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Abstract— One of the biggest challenges in implementing 

assistive companion robots is the ability to navigate around 

obstacles while being visually tethered to a human subject. 

This is further complicated when advanced hardware and 

computation-heavy algorithms such as Light Detection and 

Ranging (LiDAR) modules or Simultaneous Localization 

and Mapping (SLAM) are not readily available. This 

research aims to prove the validity of a robot navigation 

model that relies on multi-sensor fusion of a depth camera, 

proximity sensors array and an active IR Marker tracking 

system, all of which consist of commercial off the shelf 

(COTS) components. Common indoor robot navigation 

solutions rely on prior environmental mapping to be able to 

plot routes beyond obstacles in the immediate vicinity. This 

model differentiates itself by considering the general 

direction of the target person and the mid-range depth 

landscape in addition to the immediate vicinity of the robot. 

To examine its performance, a set of three scenarios were 

created to emulate the testing conditions of several similar 

robot navigation studies presented by existing literature. 

The simulation results show that the implemented 

navigation system can maintain a consistent distance from 

the target while traversing a route that is shorter and less 

impeded by obstructions compared to the benchmark 

studies.  

 

Index Terms— human-robot interaction, human-following, 

indoor navigation, sensor fusion, vision-based 

 

I. INTRODUCTION 

Robotics have become one of the most prolific avenues 
of assistive technologies in recent years, especially for 
augmenting therapeutic sessions [1]–[4] and as part of 
behavioral intervention for children with Autism 
Spectrum Disorder (ASD) [5]–[7]. Companion robots 
such as MATILDA [8] and the IROMEC [9] were 
developed to accompany and follow their users in indoor 
environments. This presents significant implementation 
difficulties considering that reliable localization systems 
such as GPS do not work in indoor areas. As such, there 
are a variety of research work for solutions to indoor 
navigation and human-following, which include a 
combination of utilizing Light Detection and Ranging 
(LiDAR)[10], [11], Radio Frequency Identification 
(RFID) [12], [13], wireless networks [14], vision-based 
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systems [13], [15], [16] and embedded environments[17], 
[18].  

The integration of these technologies can incur high 

costs in the development of any companion robot. This is 

due to factors such as logistics (embedding sensor 

networks throughout the home), computational resources 

(required for Simultaneous Localization and Mapping), 

and availability of advanced hardware such as LiDAR 

[19]. One study aimed to develop a companion robot that 

can accomplish its mission of being both a telepresence 

avatar as well as a human-following activity monitor by 

relying on a combination of commercial off-the-shelf 

(COTS) sensors and components. The Companion Avatar 

for the Mitigation of Injuries (CARMI) [20] was designed 

for autonomous following and monitoring the activity of 

a child with ASD. This is done using a Kinect device and 

the Kinect SDK which is equipped with a neural-network 

that can be trained to identify gestures that lead to injuries 

such as punches, jumps and falls [21]. However, the 

device only has a 60º field of view and can only reliably 

track a person’s body at a distance between 2-3m [22]. 

Therefore, CARMI must consistently center its sensors 

nest (located in its rotating head) on the correct target 

Child (in case of multiple persons in view) and move 

itself so that the Child is within the 2-3m range while 

avoiding obstacles during the approach. A navigation 

system was proposed and implemented for utilizing the 

onboard sensory resources that CARMI possesses. 

The navigation model, inspired by the Potential Field 

Method [23] and Wandering Standpoint Algorithm [24], 

transforms data from a depth camera, an array of 

proximity sensors and an InfraRed (IR) Active Marker 

Tracking system [25] for considering the close and mid-

range visual landscape as well as the relative direction of 

the target before deciding the best motion path for the 

robot. This pathfinding method does not rely on prior 

mapping or external sensory information, effectively 

enabling the implementation of standalone autonomous 

indoor human-following. The navigation system was built 

and integrated into CARMI using Microsoft Robotics  

Developer Studio (MRDS) 4, which is equipped with a 

Visual Simulation Environment (VSE). VSE was used 

extensively for both unit and functional testing. The 

design and development process are explored in the next 

section. 
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The successful construction and functional testing of 

the CARMI navigation system greenlighted further 

extensive testing of its routing performance. This 

research paper documents three simulation scenarios 

from similar robot navigation studies which are recreated 

in VSE for performance comparison with CARMI. The 

aim of this research is to prove that the CARMI 

navigation system can determine a route that is both 

shorter and less obstructed than that of the other 

benchmark robot candidates. The scenario design, 

subsequent simulation and results are also documented in 

the following sections.  

II. NAVIGATION SYSTEM CONCEPT AND DESIGN 

The CARMI robot has two modes of operation: 
telepresence avatar and autonomous companion. At any 
time during its operation, a Carer operator may wirelessly 
connect to the robot and converse with the Child via 
video call using CARMI as the avatar. Otherwise, 
CARMI engages its autonomous companion mode where 
the Kinect’s gesture tracking system is activated to 
monitor the Child’s activities. Any matches to its 
database of injurious gestures will trigger the posting of a 
notification to the carer. The CARMI system interactions 
with both the Child and the carer is visualized in the 
CASE diagram shown in Fig. 1. Only the Carer has direct 

interface access to the CARMI system, while the Child’s 
own actions and presence constitute the sum of its 
interactions with the robot. Thus, CARMI acts as a 
passive companion that has no physical contact with the 
Child. This model also assumes that CARMI is used to 
monitor one Child exclusively, so the presence of other 
children must be subtracted from the system’s tracking 
operation. 

The human-following and obstacle avoidance 

navigation system is constantly in effect throughout both 

modes, effectively ensuring that CARMI consistently 

maintains the Child within the Kinect device’s optimal 

tracking zone as well as the video call interface. During 

the initial process of the robot’s system design, the 

navigation model is integrated with the gesture tracking 

and telepresence subsystems. This can be observed in the 

behavior model derived from the interactions modelling 

process (Fig. 2). Here, each action is distilled into system 

functions that can be further translated into individual 

activity diagrams for software development. During this 

stage, it had been decided that the telepresence and 

gesture tracking subsystems be abstracted from the state 

machine as parallel operations. Both were to be 

developed as detached software components that operate 

separately from the navigation system for continued 

operation in case of failure in any of them.  

 
Figure 1. CARMI general interaction model. 

 
Figure 2. CARMI behavior block diagram. 
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The navigation model consists of two phases: Subject-

Locking and Pathfinding. Subject-Lock utilizes the active 

IR marker tracking system as a redundancy check against 

bodies detected by the Kinect SDK. Through a process of 

linear offset and scaling factor calibration, the view-

spaces from both sensor packages help eliminate false 

detections and miscellaneous persons so only the 

intended Primary Target is being tracked [26]. Once the 

subject is locked-on, the Pathfinding phase is initiated, 

gauging the target distance and deciding whether the 

robot’s position require changing. If an obstruction is 

encountered during the move, the system evaluates the 

short-range proximity (through the input from the 

perimeter sensors array), mid-range landscape (from the 

raw depth camera feed) and the general direction of the 

Child (by referencing the view-space position of the 

Primary Target from the Subject-Locking phase) to 

determine whether to begin maneuvering around the 

obstacle from the left or right side. 

For software development, the model is translated into 

a state machine diagram as shown in Figure 3. Both phases 

of the model are expressed as separate state machine 

loops. The Subject-Locking loop switches between 

‘Subject-Locked’ and ‘Scanning’ states, depending on 

whether the Child is acquired by the tracking system or 

not. Once acquired, the Pathfinding loop activates, 

revolving between ‘Idle’ and ‘Approach’ states to adjust 

CARMI’s distance from the Child so that the Kinect 

device acquires the target within the optimal detection 

zone. If CARMI encounters an obstruction during the 

‘Approach’ state, then the ‘Pathfinding’ state will take 

precedence, making the path decision before performing 

avoidance maneuvers. 

 

Figure 3. Navigation system parallel state machines. 

The navigation system was implemented using 

Microsoft Robotics Developer Studio (MRDS) 4 which 

provided a service-based robot control runtime and a 

Visual Simulation Environment (VSE) for running virtual 

testing scenarios. Several functional test scenarios were 

created based on the type of obstacles CARMI is 

expected to encounter in a typical living room setting, 

which were run for an average amount of 5 data sets. Fig. 

4 shows the scenario results for both single uniform and 

non-uniform obstacles between the robot, decoys and 

Child entities. Uniform obstacles represent objects that 

present identical route qualities regardless whether 

CARMI maneuvers around it from the left or right side. 

Fig. 4(a) showed all 5 test runs where CARMI chose to 

navigate from the left side because the system also 

considered the proximity of the rightmost decoy (which 

was nearer to the robot than the other Child entities). 

Non-uniform obstacles represent most furniture types 

such as sofas and tables which may exceed the field of 

view of the navigation system. Fig. 4(b) indicated a 20% 

chance that CARMI will opt for the longer route despite 

the indeterminate distance it may take to reach the 

obstacle’s left-most edge. That does mean that the 

probability of CARMI picking the shorter edge is 80%.
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Figure 4. Functional testing results for single (a) uniform obstacle and (b) non-uniform obstacle. 

 

 

Figure 5. Functional testing results for single uniform obstruction variations, with (a) leftward-scatter and (b) rightward scatter. 

 

Figure 6. Functional testing results for single non-uniform obstruction variations, with (a) leftward-scatter and (b) rightward scatter. 
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Figure 7. Testing scenario 1 for human-following robot in a crowded area [27]. 

 

 

Figure 8. Testing scenario for multimodal human-following robot [28]. 

 

The subsequent scenarios expand upon both uniform 

and non-uniform obstacle with leftwards and rightwards 

scattered objects (Fig. 5 and Fig. 6). These sets are meant 

to examine the effects of adjusted weights for proximity 

array, mid-range depth map and target position on the 

path decision. As expected, CARMI successfully picked 

the opposite sides of the scattered objects, indicating that 

the navigation system’s tendency to avoid paths that lead 

into further obstructions ahead. 

These findings greenlighted the main purpose of this 

research, which was to create extended scenarios that 

mirror adjacent robot navigation studies and running 

them with the CARMI navigation system for performance 

comparisons. The highlighted studies and their selected 

scenarios are detailed in the following section.  

III. BENCHMARK STUDIES AND SCENARIO DESIGN 

The first benchmark study candidate is the 

development of a human-following robot that was 

capable of navigating through a crowded environment 

carried out in 2016 [27]. The robot was built using the RT 

MiddleWare framework and scans the environment with 

a laser rangefinder (LRF) and a depth camera. The Xtion 

depth camera requires the target to be within 80-120cm 

away for optimal tracking - a similar challenge to the 

Kinect. However, the its body tracking system only locks 

onto the torso feature of the target upon initial pairing and 

can be lost if the target moves out of sight while the robot 

is in motion. 

Fig. 7 shows one of the test scenarios used to test the 

human-following and obstacle avoidance performance of 

the system. From the results path, it appears that the robot 

had taken a route that mirrors the human path to maintain 

the subject within the Xtion optimal zone of detection. 

Another feature to note is that the robot must stop moving 

to re-center itself whenever the target approaches the 

edge of its field of view. Though only graphical data was 

presented in the study, a plot digitizer software was used 

to approximate the length of the robot path which resulted 

to 18.644m.  

The next benchmark candidate study developed a 

multimodal telepresence avatar robot that performs 

human-following using three Kinect depth cameras [28]. 

This system supports following, escorting and leading 

position modes by switching priority between the Kinect 

devices. Obstacle detection and avoidance were done by 

analyzing the raw depth map from the cameras and 

applying an algorithm that treats objects in the vicinity as 

repelling forces, like how this research’s navigation 

model is inspired by the Potential Field Method (PFM). 

Fig. 8 shows the testing scenario for this robot, indicating 

that the follow-path does not mimic the human path 
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because of the optimal detection zone limitation. Plot 

digitization reported that the robot travel path 

approximates to 10.78m. 

The third benchmark research explores the possibility 

of relying on ultrasonic sensors array to navigate around 

an unknown environment with the help of a fuzzy 

controller [29]. The navigation algorithm can attempt 

depth map reconstruction of the immediate vicinity of the 

robot just by fusion of multiple ranging sensors. This 

research was aimed at developing a navigation system 

that can minimize travel time of an autonomous robot 

during exploration of unmapped environments instead of 

human following. However, the scenario used for testing 

it can be adopted as a simulation for the CARMI 

navigation system to examine its following behavior if 

the Child entity were to emulate the travel path in this 

study. The scenario is depicted in Figure 9, showing that 

the robot travel path is estimated at 23.2m. 

 
Figure 9. Testing scenario for Fuzzy Logic based autonomous exploration [29]. 

 

Figure 10. Set of three recreated benchmark simulation scenarios. 

 

 

Figure 11. Scenario 1 benchmark simulation results.     

 

Figure 12. Scenario 2 benchmark simulation results. 
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Figure 13. Scenario 3 benchmark simulation results 

. 

The test scenarios from all three selected studies had 

been recreated using the Visual Simulation Environment 

(VSE) (Fig. 10). These scenarios are used to examine 

how the CARMI navigation system behaves as well as to 

log its motion path for performance comparisons. 

Although the obstacle course can approximately be 

replicated, the motion path of the human subject had to be 

manually generated by a human controller. Thus, a better 

gauge for human-following performance would be to take 

the ratio between the robot and human travel paths. A 

companion robot navigation system can be considered 

efficient if its human-following function can be carried 

out with less total travel compared its target’s. E.g. if a 

robot can maintain a target within escort distance at 70% 

of the human’s total travel, then it is deemed efficient. 

Since the aim of this research is to present a navigation 

system that can achieve human-following around 

obstacles using the least impeded path, CARMI must be 

able to accomplish human-following with a lower ratio 

value than the original benchmark study’s robot. 

IV. SIMULATION RESULTS AND DISCUSSION 

The first scenario consists of four obstructions in a 

6x6m open area. The Child entity was manually driven to 

emulate the path taken by the benchmark study’s human 

target. The recorded paths for both Child and CARMI 

entities are depicted in Fig. 11. Graphical review between 

the benchmark and CARMI paths indicate that both 

robots appear to follow the same general route. This was 

to be expected as both systems were required to visually 

servo their position to maintain a specific distance from 

the target. However, significant differences can be 

garnered from examining the digitized plots, as listed in 

Table . The benchmark robot travelled 12.936m while 

escorting the target which moved 18.645m. The ratio of 

robot-to-human motion for the benchmark was 0.694, 

translating to the benchmark robot moving at 69.4% of its 

target’s total movement. The CARMI navigation system 

managed to achieve a ratio of 0.537, which was much 

lesser than the benchmark competition. CARMI managed 

to maintain consistent tracking and following of the Child 

entity while minimizing its total travel by avoiding 

overshoots and optimizing path selections during obstacle 

avoidance. 

Scenario 2 poses similar navigation challenges as the 

previous setup, involving an arrangement of three objects 

in a 9x2m operation area. Both CARMI and Child entities 

are spawned and driven to emulate the benchmark study 

results’ paths as closely as possible. The simulation paths 

for both are presented in Fig. 12. Comparing both the 

benchmark and the CARMI simulation results reveal 

clear differences in routing, with the CARMI diagram 

showing straight escort behavior. One possible reason for 

this outcome is the difference in robot design. CARMI 

consists of a rotating sensor nest mounted on the actuated 

body, enabling Subject-locking to occur while it is still 

moving. The benchmark robot uses a unibody rover that 

must stop each time it needs to re-center on the target. 

Each time this happens, the distance between both entities 

increase, resulting in a possible overshooting maneuver. 

Another potential source of the behavioral difference is 

the escort algorithm differences. Both benchmark robot 

and CARMI share the same Kinect tracking zone 

limitation during human-following, but the tracking 

solutions differ between the two. CARMI’s path-decider 

service considers obstructions in the immediate proximity, 

mid-range Field of View (FOV) and the relative target 

position before deciding on a direction for maneuvers, 

thus eliminating overshooting motion. The path distance 

ratio between the benchmark and CARMI are 0.78 and 

0.741 respectively (as shown in Table I). There is no 
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significant difference between the ratios, as this may be 

attributed to the relatively compact test area of the 

scenario. Despite this, the CARMI simulation did 

perform slightly more efficiently compared to the 

benchmark robot. 

TABLE I. BENCHMARK STUDIES AND SIMULATION RESULTS DATASETS 

ACCOMPANIED BY ROBOT-TO-HUMAN PATH RATIOS. 

S
ce

n
ar

i

o
 

Digitized 
Path 

Benchmark 
Study 

CARMI 
Simulation 

1 

Human 18.645 32.3 

Robot 12.936 17.33 

Travel Ratio 0.694 0.537 

2 

Human 10.872 23.473 

Robot 8.475 17.401 

Travel Ratio 0.780 0.741 

3 

Human - 21.433 

Robot 23.268 11.410 

Travel Ratio - 0.532 

The third scenario was created by adopting the test 

setup for the benchmark exploration robot. Since this 

benchmark study is not related to human-following, the 

robot path was emulated as a virtual human target for 

CARMI to follow. The purpose for this scenario is to 

cater for possibility of using CARMI as an escort robot to 

follow an exploratory convoy (regardless of human or 

robot). In this case, the explorer (represented by the Child 

entity) roams the environment but CARMI aims to 

conserve system resources by minimizing motion during 

the escort activity. Figure 13 shows the paths taken by both 

entities during simulation. It can be observed that 

CARMI idles while the Child roams within the square 

obstruction areas, before resuming escort at a specific 

distance. CARMI travelled a total of 11.41m while 

escorting the Child which roamed for 11.41m, translating 

to a ratio of 0.532. The navigation system resulted in a 

46.8% conservation of robot motion compared to 

physically tethering it to an explorer. 

V. CONCLUSION AND FUTURE WORK 

The CARMI navigation model presented an effective 

method of indoor companion robot pathfinding by 

examining the close-range perimeter, mid-range depth 

landscape and relative position of the target human. This 

is accomplished through multi-sensor fusion from a 

proximity sensors array, depth camera and an IR active 

marker tracking system. Input from these sources are 

transformed into tendency arrays which are then used to 

decide whether the robot should maneuver around an 

obstacle from the left or right side so that the chosen 

route is both the shortest path as well as one that present 

the least amount of obstructions. This model was 

implemented in Microsoft Robotics Developer Studio 

(MRDS) 4 and tested using the Visual Simulation 

Environment (VSE). The system was tested by running 

simulations in crafted scenarios that are designed to 

induce the intended navigational behavior.  

Upon successful testing, three robot navigation studies 

were selected to adopt their testing scenarios as 

benchmarks for performance comparisons. The three 

extended scenarios were constructed then used to run 

simulations with CARMI, in which the travel path for 

both robot and human entities were logged. Using a plot 

digitizer, the travel paths from the benchmark studies 

were also approximated and recorded. It was decided that 

the ratio of travel distance between the robot and human 

is used as the performance metric, as successful human-

following accomplish by the robot with less travel than its 

target signifies efficiency. In all three scenarios, the 

CARMI navigation system was shown to have visible 

improvements over the benchmark robots. These 

improvements include significantly lower ratio of robot-

human travel and taken directed paths with minimal 

overshooting. The third scenario was used as a case study 

where CARMI operated as an escort which follows an 

explorer entity. The results of the simulation showed that 

CARMI can minimize its movement while the followed 

subject is roaming, ensuring that system resources are 

wasted by directly imitating the subject’s motion as done 

in basic human-following. Overall, the outcome of the 

extended simulation scenarios indicates that the 

navigation system’s goal of dynamic indoor navigation 

without the reliance on mapping and external localization 

solutions is achievable.  

The next step for this navigation system is to be ported 

onto the CARMI hardware for physical modelling and 

scenario testing using an actual living room testing area. 

In addition, the system can also be expanded to allow 

machine learning for real-time adjustment of the tendency 

array weights, shifting the priorities between close and 

mid-range landscapes for pathfinding decisions under 

changing environmental conditions. Lastly, additional 

benchmark scenarios should also be added as simulation 

exercises to help refine the current weight settings for 

increased adaptability. 
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