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Abstract—An important expectation from a mobile robot is 

to be able to navigate in unexplored areas in the presence of 

unknown obstacles. Despite the great deal of work in this 

field, this problem is still a challenge as the planning domain 

is highly complex. This challenge can be seen in the form of 

high-cost solutions, high computational cost or increasing 

rate of failure. In this paper, a fuzzy motion planning 

approach is presented for guiding a nonholonomic mobile 

robot in unknown environments. The fuzzy controller uses 

the readings of the robot’s sensor(s) in terms of total 

travelled distance, distance to the goal and the presence of 

obstacles in the vicinity of the robot; and computes the 

linear and angular velocity of the robot with a pre-defined 

frequency. The proposed method was tested through 

simulation as well as experimental studies on a TurtleBot in 

indoor environments. The simulation and experimental 

studies show the effective performance of the proposed 

approach in terms of solution cost, computational cost and 

failure rate.  

 

Index Terms—motion planning, nonholonomic systems, 

fuzzy logic,  unknown environments 

 

I. INTRODUCTION 

Path planning for a mobile robot is the procedure of 

moving the robot from an initial position to a goal 

configuration inside an environment filled by arbitrary 

shaped obstacles, while avoiding any collision with the 

obstacles as well as the environment boundaries. It has 

been proved that path planning problem is NP-Complete 

[1]. One of the most simplified versions of the motion 

planning problem is planning a collision-free path for a 

robot among an arbitrary number of randomly-shaped 

obstacles, between two collision free configurations of 

the robot. Complexity analysis has shown this instance of 

the problem to be PSPACE-complete [2, 3]. In cases 

where the problem gets more complex by considering the 

physical properties, and actuator limitations of a real 

robot, it is not known if the problem is even decidable 

except for some particular cases [4]. Some of the well-

known conventional motion planning algorithms are cell 

decomposition and visibility roadmaps [5, 6]. These 

algorithms turned out to be computationally expensive 
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and hard to implement in a practical planning setup and 

additional restrictions to the problem are required to use a 

conventional algorithm in a practical complex motion 

planning case [7, 8]. 

In most of the path planning applications, there is no 

prior information about the environment like positions of 

the obstacles and surrounding boundary. This class of 

path planning problems is called sensor-based or online 

path planning which in general mean path planning in 

unknown environment. There are a variety of works done 

in this field resulting in different approaches with their 

specific characteristics, advantages and drawbacks [9-12]. 

In this class of path planning, the motion decisions are 

made simultaneously while the robot moves and obtains 

new data from the environment. High complexity of 

motion planning application domains such as computer 

animation, planning in uncertainty and self-driving 

vehicles, requires intelligent and robust tools and 

methods. In general, a robot can perform well if it can act 

as similar as possible to human behavior. Particularly in 

navigation, following human strategy to maneuver 

unknown obstacles and still finding the shortest possible 

distance can lead to an efficient performance.  

The introduction of recent powerful computational 

methods inspired their potential positive application in 

path planning. Methods such as Fuzzy Logic Control [13-

15], Neural Networks [16], Genetic Algorithms [17, 18], 

Ant Colony Optimization [19] and Simulated Annealing 

[20] have all been applied in robot path planning. Khatib 

[21] proposed a potential field method such that artificial 

forces repelled the robot away from the obstacles and 

attracted it towards the goal position. Potential fields 

were also applied for mobile robots in [22], however they 

suffered from falling into local minima and performed 

poorly in narrow regions [23]. Sensor based reactive 

planning methods have been proposed [24-26]. Control 

based methods require formulating accurate models for 

the robot and the environment [27, 28], which can be a 

rather daunting task. One of the best intelligent tools for 

this purpose if fuzzy logic [29].  

Fuzzy logic is a powerful tool to include reasoning in 

the decision-making process of a machine. In this paper, a 

fuzzy logic-based motion planner is proposed which 

receives environmental information from the robot’s 
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sensor(s) and generates linear and angular velocity of the 

robot. The proposed fuzzy controller uses the readings of 

a simple range finder sensor such as LiDar or a 3D 

camera and computes the values of three basic variables 

measuring the distance from the start position, the 

distance to the goal position and the distance to the 

closest obstacle. Next, the linear and angular velocity 

values are calculated according to the output of the fuzzy 

controller. This process repeats with a pre-defined 

frequency until the robot reaches the goal or concludes 

that no feasible path exists. The main advantage of the 

proposed algorithm is the optimality of the generated 

results. Furthermore, the failure rate of the planner is 

significantly reduced due to the input variable selection 

of the fuzzy system. 

The remainder of this paper is organized as follows: 

Section II describes the proposed algorithm and the 

details of the mobile robot and the fuzzy controller. The 

simulation and experimental results are provided in 

section III and finally the work is concluded, and 

potential future work is discussed in section IV. 

II. THE PROPOSED PLANNER 

A. Robot Specifications 

In the framework of this work, a robot explores an 

environment with a finite number of obstacles. The 

environment is a connected subset of 𝑅2 , filled with 

arbitrary shaped obstacles. The environment (Φ)  is 

formed by the union of two subset namely free space 

(Φ𝑓𝑟𝑒𝑒) which is the part of the environment that is not 

occupied by obstacles, and obstacle space (Φ𝑜𝑏𝑠), locates 

the regions filled by obstacles. 

 

Φ = Φfree ∪ Φobs                          (1) 

 

For simplicity, we assume the robot is a disk which 

always knows its current and the goal positions. This 

assumption is close to the actual robot that has been used 

in the experimental studies as presented in section III. 

However, the robot can also be treated as a point. For 

making this consideration, we need to expand the 

environment with the size equal to the radius of the robot, 

as represents in Fig. 1. 

 

 
Figure 1.  Environment expansion. (a) The actual environment. (b) 

Expanding the environment with the size of robot’s radius. (c) 

Expanded environment. 

Based on the performance of the robot sensory system, 

we formulate the robot’s vision as follows. At each 

repetition of the algorithm, the robot can perform a scan 

of its surrounding area to determine the free space. 

Consider the robot is placed at  𝐶 ∈ ℝ2, with rays radially 

emanating from it. For each  𝜃𝑗 ∈ 𝛩, the value 𝜓(𝐶, 𝜃𝑗) is 

the distance to the closest obstacle along the ray from 𝐶 at 

the angle 𝜃𝑗. If there is no visible obstacle in the direction 

of 𝜃𝑗, then 𝜓(𝐶, 𝜃𝑗) is equal to the Range of the sensors. 

 

𝜓(𝐶, 𝜃): ℝ2 × 𝛩1 →  ℝ,                           (2) 

 

where: 

 

    𝛩 = [0, 2𝜋)   and   0 < 𝜓(𝐶, 𝜃) ≤ 𝑅𝑎𝑛𝑔𝑒         (3) 

 

𝜓(𝐶, 𝜃) =  𝑚𝑎𝑥𝜆  {𝜆 × [𝑐𝑜𝑠(𝜃𝑗) , 𝑠𝑖𝑛(𝜃𝑗)] T  }           (4) 

 

such that: 

 

  0 < 𝜆 ≤ 𝑅𝑎𝑛𝑔𝑒   and    [𝐶 + 𝜓(𝐶, 𝜃𝑗) ] ∈ Φfree   (5) 

 

Fig. 2 illustrates the performance of the sensory system. 

The environmental scan process is evoked frequently 

with a predefined frequency. Each time the robot scans 

the environment, the distance to the surrounding 

obstacles is measured. Further, the distance of the robot 

to the initial and final positions is measure. In Fig. 2a, the 

robot scans its surrounding environment completely. The 

value of 𝜓(𝐶, 𝜃) is plotted for all possible amounts of 𝜃 

in Fig. 3b, while in Fig. 3c, a difference function is used 

to point out the visible vertices of the obstacles. 

 

 
Figure 2.  The performance of the sensory system. (a) A complete 360o 

scan of the surrounding environment. (b) The value of 𝝍(𝑪, 𝜽) for 

different angles. (c) By subtracting the values of 𝝍(𝑪, 𝜽) for any two 
adjacent angles, obstacles vertices are identified by sharp peaks which 

are shown by red circles. 

B. Fuzzy Controller 

As mentioned before, the main idea of the proposed 

approach is to guide the robot to choose the proper linear 

and angular velocities. A fuzzy controller was designed to 

check the readings of the sensor(s) and act accordingly. 

As the robot starts to move, the controller initiates the 

environment scan process with a given frequency, 

receives the reading from sensor(s) and calculates the 

value of three fuzzy variables including 𝐷𝐺 , 𝐷𝑆, and 𝐷𝑜𝑏𝑠. 

The first fuzzy variable (𝐷𝐺)  is the robot’s current 

distance to the goal. This part of the controller forces the 

robot to move closer to the goal continuously. This 

variable can be formulated as follows. Note that the value 

is normalized using the diagonal of the environment, 𝛿. 

𝐷{𝐴, 𝐵} is the Euclidean distance between points 𝐴 and 𝐵. 
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𝐷𝐺 =
1

𝛿
𝐷{𝐶, 𝐺} =

1

𝛿
√(𝑥𝑐 − 𝑥𝑔)2 + (𝑦𝑐 − 𝑦𝑔)2           (6) 

𝐷𝐺 ∈ [0, 1]                                   (7) 

Three linguistic variables are defined for  𝐷𝑁𝐺  

including “Close”, “Far”, and “Normal”. As much as 𝐷𝐺  

gets closer to zero, the robot gets closer to the final 

position.  

Next element of the controller guides the robot to 

move farther from the start position continuously by 

calculating the robot’s distance to the start position as 

follows. Again, this value is normalized using the 

maximum reading range of the sensor(s), 𝑅𝑎𝑛𝑔𝑒. 

 

𝐷𝑆 =
1

𝛿
𝐷{𝐶, 𝑆} =

1

𝛿
√(𝑥𝑐 − 𝑥𝑠)2 + (𝑦𝑐 − 𝑦𝑠)2       (8) 

 

𝐷𝑆 ∈ [0, 1]                                 (9) 

 

Three linguistic values are considered for this variable 

including “Close”, “Far”, and “Normal”.  

The last element of the controller guides the robot to 

avoid surrounding obstacles. Based on the readings of the 

sensor(s), the distance to the closest obstacle, 𝐷𝑜𝑏𝑠 , is 

calculated as shown in Fig. 2(a). 

 

𝐷𝑜𝑏𝑠 = (
1

𝑅𝑎𝑛𝑔𝑒
)min

𝜃
𝐷{𝑟𝑜𝑏𝑜𝑡, 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒}         (10) 

 

𝐷𝑜𝑏𝑠 ∈ [0, 1]                                 (11) 

 

Three linguistic values are considered for this variable 

including “Close”, “Far”, and “Normal”. The 

membership functions of these variables are presented in 

Fig. 3. All three normalized input variables range from 

zero to one and have the same type of membership 

functions with similar parameters. 

  

 

Figure 3.  The corresponding membership functions to the input 

variables. 

The output fuzzy variables include the linear velocity, 

𝑣(
𝑚

sec
), and the angular velocity, 𝜔(

𝑑𝑒𝑔

sec
), of the robot. The 

linear velocity unit is meters per second and it is bounded 

to one meters per second. The angular velocity unit is 

degrees per second and is bounded to 90° per second. 

This restrictions on 𝑣  and 𝜔  are optional and does not 

affect the performance of the planner. The membership 

functions of the output variables are shown in Figure 4.  

Again, similar membership functions have been used. 

All of the input and output variables have Gaussian 

membership functions with the following details: 

𝑓(𝑥, 𝜎, 𝑐) = 𝑒
−(𝑥−𝑐)2

2𝜎2                           (12) 

 

The value of 𝜎 is set to be 0.1677 for all functions and 

the value of 𝑐 depends on the position of each function. 

The next step is to design the fuzzy rules. Since there 

are three input variables which each can take one of the 

three different options including “Close”, “Normal”, and 

“Far”, there will be 33 = 27 fuzzy rules in the proposed 

system as presented in Table I. These rules have been 

crafted based on trial and error. For designing the fuzzy 

rules and membership functions, we tried to avoid using 

other available methods such as genetic algorithm [30] or 

ANFIS [31] to keep the simplicity of the work. 

Furthermore, the results of the proposed method were 

good enough to avoid any further improvement at the 

moment. However, it is possible to investigate the effect 

of using a more structured way for constructing and 

optimizing the proposed fuzzy system. 

 

 
Figure 4.  The corresponding membership functions to the output 

variables. 

The value of 𝜎 is set to be 0.1677 for all functions and 

the value of 𝑐 depends on the position of each function. 

The next step is to design the fuzzy rules. Since there 

are three input variables which each can take one of the 

three different options including “Close”, “Normal”, and 

“Far”, there will be 33 = 27 fuzzy rules in the proposed 

system as presented in Table I. These rules have been 

crafted based on trial and error. For designing the fuzzy 

rules and membership functions, we tried to avoid using 

other available methods such as genetic algorithm [30] or 

ANFIS [31] to keep the simplicity of the work. 

Furthermore, the results of the proposed method were 

good enough to avoid any further improvement at the 

moment. However, it is possible to investigate the effect 

of using a more structured way for constructing and 

optimizing the proposed fuzzy system. 

Figure 5 presents the decision surfaces for the given 

fuzzy logic controller. All possible arrangements of input 

and output variables are considered here to give an 

overall understanding of the behavior of the controller. 

As explained before, the fuzzy planner takes the 

readings of the sensor(s) and calculates three fuzzy 

variables namely, 𝐷𝐺 , 𝐷𝑆, and 𝐷𝑜𝑏𝑠 . These values will be 

fed to the fuzzy system to get the outputs including 𝑣 and 

𝜔 . For instance, if the three input variables are 𝐷𝐺 =
0.8 (𝑚), 𝐷𝑆 = 0.3 (𝑚)  and  𝐷𝑜𝑏𝑠 = 0.5 (𝑚)  then the 

output of the fuzzy controller will be 𝑣 = 0.652 𝑚/𝑠𝑒𝑐 

and 𝜔 = 31.4 𝑑𝑒𝑔/𝑠𝑒𝑐 . An important part of the 
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proposed algorithm is setting the value of the 

environmental scan frequency. 

TABLE I.  DESIGNED FUZZY RULES IN THE PROPOSED 

CONTROLLER. 

# 𝑫𝒈  𝑫𝑺  𝑫𝒐𝒃𝒔 
 𝒗(m/s) 𝝎(deg/s) 

1 Close AND Close AND Close  Low High 

2 Close AND Close AND Normal  Average Average 

3 Close AND Close AND Far  High Average 

4 Close AND Normal AND Close  Low High 

5 Close AND Normal AND Normal  High Low 

6 Close AND Normal AND Far  High Low 

7 Close AND Far AND Close  Low High 

8 Close AND Far AND Normal  High Low 

9 Close AND Far AND Far  High Low 

10 Normal AND Close AND Close  Low High 

11 Normal AND Close AND Normal  Average Average 

12 Normal AND Close AND Far  High Low 

13 Normal AND Normal AND Close  Low High 

14 Normal AND Normal AND Normal  High Average 

15 Normal AND Normal AND Far  High Low 

16 Normal AND Far AND Close  Low High 

17 Normal AND Far AND Normal  Average Low 

18 Normal AND Far AND Far  High Low 

19 Far AND Close AND Close  Low High 

20 Far AND Close AND Normal  High Average 

21 Far AND Close AND Far  High Low 

22 Far AND Normal AND Close  Low High 

23 Far AND Normal AND Normal  High Low 

24 Far AND Normal AND Far  High Low 

25 Far AND Far AND Close  Low High 

26 Far AND Far AND Normal  High Low 

27 Far AND Far AND Far  High Low 

 

Figure 5.  The corresponding decision surfaces of the proposed fuzzy 
controller. In each plot, the value of the missing input variable is set to 

0.5. 

Having the planner to evoke the scan process more 

often increases the quality of the solution but also 

increases the runtime of the planner. On the other hand, 

setting a low frequency for the scan process reduces the 

quality of the solution but makes the planning 

computationally cheap. After a careful implementation, 

we decided to set the scan frequency to 𝑓𝑠𝑐𝑎𝑛 = 0.5 (sec). 

It means every 0.5 second; the planner evokes the scan 

process and changes the linear and angular velocity if it is 

recommended by the fuzzy system. 

III. RESULTS AND DISCUSSION 

In this section, the results of the simulation and 

experimental studies are presented.  

A. Simulation Results 

The planner was simulated in MatLab R2017a to 

perform in three different planning scenarios as presented 

in Fig. 6. All simulations were run on a desktop with a 

3.40-GHz Intel Core i7 processor with 32 GB of memory. 

Only the initial and final positions were given to the 

planner. The planner managed to guide the robot through 

safe and efficient trajectories without any failure or 

collision with the obstacles.      

 
(a) 

 
(b) 

 
(c) 

 

Figure 6.  An instance of the simulation results in three 2D indoor 

environments including (a) an office like environment with 6 separate 
obstacles, (b) a maze and (c) an environment with four obstacles which 

form a narrow passage. The dimension of all three problems was set to 

25x50. Initial and final positions of the robot are marked by yellow and 
green, respectively. 

The numerical results of the simulations are presented 

in Table II in terms of solution cost, computational cost, 

failure rate and the optimality. Solution cost is calculated 

as the total distance travelled by the robot, computational 

cost is the total time used for running the fuzzy controller 

without including the pure navigation time. Failure is 

when the robot is not able to reach the goal or conclude 

that there is no solution. Finally, optimality percentage 

was calculated using the optimal path generated by 

offline visibility graph approach [32]. 

TABLE II.  NUMERICAL RESULTS OF THE SIMULATIONS IN THREE 

TEST PROBLEMS. 

Problem 
Solution 

Cost (m) 

Computation 

Cost (sec) 

Failure 

Rate (%) 

Optimality 

(%) 

Office 79.13 14.57 0 91.04 

Maze 108.34 16.80 0 93.29 

Narrow 72.63 15.32 0 93.20 
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The failure rates are entirely zero while the optimality 

is above 90%. Specially in the office example, the level 

of optimality and failure rate is important since there are 

different corridors which may not end up to the desired 

position. 

B. Experimental Results 

To test the planner on a real robot, two different 

experiments was conducted on a Turtlebot2 with an Asus 

Xtion Pro Live camera, and an onboard computer with a 

2.60-GHz Intel Core i5 processor with 8 GB of memory, 

as presented in Fig. 7, in two different planning problems 

as shown in Fig. 8. And Table III. 

 

 
                 (a)                                                       (b) 

Figure 7.  The robotic system used in the experimental studies. (a) A 
TurtleBot2 with an Asus Xtion Pro Live camera, and an onboard 

computer with a 2.60-GHz Intel Core i5 processor with 8 GB of 

memory and (b) The Asus Xtion Po Live camera used for 
environmental scan and obstacle avoidance. 

 
                             (a)                                                         (b)         

Figure 8.  (Top images) Two setups for the experimental studies with 

the results of the proposed planner. (Bottom images) Using multiple 
exposure images, the position of the robot is shown over time. (a) A 

scattered environment with six different obstacles in random positions, 

and (b) A maze where the robot should navigate throughout the maze in 

order to reach the final position. The environment is a 4.03𝑚 × 3.78𝑚 
polygon. 

First, the robot is moving in a 2D bounded 

environment with six randomly scattered obstacles. 

Second, the robot is trapped in a maze and should travel 

the entire maze in order to reach the desired position. 

This is even more challenging as the robot gets lost in the 

maze for a few seconds and has to come back to the 

entrance of the maze and change the course of motion to 

reach the goal. 

 

 

TABLE III.  NUMERICAL ANALYSIS OF THE EXPERIMENTAL 

STUDIES. 

Measure 
Setup 

Scattered Maze 

Path Length (m) 8.16 16.29 

Runtime (sec) 3.22 5.73 

𝑣𝑚𝑎𝑥 (m/sec) 0.93 0.88 

𝑣𝑚𝑖𝑛 (m/sec) 0.37 0.00 

𝜔𝑚𝑎𝑥 (deg/sec) 82.17 90.00 

𝜔𝑚𝑖𝑛 (deg/sec) 0.00 0.00 

𝐷𝑚𝑖𝑛 (m) 0.15 0.08 

Fig. 9 shows the effect of each individual input 

variables on the linear and angular velocity of the robot. 

For examples, as the robot gets closer to an obstacle, the 

linear velocity decreases to avoid collision while the 

angular velocity increases so the robot can maneuver 

around the obstacle.  

 
Figure 9.  The effect of individual fuzzy input variables on the linear 

and angular velocity of the robot. For each graph, the value of other two 

input variables is set to 0.5. 

IV. CONCLUSION 

In this paper, a fuzzy logic-based motion planner is 

presented which controls a nonholonomic mobile robot in 

unknown environments. The fuzzy planner uses the 

readings of the robot’s sensory system and calculates 

three fuzzy variables hoping to move the robot closer to 

the final position, farther from the initial position and 

away from the surrounding obstacles. The outputs of this 

fuzzy system are the linear and angular velocities of the 

robot and will be used to adjust the motion speed and 

direction.  

Several simulation and experimental studies have been 

implemented to test the performance of the proposed 

planner in different typical navigation problems. The 

planner generates safe and stable results with low 

computational requirements while the failure rate is zero 

and the optimality rate is more than 90%. Implementing 

the proposed work on a TurtleBot shows the applicability 

of the planner in real implementations. 

This work can be further improved by implementing 

more deterministic tools for designing the elements of the 

fuzzy controller. It can also be studied to see if using an 

optimization technique for optimizing the fuzzy 

membership functions and fuzzy rules has a notable 

effect on the results. 
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