine learning model, but it was not actually available 
in this field. Additionally, to ensure a certain degree of 
accuracy when machine learning algorithms are used for 
diagnostics and prediction, a sufficient amount of field 
data must be firstly collected.   
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TABLE I. STATES OF THE FREEZER [1] 

States Description Door State Refrigerant Mass Freezer Temperature 

Door_open 
Regardless of refrigerant mass, the door 
leaves open 

Open door Ignored Ignored 

Lack_rfg 
Insufficient refrigerant, and the door is 

closed 
Closed door 

30g, 40g 

50g, 60g 

Tries to reach 

at -20℃ 

Normal 
Sufficient refrigerant with the door 

closed 
Closed door 70g, 80g, 90g 

Tries to reach 

at -20℃ 

Steady state 
Sufficient refrigerant with the door 
closed 

Closed door 70g, 80g, 90g 
Already reached 

at -20℃ 

Steady_lack_rfg 
Less refrigerant, and the door is closed 

Closed door 
30g, 40g 

50g, 60g 

Already reached 

at -20℃ 

 

This study, therefore, aims to find a simple rule to tell 

if a freezer door is left open, and/or if the refrigerant is 

insufficiently charged. To achieve this, we divided an 

experiment to see whether the simple rule is able to 

replace the machine learning approach. 

 

 

Figure 2. Schematic definition of states [1]. 

II. SUMMARY OF THE PREVIOUS STUDY 

A. Demonstration of Freezer Operation and Data 

Collection 

We analyzed frequent operation faults of freezers and 

then identified five freezer states, as described in Table I. 

Each state is also depicted in Figure 2. To demonstrate 

the five states, refrigerant mass was varied from 30g to 

90g increasing by 10g for each refrigerant condition (7 

conditions in total); The number of bricks varied from 0 

to 28 by 7 bricks for each food content condition (4 

conditions in total); the door was left open for 1-2 hours 

and was closed again (total 2 conditions). A total of 56 

combinations were made in the lab. 

Then, we started with 13 monitoring variables 

including A (Current), P (Active Power), Q (Reactive 

Power), S (Apparent Power), PF (Power factor), T1 

(Central temperature in the refrigerator), T2 (Laboratory 

indoor temperature), T3 (Refrigerant temperature 

entering the evaporator), T4 (Refrigerant temperature 

leaving the evaporator), T5 (Refrigerator wall 

temperature), RFG (Refrigerant mass), M (Number of 

bricks), and D (Door open/closure). 

For each combination, raw data were collected every 

10 seconds. Eventually about 190,000 sets of the 13 

monitoring variables were collected. 

 

 

Figure 3. Regression analysis when door opening (D) is used as the 
control variable [1]. 

B. Machine Learning and Accuracy 

The five machine learning algorithms [2] were applied 

for experiments, KNN (K-Nearest Neighbors) [3], SVM 

(Support Vector Machine) [3], Decision Tree [3], ANN 

(Artificial Neural Network) [3], and Naïve Bayes 

Classification [3]. 

Since the 13 variables may not all be significant, and it 

takes quite a long time to train the machine learning 

model with the full dataset, purging variables was a 

necessary pre-processing step. 

Firstly, we started with a correlation analysis to select 

8 out of the 13 variables. Then we chose the final 6 

variables (P, T2, T5, RFG, M, D) via regression analysis 

(Fig. 3). While RFG (Refrigerant mass), M (Number of 

bricks), and D (Door open/closure) are control variables, 

the rest of the variables represent the freezer response [4]. 

75% of the collected data was used for training the 

model, and the rest of the collected data was used for 

testing the model [5]. 

Because predicted states by machine learning 

algorithms may or may not match actual states, the 

accuracy of each model needs to be calculated to estimate 

how accurately each model predicts. Thus, the accuracy 

was defined as the amount of correctly predicted data out 

of the entire test data. Their accuracy is listed in Table Ⅱ.  

Kernel-based algorithms such as KNN and SVM have 

higher accuracy than others. Naïve Bayes algorithm, 

however, has the lowest accuracy because it does not 

consider independence between data, i.e., Naïve Bayes 

algorithm assumes all data are related, although some 
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variables apparently behave independently from others. 

Decision Tree was not able to suggest clear criteria when 

data values are discrete. 

TABLE II. ACCURACY OF MACHINE LEARNING ALGORITHMS 

ML Algorithms Accuracy 

KNN 99.24% 

SVM 96.21% 

ANN 92.79% 

DT 85.54% 

Naïve Bayes Classification 75.43% 

 

III. EXTRACTING THE RULE TO DIAGNOSE THE 

OPERATION FAULT 

In the previous study, we selected P (Active Power), 

T2 (Laboratory indoor temperature), and T5 (Refrigerator 

wall temperature) as the indicators of freezer states; they 

were chosen by inductive reasoning, rather than an 

analytical deductive approach. 

We, thus, restart the deductive analysis with 13 

variables to figure out simple rules and explanatory 

variables of the rules. 

A. Simple Problem Solving 

Most engineering problems are compound in that 

wherever there are choices of materials, subsystems or 

methods that emphasize one or another property, the 

problem is compound [6]. Since they are only partly 

deductive, deductive problem solving can only be triable 

with some part of the entire problem. 

Even complex real world problems, however, can be 

simplified, if their scope, constraints and criteria are well 

defined. In this study, we focus more on the explicit 

causality to simplify the problem and also to try 

deductive analyses if the freezer door is left open, freezer 

temperature would go up, and if the refrigerant is fully 

charged, freezer compressor would consume more 

electricity to get the refrigerant circulated. 

B. Open Door State 

When the door is left open, indoor air enters the freezer, 

causing the freezer temperatures, such as T1 and T5, to 

start to increase. Regardless of refrigerant mass, it is 

observed that temperature rises show some patterns as 

depicted in Fig. 4. Specifically, T5 increases as time goes 

on while maintaining a certain pattern. By setting the 

monitoring window at each 3 minutes, we derive the 

equation (1). 

 

            (1) 

 

Since equation (1) is closer to a linear regression 

equation, the R
2
 at each ‘a’ value is calculated and listed 

in Table III. After several tests, we found that as long as 

the slope ‘a’ is a positive value, it can be determined that 

the door is left open. When refrigerant mass is over 80g, 

T5 appears to not increase following (1), because a fully 

charged refrigerant is able to keep the current freezer 

temperature for the time being even if the door is left 

open. 

 

Figure 4. T5 per refrigerant mass varying from 30g to 90g. 

TABLE III. SLOPE ‘A’ OF (1) WHEN THE DOOR LEAVES OPEN 

Refrigerant 

mass [g] 

Slope ‘a’ of Equation (1) 

Number of bricks [M] 

M=14  M=7  M=0  

30 3.867 83% 5.304 96% 3.181 77% 

40 3.719 87% 3.934 89% (NA) (NA) 

50 2.196 57% 4.060 89% 3.664 79% 

60 3.659 75% 4.833 90% 5.060 92% 

70 3.990 82% 3.178 88% 2.678 85% 

80 2.422 63% 6.699 66% 3.034 83% 

90 0.183 72% 3.742 61% 0.694 12% 

 

B.  Insufficient Refrigerant State 

Although T5 is a good indicator to diagnose the door 

opening, T5 can vary not only per refrigerant mass, but 

also per other disturbance factors. We, therefore, 

considered another indicator to see if the refrigerant was 

still insufficient. 

TABLE IV. DEFINITION OF POWER VARIABLES 

Signals Description 

S Apparent Electric Power 

P Active Power 

Q Reactive Power 

PF Power Factor 

 

 

Figure 5. The power factor. 

R2 R2 R2 

T5 = a × ln Time + c 
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If refrigerant is fully charged and also sufficiently 

subcooled, the refrigerant does not need to circulate 

between the evaporator and compressor as frequently as it 

should do when the refrigerant is less charged. This 

eventually results in a lower power factor, because there 

is a lower cooling load even at the same apparent power 

(Table Ⅳ and Fig. 5) [7][8]. Therefore, it can be derived 

that refrigerant mass is inversely proportional to the 

power factor. 

Additionally, if refrigerant is fully charged, the 

compressor needs to work harder to “squeeze” more 

refrigerant [9]. Thus, the freezer consumes more power 

compared to when the refrigerant is less charged. When 

the power consumption accumulates over some time, the 

accumulated power becomes more obvious in 

distinguishing between a fully charged refrigerant and a 

lower charged refrigerant. Therefore, it can be derived 

that refrigerant mass is proportional to the accumulated 

power (WP). 

Finally, we arrive at the assumption that refrigerant 

mass is proportional to WP/PF as described in the 

equation (2). 

 

                  (2) 

 

We calculated slope “a” of (2) while monitoring WP 

and PF for each 30 minutes. As depicted in Fig. 6, WP/PF 

shows specific patterns per refrigerant mass. Additionally, 

for each combination of refrigerant mass and the number 

of bricks, slope “a” of (2) was calculated as listed in 

Table Ⅴ. 

 

Eventually we classified slope “a” into three groups: 

 If a < , then the refrigerant is 

insufficiently charged (yellow cells in Table Ⅴ).  

 If  < a < , then although 

refrigerant is insufficiently charged, T1 can still 

arrive at the steady state (blue cells in Table Ⅴ) 

 If a >  then refrigerant is fully charged 

(white cells in Table Ⅴ) 

 

 

Figure 6. WP/PF varying per refrigerant mass. 

 

TABLE I. SLOPE ‘A’ OF  (2) AT EACH COMBINATION OF 

REFRIGERANT MASS AND NUMBER OF BRICKS 

Refrigera

nt mass 
[g] 

Slope ‘a’ of the (2)  

Number of bricks [M] 

M=28 M=14 M=7 M=0 

30 3.597 3.627 3.591 3.494 

40 3.659 3.799 3.745 (NA) 

50 4.357 4.031 4.121 (NA) 

60 4.623 3.926 4.009 4.051 

70 5.174 4.35 4.226 4.118 

80 5.297 4.257 4.276 4.293 

90 4.781 4.363 4.234 4.236 

IV. VERIFICATION OF THE RULES 

A. The Open Door Rule to See if the Door Is Left Open 

or Closed 

To verify the accuracy of the open door rule, we 

divided up the full data into 3 minute windows, because it 

is composed with a series of data acquired for each 3 

minutes. As shown in Table Ⅵ, total 10,904 windows 

were obtained. If someone opens the door at the 

beginning of a 3 min window, and then the door is left 

open until the end of the 3-minute window, the open door 

rule would determine the door is open. Unfortunately, if 

the door is kept closed and someone starts to open it 

during the last time step of a 3-minute window, the door 

open rule will determine the door is closed. In the next 3-

minute window, however, it is likely the open door rule 

would determine that the door is left open. 

When the open door rule is applied to the actual state, 

only 6,783 windows out of 10,904 windows (62.4%) are 

assessed as true, as listed in Table VI. In other words, 

there is a 37.6% chance of a false alarm; even when the 

door is actually left open, the rule makes a judgement that 

the door is “closed” for 92 windows. 

TABLE II.  ACTUAL STATE VS. ASSESSED STATE BY THE OPEN DOOR 

RULE 

Assessed 
by the open door rule 

Actual State 

Door closed Door open 

Door closed 6,250 (True) 92 

Door open 4,029 533 (True) 

 

B. The Insufficient Refrigerant Rule to See if Refrigerant 

is Still Insufficiently Charged 

To verify the accuracy of the insufficient refrigerant 

rule, we divided up the full data with 30 minute windows. 

Although a total of 1,090 windows were obtained, the 

cases when PF is almost zero (i.e., it arrives at the steady 

state) were excluded, because it made WP/PF in (2) 

exceptionally high. Consequently, the insufficient 

refrigerant rule was applied to only 378 windows. 

As described in Table VII, only 195 (=138+48+9) 

windows out of 378 windows (51.5%) turned out “True” 

when the insufficient refrigerant rule is applied. 
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Additionally, when refrigerant is actually insufficiently 

charged, the rule makes a judgement that 62 and 6 

windows are fully and intermediately charged, 

respectively. This means there is a 33% (68/206) chance 

that critical false alarms may harm the credibility of the 

insufficient refrigerant rule. 

TABLE VII. ACTUAL STATE VS. ASSESSED STATE BY THE 

INSUFFICIENT REFRIGERANT RULE 

Assessed 
by the insufficient 

refrigerant rule 

Actual State 

Insufficient 
Refrigerant 

Full 
Refrigerant 

Intermediate 

Insufficient 

Refrigerant 
(R30, R40) 

138 (True) 6 53 

Full Refrigerant 62 48 (True) 51 

Intermediate 6 5 9 (True) 

 

V. CONCULSION 

To supplement the previous study, this paper has 

derived more explanatory variables and rules for 

diagnosing the operation faults of a freezer. The resulting 

open door rule and the insufficient refrigerant rule are 

simple, and they enable a quicker assessment than the 

machine learning approach. However, these rules have a 

higher chance of false alarms than the machine learning 

approach. The detailed prediction performances of the 

two rules are summarized as follows: 

 Freezer wall temperature is found to be the most 

sensitive variable for diagnosing an open door. 

When the open door rule based on the freezer wall 

temperature is applied to the actual state, however, 

only 62.4% of windows are assessed as “True”. In 

other words, there is a 37.6% chance of false 

alarm. 

 We also assume that refrigerant mass is 

proportional to the ratio of accumulated power to 

the power factor. However, only 51.5% of 

windows turn out “True” when the insufficient 

refrigerant rule is applied to the actual state. When 

refrigerant is actually insufficient, there is a 33% 

chance that critical false alarms still occur, which 

can harm the credibility of the insufficient 

refrigerant rule. 

Simply speaking of the prediction performance, 

machine learning algorithms outperform the simple rules. 

This underperformance is attributed to their overly simple 

structure and relationship between variables; thus the 

rules need to be more sharply defined. 

Despite the low performance, the lessons following 

were learned from this experiment of developing simple 

rules for diagnosing the operation faults of a freezer: 

 To diagnose if the door is left open by means of 

using machine learning, all three variables (active 

power, laboratory indoor temperature, refrigerator 

wall temperature) may not be necessary. Only the 

freezer wall temperature framed within 3 minute 

windows appears sufficiently credible, rather than 

the freezer wall temperature at each time step. 

 To diagnose if refrigerant is insufficiently charged, 

only power related variables including active 

power and power factor would be sufficient for 

simpler monitoring, instead of using the three 

variables (active power, laboratory indoor 

temperature, freezer wall temperature). 

As long as a sufficient amount of baseline data is 

available, machine learnings may be an easier method 

than a rule-based method for fault detection, since a 

certain degree of accuracy is ensured, and the effort to 

understand the system dynamics and first principle may 

not be necessary - i.e., they are black box methods. 

However, we have at least learnt that the variables 

selected through the typical pruning method of the 

machine learning process – correlation analysis and 

regression - could be even more selective when a domain 

expert understands system dynamics. For future work, we 

will test the machine algorithms again with the three 

variables chosen for the simple rules, by which the 

monitoring cost of the Freezer Keeper (sensors, loggers 

and etc.) would be downsized if the resulting accuracy is 

satisfactory. 
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