
Fuzzy Motion Planning for Nonholonomic

Mobile Robot Navigation in Unknown Indoor

Environments

Weria Khaksar, Md Zia Uddin, and Jim Torresen
Robotics and Intelligent Systems Group,

Department of Informatics, University of Oslo, Oslo, Norway

Email: {weriak, mdzu, jimtoer}@ifi.uio.no

Abstract—An important expectation from a mobile robot is

to be able to navigate in unexplored areas in the presence of

unknown obstacles. Despite the great deal of work in this

field, this problem is still a challenge as the planning domain

is highly complex. This challenge can be seen in the form of

high-cost solutions, high computational cost or increasing

rate of failure. In this paper, a fuzzy motion planning

approach is presented for guiding a nonholonomic mobile

robot in unknown environments. The fuzzy controller uses

the readings of the robot’s sensor(s) in terms of total

travelled distance, distance to the goal and the presence of

obstacles in the vicinity of the robot; and computes the

linear and angular velocity of the robot with a pre-defined

frequency. The proposed method was tested through

simulation as well as experimental studies on a TurtleBot in

indoor environments. The simulation and experimental

studies show the effective performance of the proposed

approach in terms of solution cost, computational cost and

failure rate. 

Index Terms—motion planning, nonholonomic systems,

fuzzy logic, unknown environments

I. INTRODUCTION

Path planning for a mobile robot is the procedure of

moving the robot from an initial position to a goal

configuration inside an environment filled by arbitrary

shaped obstacles, while avoiding any collision with the

obstacles as well as the environment boundaries. It has

been proved that path planning problem is NP-Complete

[1]. One of the most simplified versions of the motion

planning problem is planning a collision-free path for a

robot among an arbitrary number of randomly-shaped

obstacles, between two collision free configurations of

the robot. Complexity analysis has shown this instance of

the problem to be PSPACE-complete [2, 3]. In cases

where the problem gets more complex by considering the

physical properties, and actuator limitations of a real

robot, it is not known if the problem is even decidable

except for some particular cases [4]. Some of the well-

known conventional motion planning algorithms are cell

decomposition and visibility roadmaps [5, 6]. These

algorithms turned out to be computationally expensive

Manuscript received April 7, 2018; revised November 1, 2018.

and hard to implement in a practical planning setup and

additional restrictions to the problem are required to use a

conventional algorithm in a practical complex motion

planning case [7, 8].

In most of the path planning applications, there is no

prior information about the environment like positions of

the obstacles and surrounding boundary. This class of

path planning problems is called sensor-based or online

path planning which in general mean path planning in

unknown environment. There are a variety of works done

in this field resulting in different approaches with their

specific characteristics, advantages and drawbacks [9-12].

In this class of path planning, the motion decisions are

made simultaneously while the robot moves and obtains

new data from the environment. High complexity of

motion planning application domains such as computer

animation, planning in uncertainty and self-driving

vehicles, requires intelligent and robust tools and

methods. In general, a robot can perform well if it can act

as similar as possible to human behavior. Particularly in

navigation, following human strategy to maneuver

unknown obstacles and still finding the shortest possible

distance can lead to an efficient performance.

The introduction of recent powerful computational

methods inspired their potential positive application in

path planning. Methods such as Fuzzy Logic Control [13-

15], Neural Networks [16], Genetic Algorithms [17, 18],

Ant Colony Optimization [19] and Simulated Annealing

[20] have all been applied in robot path planning. Khatib

[21] proposed a potential field method such that artificial

forces repelled the robot away from the obstacles and

attracted it towards the goal position. Potential fields

were also applied for mobile robots in [22], however they

suffered from falling into local minima and performed

poorly in narrow regions [23]. Sensor based reactive

planning methods have been proposed [24-26]. Control

based methods require formulating accurate models for

the robot and the environment [27, 28], which can be a

rather daunting task. One of the best intelligent tools for

this purpose if fuzzy logic [29].

Fuzzy logic is a powerful tool to include reasoning in

the decision-making process of a machine. In this paper, a

fuzzy logic-based motion planner is proposed which

receives environmental information from the robot’s

6

International Journal of Mechanical Engineering and Robotics Research Vol. 8, No. 1, January 2019

© 2019 Int. J. Mech. Eng. Rob. Res
doi: 10.18178/ijmerr.8.1.6-11

sensor(s) and generates linear and angular velocity of the

robot. The proposed fuzzy controller uses the readings of

a simple range finder sensor such as LiDar or a 3D

camera and computes the values of three basic variables

measuring the distance from the start position, the

distance to the goal position and the distance to the

closest obstacle. Next, the linear and angular velocity

values are calculated according to the output of the fuzzy

controller. This process repeats with a pre-defined

frequency until the robot reaches the goal or concludes

that no feasible path exists. The main advantage of the

proposed algorithm is the optimality of the generated

results. Furthermore, the failure rate of the planner is

significantly reduced due to the input variable selection

of the fuzzy system.

The remainder of this paper is organized as follows:

Section II describes the proposed algorithm and the

details of the mobile robot and the fuzzy controller. The

simulation and experimental results are provided in

section III and finally the work is concluded, and

potential future work is discussed in section IV.

II. THE PROPOSED PLANNER

A. Robot Specifications

In the framework of this work, a robot explores an

environment with a finite number of obstacles. The

environment is a connected subset of 𝑅2 , filled with

arbitrary shaped obstacles. The environment (Φ) is

formed by the union of two subset namely free space

(Φ𝑓𝑟𝑒𝑒) which is the part of the environment that is not

occupied by obstacles, and obstacle space (Φ𝑜𝑏𝑠), locates

the regions filled by obstacles.

Φ = Φfree ∪ Φobs (1)

For simplicity, we assume the robot is a disk which

always knows its current and the goal positions. This

assumption is close to the actual robot that has been used

in the experimental studies as presented in section III.

However, the robot can also be treated as a point. For

making this consideration, we need to expand the

environment with the size equal to the radius of the robot,

as represents in Fig. 1.

Figure 1. Environment expansion. (a) The actual environment. (b)

Expanding the environment with the size of robot’s radius. (c)

Expanded environment.

Based on the performance of the robot sensory system,

we formulate the robot’s vision as follows. At each

repetition of the algorithm, the robot can perform a scan

of its surrounding area to determine the free space.

Consider the robot is placed at 𝐶 ∈ ℝ2, with rays radially

emanating from it. For each 𝜃𝑗 ∈ 𝛩, the value 𝜓(𝐶, 𝜃𝑗) is

the distance to the closest obstacle along the ray from 𝐶 at

the angle 𝜃𝑗. If there is no visible obstacle in the direction

of 𝜃𝑗, then 𝜓(𝐶, 𝜃𝑗) is equal to the Range of the sensors.

𝜓(𝐶, 𝜃): ℝ2 × 𝛩1 → ℝ, (2)

where:

 𝛩 = [0, 2𝜋) and 0 < 𝜓(𝐶, 𝜃) ≤ 𝑅𝑎𝑛𝑔𝑒 (3)

𝜓(𝐶, 𝜃) = 𝑚𝑎𝑥𝜆 {𝜆 × [𝑐𝑜𝑠(𝜃𝑗) , 𝑠𝑖𝑛(𝜃𝑗)] T } (4)

such that:

 0 < 𝜆 ≤ 𝑅𝑎𝑛𝑔𝑒 and [𝐶 + 𝜓(𝐶, 𝜃𝑗)] ∈ Φfree (5)

Fig. 2 illustrates the performance of the sensory system.

The environmental scan process is evoked frequently

with a predefined frequency. Each time the robot scans

the environment, the distance to the surrounding

obstacles is measured. Further, the distance of the robot

to the initial and final positions is measure. In Fig. 2a, the

robot scans its surrounding environment completely. The

value of 𝜓(𝐶, 𝜃) is plotted for all possible amounts of 𝜃

in Fig. 3b, while in Fig. 3c, a difference function is used

to point out the visible vertices of the obstacles.

Figure 2. The performance of the sensory system. (a) A complete 360o

scan of the surrounding environment. (b) The value of 𝝍(𝑪, 𝜽) for

different angles. (c) By subtracting the values of 𝝍(𝑪, 𝜽) for any two
adjacent angles, obstacles vertices are identified by sharp peaks which

are shown by red circles.

B. Fuzzy Controller

As mentioned before, the main idea of the proposed

approach is to guide the robot to choose the proper linear

and angular velocities. A fuzzy controller was designed to

check the readings of the sensor(s) and act accordingly.

As the robot starts to move, the controller initiates the

environment scan process with a given frequency,

receives the reading from sensor(s) and calculates the

value of three fuzzy variables including 𝐷𝐺 , 𝐷𝑆, and 𝐷𝑜𝑏𝑠.

The first fuzzy variable (𝐷𝐺) is the robot’s current

distance to the goal. This part of the controller forces the

robot to move closer to the goal continuously. This

variable can be formulated as follows. Note that the value

is normalized using the diagonal of the environment, 𝛿.

𝐷{𝐴, 𝐵} is the Euclidean distance between points 𝐴 and 𝐵.

7

International Journal of Mechanical Engineering and Robotics Research Vol. 8, No. 1, January 2019

© 2019 Int. J. Mech. Eng. Rob. Res

𝐷𝐺 =
1

𝛿
𝐷{𝐶, 𝐺} =

1

𝛿
√(𝑥𝑐 − 𝑥𝑔)2 + (𝑦𝑐 − 𝑦𝑔)2 (6)

𝐷𝐺 ∈ [0, 1] (7)

Three linguistic variables are defined for 𝐷𝑁𝐺

including “Close”, “Far”, and “Normal”. As much as 𝐷𝐺

gets closer to zero, the robot gets closer to the final

position.

Next element of the controller guides the robot to

move farther from the start position continuously by

calculating the robot’s distance to the start position as

follows. Again, this value is normalized using the

maximum reading range of the sensor(s), 𝑅𝑎𝑛𝑔𝑒.

𝐷𝑆 =
1

𝛿
𝐷{𝐶, 𝑆} =

1

𝛿
√(𝑥𝑐 − 𝑥𝑠)2 + (𝑦𝑐 − 𝑦𝑠)2 (8)

𝐷𝑆 ∈ [0, 1] (9)

Three linguistic values are considered for this variable

including “Close”, “Far”, and “Normal”.

The last element of the controller guides the robot to

avoid surrounding obstacles. Based on the readings of the

sensor(s), the distance to the closest obstacle, 𝐷𝑜𝑏𝑠 , is

calculated as shown in Fig. 2(a).

𝐷𝑜𝑏𝑠 = (
1

𝑅𝑎𝑛𝑔𝑒
)min

𝜃
𝐷{𝑟𝑜𝑏𝑜𝑡, 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒} (10)

𝐷𝑜𝑏𝑠 ∈ [0, 1] (11)

Three linguistic values are considered for this variable

including “Close”, “Far”, and “Normal”. The

membership functions of these variables are presented in

Fig. 3. All three normalized input variables range from

zero to one and have the same type of membership

functions with similar parameters.

Figure 3. The corresponding membership functions to the input

variables.

The output fuzzy variables include the linear velocity,

𝑣(
𝑚

sec
), and the angular velocity, 𝜔(

𝑑𝑒𝑔

sec
), of the robot. The

linear velocity unit is meters per second and it is bounded

to one meters per second. The angular velocity unit is

degrees per second and is bounded to 90° per second.

This restrictions on 𝑣 and 𝜔 are optional and does not

affect the performance of the planner. The membership

functions of the output variables are shown in Figure 4.

Again, similar membership functions have been used.

All of the input and output variables have Gaussian

membership functions with the following details:

𝑓(𝑥, 𝜎, 𝑐) = 𝑒
−(𝑥−𝑐)2

2𝜎2 (12)

The value of 𝜎 is set to be 0.1677 for all functions and

the value of 𝑐 depends on the position of each function.

The next step is to design the fuzzy rules. Since there

are three input variables which each can take one of the

three different options including “Close”, “Normal”, and

“Far”, there will be 33 = 27 fuzzy rules in the proposed

system as presented in Table I. These rules have been

crafted based on trial and error. For designing the fuzzy

rules and membership functions, we tried to avoid using

other available methods such as genetic algorithm [30] or

ANFIS [31] to keep the simplicity of the work.

Furthermore, the results of the proposed method were

good enough to avoid any further improvement at the

moment. However, it is possible to investigate the effect

of using a more structured way for constructing and

optimizing the proposed fuzzy system.

Figure 4. The corresponding membership functions to the output

variables.

The value of 𝜎 is set to be 0.1677 for all functions and

the value of 𝑐 depends on the position of each function.

The next step is to design the fuzzy rules. Since there

are three input variables which each can take one of the

three different options including “Close”, “Normal”, and

“Far”, there will be 33 = 27 fuzzy rules in the proposed

system as presented in Table I. These rules have been

crafted based on trial and error. For designing the fuzzy

rules and membership functions, we tried to avoid using

other available methods such as genetic algorithm [30] or

ANFIS [31] to keep the simplicity of the work.

Furthermore, the results of the proposed method were

good enough to avoid any further improvement at the

moment. However, it is possible to investigate the effect

of using a more structured way for constructing and

optimizing the proposed fuzzy system.

Figure 5 presents the decision surfaces for the given

fuzzy logic controller. All possible arrangements of input

and output variables are considered here to give an

overall understanding of the behavior of the controller.

As explained before, the fuzzy planner takes the

readings of the sensor(s) and calculates three fuzzy

variables namely, 𝐷𝐺 , 𝐷𝑆, and 𝐷𝑜𝑏𝑠 . These values will be

fed to the fuzzy system to get the outputs including 𝑣 and

𝜔 . For instance, if the three input variables are 𝐷𝐺 =
0.8 (𝑚), 𝐷𝑆 = 0.3 (𝑚) and 𝐷𝑜𝑏𝑠 = 0.5 (𝑚) then the

output of the fuzzy controller will be 𝑣 = 0.652 𝑚/𝑠𝑒𝑐

and 𝜔 = 31.4 𝑑𝑒𝑔/𝑠𝑒𝑐 . An important part of the

8

International Journal of Mechanical Engineering and Robotics Research Vol. 8, No. 1, January 2019

© 2019 Int. J. Mech. Eng. Rob. Res

proposed algorithm is setting the value of the

environmental scan frequency.

TABLE I. DESIGNED FUZZY RULES IN THE PROPOSED

CONTROLLER.

𝑫𝒈 𝑫𝑺 𝑫𝒐𝒃𝒔
 𝒗(m/s) 𝝎(deg/s)

1 Close AND Close AND Close Low High

2 Close AND Close AND Normal Average Average

3 Close AND Close AND Far High Average

4 Close AND Normal AND Close Low High

5 Close AND Normal AND Normal High Low

6 Close AND Normal AND Far High Low

7 Close AND Far AND Close Low High

8 Close AND Far AND Normal High Low

9 Close AND Far AND Far High Low

10 Normal AND Close AND Close Low High

11 Normal AND Close AND Normal Average Average

12 Normal AND Close AND Far High Low

13 Normal AND Normal AND Close Low High

14 Normal AND Normal AND Normal High Average

15 Normal AND Normal AND Far High Low

16 Normal AND Far AND Close Low High

17 Normal AND Far AND Normal Average Low

18 Normal AND Far AND Far High Low

19 Far AND Close AND Close Low High

20 Far AND Close AND Normal High Average

21 Far AND Close AND Far High Low

22 Far AND Normal AND Close Low High

23 Far AND Normal AND Normal High Low

24 Far AND Normal AND Far High Low

25 Far AND Far AND Close Low High

26 Far AND Far AND Normal High Low

27 Far AND Far AND Far High Low

Figure 5. The corresponding decision surfaces of the proposed fuzzy
controller. In each plot, the value of the missing input variable is set to

0.5.

Having the planner to evoke the scan process more

often increases the quality of the solution but also

increases the runtime of the planner. On the other hand,

setting a low frequency for the scan process reduces the

quality of the solution but makes the planning

computationally cheap. After a careful implementation,

we decided to set the scan frequency to 𝑓𝑠𝑐𝑎𝑛 = 0.5 (sec).

It means every 0.5 second; the planner evokes the scan

process and changes the linear and angular velocity if it is

recommended by the fuzzy system.

III. RESULTS AND DISCUSSION

In this section, the results of the simulation and

experimental studies are presented.

A. Simulation Results

The planner was simulated in MatLab R2017a to

perform in three different planning scenarios as presented

in Fig. 6. All simulations were run on a desktop with a

3.40-GHz Intel Core i7 processor with 32 GB of memory.

Only the initial and final positions were given to the

planner. The planner managed to guide the robot through

safe and efficient trajectories without any failure or

collision with the obstacles.

(a)

(b)

(c)

Figure 6. An instance of the simulation results in three 2D indoor

environments including (a) an office like environment with 6 separate
obstacles, (b) a maze and (c) an environment with four obstacles which

form a narrow passage. The dimension of all three problems was set to

25x50. Initial and final positions of the robot are marked by yellow and
green, respectively.

The numerical results of the simulations are presented

in Table II in terms of solution cost, computational cost,

failure rate and the optimality. Solution cost is calculated

as the total distance travelled by the robot, computational

cost is the total time used for running the fuzzy controller

without including the pure navigation time. Failure is

when the robot is not able to reach the goal or conclude

that there is no solution. Finally, optimality percentage

was calculated using the optimal path generated by

offline visibility graph approach [32].

TABLE II. NUMERICAL RESULTS OF THE SIMULATIONS IN THREE

TEST PROBLEMS.

Problem
Solution

Cost (m)

Computation

Cost (sec)

Failure

Rate (%)

Optimality

(%)

Office 79.13 14.57 0 91.04

Maze 108.34 16.80 0 93.29

Narrow 72.63 15.32 0 93.20

9

International Journal of Mechanical Engineering and Robotics Research Vol. 8, No. 1, January 2019

© 2019 Int. J. Mech. Eng. Rob. Res

The failure rates are entirely zero while the optimality

is above 90%. Specially in the office example, the level

of optimality and failure rate is important since there are

different corridors which may not end up to the desired

position.

B. Experimental Results

To test the planner on a real robot, two different

experiments was conducted on a Turtlebot2 with an Asus

Xtion Pro Live camera, and an onboard computer with a

2.60-GHz Intel Core i5 processor with 8 GB of memory,

as presented in Fig. 7, in two different planning problems

as shown in Fig. 8. And Table III.

 (a) (b)

Figure 7. The robotic system used in the experimental studies. (a) A
TurtleBot2 with an Asus Xtion Pro Live camera, and an onboard

computer with a 2.60-GHz Intel Core i5 processor with 8 GB of

memory and (b) The Asus Xtion Po Live camera used for
environmental scan and obstacle avoidance.

 (a) (b)

Figure 8. (Top images) Two setups for the experimental studies with

the results of the proposed planner. (Bottom images) Using multiple
exposure images, the position of the robot is shown over time. (a) A

scattered environment with six different obstacles in random positions,

and (b) A maze where the robot should navigate throughout the maze in

order to reach the final position. The environment is a 4.03𝑚 × 3.78𝑚
polygon.

First, the robot is moving in a 2D bounded

environment with six randomly scattered obstacles.

Second, the robot is trapped in a maze and should travel

the entire maze in order to reach the desired position.

This is even more challenging as the robot gets lost in the

maze for a few seconds and has to come back to the

entrance of the maze and change the course of motion to

reach the goal.

TABLE III. NUMERICAL ANALYSIS OF THE EXPERIMENTAL

STUDIES.

Measure
Setup

Scattered Maze

Path Length (m) 8.16 16.29

Runtime (sec) 3.22 5.73

𝑣𝑚𝑎𝑥 (m/sec) 0.93 0.88

𝑣𝑚𝑖𝑛 (m/sec) 0.37 0.00

𝜔𝑚𝑎𝑥 (deg/sec) 82.17 90.00

𝜔𝑚𝑖𝑛 (deg/sec) 0.00 0.00

𝐷𝑚𝑖𝑛 (m) 0.15 0.08

Fig. 9 shows the effect of each individual input

variables on the linear and angular velocity of the robot.

For examples, as the robot gets closer to an obstacle, the

linear velocity decreases to avoid collision while the

angular velocity increases so the robot can maneuver

around the obstacle.

Figure 9. The effect of individual fuzzy input variables on the linear

and angular velocity of the robot. For each graph, the value of other two

input variables is set to 0.5.

IV. CONCLUSION

In this paper, a fuzzy logic-based motion planner is

presented which controls a nonholonomic mobile robot in

unknown environments. The fuzzy planner uses the

readings of the robot’s sensory system and calculates

three fuzzy variables hoping to move the robot closer to

the final position, farther from the initial position and

away from the surrounding obstacles. The outputs of this

fuzzy system are the linear and angular velocities of the

robot and will be used to adjust the motion speed and

direction.

Several simulation and experimental studies have been

implemented to test the performance of the proposed

planner in different typical navigation problems. The

planner generates safe and stable results with low

computational requirements while the failure rate is zero

and the optimality rate is more than 90%. Implementing

the proposed work on a TurtleBot shows the applicability

of the planner in real implementations.

This work can be further improved by implementing

more deterministic tools for designing the elements of the

fuzzy controller. It can also be studied to see if using an

optimization technique for optimizing the fuzzy

membership functions and fuzzy rules has a notable

effect on the results.

10

International Journal of Mechanical Engineering and Robotics Research Vol. 8, No. 1, January 2019

© 2019 Int. J. Mech. Eng. Rob. Res

ACKNOWLEDGMENT

This work is supported by the Research Council of

Norway as a part of the Multimodal Elderly Care Systems

(MECS) project, under grant agreement 247697.

REFERENCES

[1] J. C. Latombe, Robot Motion Planning, Springer Science &

Business Media, 2012.
[2] M. Elbanhawi and M. Simic, “Sampling-based robot motion

planning: A review,” IEEE Access, vol. 2, pp. 56–77, 2014.

[3] J. Canny, “Some algebraic and geometric computations in
PSPACE,” in Proc. the Twentieth Annual ACM Symposium on

Theory of Computing - STOC ’88, 1988.
[4] P. Cheng, G. Pappas, and V. Kumar, “Decidability of motion

planning with differential constraints,” in Proc. 2007 IEEE

International Conference on Robotics and Automation, Apr. 2007.
[5] H. M. Choset, Principles of robot motion: theory, algorithms, and

implementation, 2005 MIT press.
[6] S. M. LaValle, “Planning algorithms,” MIT Press, 2006.

[7] D. Halperin and C. K. Yap, “Combinatorial complexity of
translating a box in polyhedral 3-space,” Computational Geometry,

vol. 9, no. 3, pp. 181–196, Feb. 1998.

[8] S. Hirsch and D. Halperin, “Hybrid motion planning: Coordinating
Two discs moving among polygonal obstacles in the plane,”

Algorithmic Foundations of Robotics V, pp. 239–255, 2004.

[9] J. Ziegler, H. Gattringer, D. Kaserer, and A. Müller, “Automated,
depth sensor based object detection and path planning for robot-

aided 3D scanning,” Mechanisms and Machine Science, pp. 336–

343, July 2017.
[10] J. Minguez, F. Lamiraux, and J. P. Laumond, “Motion planning

and obstacle avoidance,” Springer Handbook of Robotics, pp.

1177–1202, 2016.

[11] H. Wang and S. J. Julier, “Path planning in partially known
environments,” Biomechanics / 752: Robotics, 2012.

[12] M. Cefalo, E. Magrini, and G. Oriolo, “Parallel collision check for

sensor based real-time motion planning,” in Proc. 2017 IEEE
International Conference on Robotics and Automation (ICRA),

May 2017.

[13] H. R. Beom and H. S. Cho, “A sensor-based navigation for a
mobile robot using fuzzy logic and reinforcement learning,” IEEE

Transactions on Systems, Man, and Cybernetics, vol. 25, no. 3, pp.

464–477, Mar. 1995.
[14] H. Martı́nez-Alfaro and S. Gómez-Garcı́a, “Mobile robot path

planning and tracking using simulated annealing and fuzzy logic

control,” Expert Systems with Applications, vol. 15, no. 3–4, pp.
421–429, Oct. 1998.

[15] K. Park and N. Zhang, “Behavior-based autonomous robot

navigation on challenging terrain: A dual fuzzy logic approach,”
in Proc. 2007 IEEE Symposium on Foundations of Computational

Intelligence, Apr. 2007.

[16] D. Janglova, “Neural networks in mobile robot motion,” Cutting
Edge Robotics, July 2005.

[17] F. A. Afsar, M. Arif, and M. Hussain, “Genetic algorithm based

path planning and optimization for autonomous mobile robots
with morphological preprocessing,” in Proc. 2006 IEEE

International Multitopic Conference, Dec. 2006.

[18] Y. R. Hu, S. X. Yang, L. Z. Xu, and M. Q. H. Meng, “A
knowledge based genetic algorithm for path planning in

unstructured mobile robot environments,” in Proc. 2004 IEEE

International Conference on Robotics and Biomimetics.
[19] M. A. P. Garcia, O. Montiel, O. Castillo, R. Sepúlveda, and P.

Melin, “Path planning for autonomous mobile robot navigation

with ant colony optimization and fuzzy cost function evaluation,”
Applied Soft Computing, vol. 9, no. 3, pp. 1102–1110, June 2009.

[20] T. Maekawa, T. Noda, S. Tamura, T. Ozaki, and K. Machida,

“Curvature continuous path generation for autonomous vehicle
using B-spline curves,” Computer-Aided Design, vol. 42, no. 4, pp.

350–359, Apr. 2010.

[21] O. Khatib, “Real-time obstacle avoidance for manipulators and
mobile robots,” The International Journal of Robotics Research,

vol. 5, no. 1, pp. 90–98, Mar. 1986.

[22] P. Nattharith, “Motor schema-based control of mobile robot
navigation,” International Journal of Robotics and Automation,

vol. 31, no. 4, 2016.

[23] Y. Koren and J. Borenstein, “Potential field methods and their
inherent limitations for mobile robot navigation,” in Proc. 1991

IEEE International Conference on Robotics and Automation.

[24] V. Ayala-Ramirez, J. A., R. Lopez-Padilla, and R. E., “An
artificial protection field approach for reactive obstacle avoidance

in mobile robots,” Mobile Robots Navigation, Mar. 2010.

[25] R. Simmons, “The curvature-velocity method for local obstacle
avoidance,” in Proc. IEEE International Conference on Robotics

and Automation.

[26] F. Belkhouche and B. Bendjilali, “Reactive path planning for 3-D
autonomous vehicles,” IEEE Transactions on Control Systems

Technology, 2011.

[27] T. M. Howard and A. Kelly, “Optimal rough terrain trajectory
generation for wheeled mobile robots,” The International Journal

of Robotics Research, vol. 26, no. 2, pp. 141–166, Feb. 2007.

[28] M. Werling, S. Kammel, J. Ziegler, and L. Gröll, “Optimal
trajectories for time-critical street scenarios using discretized

terminal manifolds,” The International Journal of Robotics

Research, vol. 31, no. 3, pp. 346–359, Dec. 2011.
[29] T. Abbas, M. Arif, and W. Ahmed, “Measurement and correction

of systematic odometry errors caused by kinematics imperfections

in mobile robots,” 2006 SICE-ICASE International Joint
Conference, 2006.

[30] R. AlcalÁ, M. J. Gacto, F. Herrera, and J. AlcalÁ-Fdez, “A multi-

objective genetic algorithm for tuning and rule selection to obtain
accurate and compact linguistic fuzzy rule-based systems,”

International Journal of Uncertainty, Fuzziness and Knowledge-

Based Systems, vol. 15, no. 05, pp. 539–557, Oct. 2007.
[31] P. K. Mohanty and D. R. Parhi, “A new intelligent motion

planning for mobile robot navigation using multiple adaptive

neuro-fuzzy inference system,” Applied Mathematics &
Information Sciences, vol. 8, no. 5, pp. 2527–2535, Sep. 2014.

[32] Han-Pang Huang and Shu-Yun Chung, “Dynamic visibility graph
for path planning,” in Proc. 2004 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.

No.04CH37566).

Weria Khaksar received the Ph.D. degree in

industrial engineering from University Putra
Malaysia in 2013. He is currently a Post-Doctoral

Research Fellow with the Department of

Informatics, University of Oslo, Norway. His main
research interests include robotics, AI, and

machine learning with special focus on motion

planning and probabilistic robotics.

Md. Zia Uddin received the Ph.D. degree in

biomedical engineering in 2011. He is currently a
Post-Doctoral Research Fellow with the Robotics

and Intelligent Systems Research Group,

Department of Informatics, University of Oslo,
Norway. He authored or co-authored over 75

research publications, including international

journals, conferences, and book chapters. His
research is mainly focused on computer vision, image processing,

artificial intelligence, and pattern recognition.

Jim Torresen received the Ph.D. degree in
computer science from the Norwegian University of

Science and Technology. He is currently a

Professor of computer science with the University
of Oslo, Norway. His research interests include

nature-inspired computing, adaptive systems,

reconfigurable hardware, and robotics and their use

in complex real-world applications.

11

International Journal of Mechanical Engineering and Robotics Research Vol. 8, No. 1, January 2019

© 2019 Int. J. Mech. Eng. Rob. Res

