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Abstract—This paper presents a solution in path planning 

for a robotic arm based on the artificial neural network 

(ANN) architecture, particularly a Static (Feedforward) 

Neural Network (SNN). The inputs of the network are the 

sample sets that are obtained from some specific 

requirements of the desired trajectory. After training, the 

outputs of the network are the smooth curves that will be 

used as the reference trajectory for the joints of the 

excavator arm. The capabilities of the designed neural 

network in solving the path planning problems are clearly 

demonstrated through a simulation conducted with a 

complex trajectory for the excavator.  

 

Index Terms—Artificial Neural Network (ANN), Static 

Neural Network, Feedforward Neural Network (FFNN), 

Excavator, Manipulator 

 

I. INTRODUCTION 

As one of the important construction machines, an 

excavator is widely used in various engineering 

construction fields. However, the traditional excavator is 

operated by humans directly, and thus, it cannot be used 

in dangerous construction fields. Therefore, developing 

an unmanned excavator which can work independently or 

can be controlled remotely has recently attracted the 

attention of many scientists and researchers because of its 

advantages [1–3]. In designing and developing an 

excavator that can perform the excavation process 

autonomously, trajectory planning is one of the important 

roles [4].  

The trajectory of the robot arms can be built in both 

joint space and Cartesian space. In the Cartesian space, 

the generated trajectory can meet the geometric 

constraints directly, but it is quite complicated because of 

inverse kinematics [5]. Therefore, most of the desired 

trajectories are planned in the joint space [6–15]. In [6], a 

time-minimum algorithm is used to generate the path for 

m-joint mechanical manipulators based on the 

interpolated technique. The generated trajectory is global 

time-minimum; however, this is an unconstraint 

algorithm. The hybrid algorithms that combine two or 

more optimal requirements are presented in [7–17]. In 

these schemes, besides the time-minimum, some 

additional characteristics are considered, such as energy 
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optimization and jerk optimization. Moreover, these 

topologies also take into account the mechanical 

constraints of the system, i.e., the limitation of the joint 

position, velocity, acceleration, and jerk. 

Recently, the neural network is considered an effective 

way to generate a trajectory for a manipulator robot. In 

[16], a dynamic neural network is used to plan the path in 

an abstract manner. Using a neuron-dynamic system with 

feedback, the scheme can be used to adaptively generate 

complex trajectories. However, the training process for 

this system is quite abstruse. In [17], a neural network is 

used to identify the properties of soil. The output of the 

network will be combined with other factor such as 

bucket volume, reachability, and time efficiency to 

generate the trajectory of the excavator arm. 

This paper proposes a scheme to plan the reference 

trajectory of the excavator arm based on the Feedforward 

Neural Network (FFNN). The principle behind this 

solution is based on the fact that the path planning 

problem can be defined as generating a geometric path 

from an initial to a final point, passing through pre-

defined via-points which are obtained from some specific 

requirements of the desired trajectory. The ability to 

recreate a smooth curve from just a small set of training 

data of FFNN is well suited for this problem. The 

capabilities of the designed neural network in solving the 

path planning problems are clearly demonstrated through 

a simulation conducted with a complex trajectory for the 

excavator arm. 

This paper is organized as follows. In Section 2, the 

dynamic model of the system is introduced. Section 3 

presents the algorithm background of the neural network 

and the proposed solution, and Section 4 shows how to 

design an FFNN and discusses the simulation results. 

Finally, the conclusion is drawn in Section 5. 

II. DYNAMIC MODEL OF THE EXCAVATOR 

The block diagram of the excavator is shown in Fig. 1. 

The system can be considered a subclass of a wheeled 

mobile manipulator with a wheeled mobile robot 

(excavator base) and a mounted multi-degree-of-freedom 

manipulator (excavator arm) [18].  
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Figure 1.  Block diagram of an excavator. 
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      is the vector of measured 

joint angles,  D   denotes the inertia matrix,  C ,    

is the vector of Coriolis and centrifugal forces,  G   is 

the vector of gravitational forces,  B   denotes friction, 

 is the corresponding input matrix, vector 

 
T

1 2 3 4τ    τ    τ    τ  specifies the torque acting on the joint 

shafts, and FL
 denotes the interactive torque between the 

bucket and the environment during the digging operation. 

The equations of      D θ ,C θ,θ ,G θ ,Γ  are given as 

follows [20]: 
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III.  PATH-PLANNING-BASED ANN 

A. Background 

An artificial neural network (ANN) is based on a 

collection of connected nodes called artificial neurons. 

Each connection defines the network topology, and it 

allows the neurons to transmit a signal from one neuron 

to another. The receiving neuron can process the signal(s) 

using the transfer function before passing these processed 

signal(s) to the neurons connected to it. A typical neuron 

with R inputs is shown in Fig. 3. The individual inputs p1, 

p2,…, pR are each weighted by corresponding elements 

w1,1, w1,2,…, w1,R of the weight matrix W (a more detailed 

explanation is presented in Ref. [21]).  

 

Figure 2.  Multiple-input neural network [21]. 

The output a  R of the neural network is calculated as 

follows: 

 1,

1

a f b f b


 
     

 


R

i i

i

w p Wp ,  (2) 

where pi  R is the i
th

 input of the neuron, w1,i  R is the 

weight of the i
th

 input of this neuron, and b  R is the bias 

of the neuron. f() = R  R is the transfer function, and it 

is different for each neural network that solves different 

problems. This function can be chosen among some main 

types of transfer function, such as hyperbolic tangent, 

sigmoid, and linear functions. 

In this paper, we will use the most famous neural 

network topology, FFNN. Its basic structure is shown in 

Fig. 3. 

13

International Journal of Mechanical Engineering and Robotics Research Vol. 8, No. 1, January 2019

© 2019 Int. J. Mech. Eng. Rob. Res



 

Figure 3.  FFNN with two layers [21]. 

In Fig. 3, the superscript denotes the layer, S
i
 is the 

number of neurons in the layer i
th

, and R is the number of 

inputs. A layer whose output is the network output is 

called the output layer. The other layers are called hidden 

layers. The network shown above has an output layer 

(layer 2) and a hidden layer (layer 1). 

B. Problem Description and Proposed Solution 

In an intelligent robotic system, the path planning 

problem is defined as generating a geometric path, which 

can either be in the operating space or the joint space, 

from an initial to a final point, passing through pre-

defined via-points. The simplest situation is when the 

path is to be planned in a static and known environment; 

however, more generally, the path planning problem can 

be formulated for any robotic system subject to kinematic 

constraints in a dynamic and unknown environment [7]. 

For an excavator, during digging operation, in order to 

satisfy the technical and economic requirements 

(mechanical constraints, time – jerk – energy 

optimization, etc.), the path of joints usually go through 

some given points. From these via-points, it needs to be 

calculated to generate a smooth enough trajectory for 

each joint. 

To deal with this problem, the neural network solution 

is used in this paper. The steps in executing the algorithm 

are summarized as follows: 

Step 1: Given the via-points in the operating space, a 

kinematic inversion is applied to get a sequence of via-

points in the joint space. This will be used as a training 

dataset for the neural network. 

Step 2: Design the structure and parameters of the 

neural network. 

Step 3: Train the network accordingly based on the 

training dataset. After this step, we will obtain a neural 

network that can interpolate a trajectory from the via-

points. 

 Step 4: Use the trained network to recreate the 

trajectory to verify the network. 

IV.  SIMULATION AND RESULTS 

A. Network Creation and Training 

The excavator arm includes three joints, i.e., boom, 

stick, and bucket, and the trajectory of each joint is 

generated from one neural network. These networks are 

trained separately, independent of each other, so only one 

training process is considered, and the training process 

for the other joints is the same but with different training 

sample sets. In the simulation, 51 samples for each joint 

are used, with a sampling time of 0.5 s. 

For each joint, a two-layer FFNN with one hidden and 

one output layer is utilized. The transfer function of the 

hidden layer is f1, and that of the output layer is f2: 

  1 ( ) ?
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n n

e e
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where n = 0, 1, 2,…, n N. 

The number of neurons of the output layer is set to 1, 

and the number of neurons of the hidden layer is adjusted 

to obtain the best result. In this paper, we show the 

training results for two cases with 5 and 20 neurons in the 

hidden layer, respectively. The learning rate is set to 

0.00001, and the number of epochs is set to 1000. The 

training method is Levenberg–Marquardt. The time it 

takes to run the simulation is less than 2 min. 

The network structure is shown in Fig. 4. 

 

Figure 4.  Network structure. 

B. Simulation Results 

To verify the reliability of the FFNN in the path 

planning of the excavator arm and the effect of each 

factor to the training results, the simulation is executed 

for two cases: 

- Case 1: The number of samples for each joint is 

51, the sampling time is 0.5 s, the learning rate is 

10
−5

, the epochs are 1000, and the number of 

neurons for the hidden layer are 5. 

- Case 2: The number of samples for each joint is 

51, the sampling time is 0.5 s, the learning rate is 

10
−5

, the epochs are 1000, and the number of 

neurons for the hidden layer are 20. 

The results of the training process are illustrated in 

Figs. 5–8, in which Figs. 5–6 show the results for Case 1 

and Figs. 7–8 for Case 2. Figs. 5a and 7a show the 

training results for the first joint (the boom), Figs. 5b and 

6b show the results for the second joint (the stick), and 

the results for the third joint (the bucket) are shown in 

Figs. 5c and 7c. 

For the first case (five neurons in the hidden layer), it 

can be seen that, for all joints, output matching is not 

good (Fig. 5), with the training value sometimes not fit 

with the sample value. Fig. 6 shows the training result of 

the system in the work space. From the response of each 

neural network for the joints, using forward kinematics, 

the desired trajectories in the Cartesian space are obtained. 

From these, it is easy to plot the trajectory in the work 

space. It can be seen from Figs. 5 and 6 that, as the shape 

of the desired trajectory is complicated (in this case, the 

path changes the direct suddenly), the training data 

14

International Journal of Mechanical Engineering and Robotics Research Vol. 8, No. 1, January 2019

© 2019 Int. J. Mech. Eng. Rob. Res



cannot fit with the sample data in all joints (Fig. 5), which 

makes the error between the generated trajectory and the 

desired one tolerable. 

 
a. The first joint (the boom) 

 
b. The second joint (the stick) 

 
c. The third joint (the bucket) 

Figure 5.  Output matching of three joints. 

 

Figure 6.  The learned and desired trajectories. 

 

The second test is done with 20 neurons in the hidden 

layer. The results are shown in Figs. 7–8. Similar with the 

first case, Fig. 7 shows the output matching of the joints, 

and Fig. 8 shows the trajectory in the work space. Fig. 7 

shows that all training data are the same with the sample, 

which means that the training output of the neural 

network matches perfectly with the training dataset. 

Consequently, the generated trajectory in the work space 

is almost a duplication of the desired one (Fig. 8). In 

comparison with Fig. 6, it is demonstrated clearly that, by 

increasing the number of neurons in the hidden layer, the 

training results can be improved significantly. 

 

 

 
 

a. The first joint (the boom) 

 

 
b. The second joint (the stick) 

 

 
c. The third joint (the bucket) 

 

Figure 7.  Output matching of three joints. 
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Figure 8.  The learned and desired trajectories. 

From the simulation results, we can clearly see that, as 

the number of neurons in the network increases, output 

matching gets better. It means that, by choosing a suitable 

network configuration, the FFNN can generate a smooth 

and exact trajectory for the excavator arm from some 

given via-points in the desired trajectory. 

V.  CONCLUSION 

A neural network methodology for trajectory planning 

of the excavator arm has been described in this paper. 

Firstly, some sampled points in the desired trajectory in 

the joint space are derived from specific requirements. 

These via-points are the training set for the neural 

network. Next, the neural system built using sub-neural 

networks is designed and trained. Finally, the simulation 

test is performed for two cases to verify the effectiveness 

of the proposed system. The simulation results showed 

that, by choosing a suitable number of neurons, the 

presented system can generate a smooth trajectory from 

some via-points with perfect matching. 
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