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Abstract—Agricultural robotics has become increasingly 

popular among agricultural researchers as an alternative to 

the use of human workers in the future. However, the 

operational cost of agricultural mobile robots must be 

competitive with the cost of hiring human workers. In 

agricultural mobile robot navigation, it is difficult to 

determine an optimized sequential route with a minimal 

distance. This paper employs binary particle swarm 

optimization (PSO) and a genetic algorithm (GA) to find the 

shortest routing path for spraying operations in a 

greenhouse. The agricultural robotics routing problem has 

been expressed in terms of the traveling salesman problem, 

which is commonly used in operational research. To solve 

the routing problem, an objective of a total path length was 

measured based on the path computed using a probabilistic 

roadmap path planner. The results indicated the 

performance of the GA was better for solution quality and 

computational time, while binary PSO performed better 

with respect to convergence time. 
 

Index Terms—agriculture, particle swarm, genetic 

algorithm, routing 

 

I. INTRODUCTION 

 

In the past decade, enormous technological changes 

have occurred in the field of agricultural robotics. Tasks 

in agriculture, such as cultivation [1], inspection [2], 

spraying [3], transplanting [4], and selective harvesting [5] 

has been conducted by using mobile robot application. 

Therefore, autonomous navigation for agricultural 

robotics plays an important role in minimizing 

operational costs by reducing the number of agricultural 

workers. 

A 4-wheel autonomous robot was developed in [6] that 

initialized the navigation system by collecting data stored 

in nodes that were distributed in a vineyard. It used a 

predefined way-point route between the grapevine rows 

to evaluate the sensor node location. Then, the recorded 

and georeferenced received signal strength indicator 

(RSSI) was used for analyzing and mapping, to create a 

new route for the mobile robot. This method required the 

consideration of the nodes in the vineyard to determine 

the optimal route with minimum travel distance. 

Optimization methods such as particle swarm 

optimization (PSO) were applied in [7] to solve a 

sugarcane harvester routing problem. That study 

expressed the harvester’s routing problem in terms of the 

traveling salesman problem (TSP) to minimize the 

objective function. The PSO-based algorithm employed 

in [7] demonstrated an improvement in minimizing travel 

distance and maximizing the amount of harvested 

sugarcane. From these previous studies, the application of 

an optimization algorithm to solve agricultural problems 

has been shown as an effective method for minimizing 

operational costs associated with certain agricultural tasks. 

Many algorithms have been applied to the TSP, such 

as binary PSO (binary PSO) [8-9], genetic algorithms 

(GAs) [10-12], tabu searches (TSs) [13-14] and ant 

colony optimization (ACO) [15-16], with binary PSO and 

GAs being the most common for solving the TSP. Binary 

PSO is a modified version of basic PSO that has been 

modified for the TSP, as the basic PSO can only solve 

continuous-type problems, whereas the TSP is a discrete-

type problem. PSO is also known for its rapid 

convergence, and was thus selected for this study. 

Several improvements have been made in the 

application of GAs for the TSP, such as modification of 

the crossover and mutation operator [10-11] and hybrid 

algorithm [12]. Some improvements have resulted in 

increased computational time due to incremental 

increases in computational complexity. Despite all the 

improvements that has been made, the basic GA with a 

simple crossover is sufficient to solve the TSP problem 

with a single objective. The high-quality solutions 

obtained with GAs encourage researchers to apply them 

to many optimization problems. 

This paper presents the application of binary PSO and 

a GA to solve the agricultural mobile robot routing 

problem. They are used to minimize the objective 

function that represents the total distance of the route. 

The difference between this study and previous 

applications to the TSP is that the directed graph 

representation is replaced by real routes generated by a 

probabilistic roadmap. The performance of each 

optimization algorithm was compared based on 

convergence time, solution quality, and computational 

time. 
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II. MATERIALS AND METHODS 

A. Problem Overview 

In agriculture, fungicide spraying is necessary to 

preserve the health of plants, and the mobile robot must 

travel to the selected crop with a minimum travel cost. 

Typically, the mobile robot travels based on the crop 

rows. However, there are some agricultural environments 

that divide the row into several different sections to 

identify shortcuts for the mobile robot path. Fig. 1 depicts 

the use of row division to account for shortcuts. 

 

 
Figure 1. Row division in crop rows 

 

Based on Fig. 1, rows A and B have been divided into 

two different sections. To minimize the travel distance for 

the traveling route, the row-based traveling method was 

not effective, as shortcuts and available to travel between 

rows. To solve the robot routing problem for spraying 

operations, the optimization method is used to minimize 

the agricultural robot’s travel distance. 

Fig. 2 shows the process used to solve the mobile robot 

routing problem. In Fig. 2, the process begins by 

initializing the crop points, and a path planning process is 

then executed using a probabilistic roadmap. Thereafter, 

the fitness function for the total distance traveled is 

calculated, and the fitness function is optimized using 

binary PSO and a GA, respectively. 

 
Figure 2. Process in generating optimum travel distance 

 

To initialize the crop point, the farmer observed and 

identified the selected crops that had been affected by 

disease. In this paper, a case of Powdery Mildew has 

been used, which is a disease that does not critically 

affect plant condition because some nutrients can be 

absorbed from the plant if it is left untreated, though the 

quality of the fruit or vegetable does eventually suffer 

[17]. To avoid the spreading of the disease via wind, the 

affected area must be treated using an organic fungicide 

[18]. Therefore, a mobile robot was used to spray the 

fungicide, as this process can present a significant threat 

to human health due to the poisonous nature of the 

chemicals. 

Probabilistic roadmaps can be used to solve motion 

planning problems [19]. The process of computing the 

path consists of two different phases: a learning phase 

and a query phase. The roadmap was formed in the C-

space of the robot and was stored as an undirected graph 

R in the learning phase [20]. A random free configuration 

was then generated and added to a node, 𝑁. For every 

new node, many nodes from the current 𝑁 node were 

selected, and each of them was connected using a local 

planner. To increase its distance from 𝑐, a new node,𝑁𝑐 

attempts to connect to 𝑐. 

In the query phase, paths were found between the input 

start and goal configuration using a roadmap that was 

constructed during the learning phase. When the start 

configuration 𝑠  and the goal configuration 𝑔 was 

computed, 𝑠 and 𝑔 will attempt to connect with the two 

nodes of 𝑅, �̃� and �̃�, using feasible paths, 𝑃𝑠 and 𝑃𝑔. The 

feasible path addresses obstacle avoidance using 

Dijkstra’s search algorithm. 

A detailed explanation of the fitness function and 

constraints is presented in Section B. The framework 

used for binary PSO is discussed in Section C, and the 

framework for the GA is discussed in Section D. 

B. Model Formulation 

In this paper, the simulation environment was 

generated by taking exact measurements based on the real 

greenhouse environment shown in Fig. 3. 

 

 
 

Figure 3. Real greenhouse environment 

 

The real environment was then redesigned in 

SolidWorks and then simulated in MATLAB using 

Simulink3D animation [21]. Fig. 4 presents an aerial 

view of the generated simulation environment. A binary 

occupancy grid was then computed based on the aerial 

image in Fig. 4 to differentiate the obstacles and free 

space throughout the environment. 

Fig. 5 shows the generated binary occupancy grid for 

the environment where the white area indicates free space 

and the black area indicates obstacles that include the 

selected crops that need to be treated. The coordinates for 

each point sequence are presented in Table 1. 

Section 2 Section 1 
Row A 

Row B 

Section 2 Section 1 
Shortcut Shortcut 

Optimize the crop routing arrangement by 

minimizing the fitness function using 

Binary PSO or Genetic Algorithm 

Calculate the fitness function based on the 

path computed 

Initialized the crop points 

Find the path for each destination point 

using Probabilistic Roadmap 
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Figure 4. Generated environment in Simulink3d 

 

Based on Fig. 5, the coordinate number was arranged and 

labeled based on the row sequence, where the red dot 

indicates the destination point (node) that must be 

reached by the mobile robot. 

The binary occupancy grid 𝐺 ∈ {𝑉, 𝐸} in Fig. 5 consist 

of a set of nodes 𝑉 = {1,2, … , 𝑛} and a set of edges 𝐸. 

The node in Fig. 5 represents the crop destination point 

that must be included in the spraying operation. The 

edges, E in a binary occupancy grid represent the path 

computed using a probabilistic roadmap between each 

destination point. A non-negative number of 𝑑𝑖𝑗  represent 

the distance between each point between nodes 𝑖 and 𝑗. 

In this paper, only one objective was considered for the 

fitness function. The fitness function for the total route 

distance is expressed: 

 

𝑓(𝑥) = 𝑚𝑖𝑛 {∑ 𝑑𝑖𝑗𝑖,𝑗∈𝐴𝑖𝑗
}                    (1) 

 

 
 

 

where 𝐴𝑖𝑗 is the set of edges between nodes 𝑖 and 𝑗. The 

total distance between the sequence of nodes is calculated 

based on the generated path from a probabilistic roadmap. 

The usual approach to solving the TSP employs a 

directed graph, but is not applicable to the problem in this 

study due to the obstacle avoidance operation that is not 

included in the directed graph method. Therefore, a 

probabilistic roadmap is used to generate a path without 

colliding with any obstacles. 

TABLE I.  COORDINATE SEQUENCE AND LABEL 

Node (n) Coordinate (x, y) 

1 (1.44, 4.00) 

2 (1.89, 4.24) 

3 (3.69, 4.24) 

4 (5.98, 4.24) 

5 (9.05, 4.24) 

6 (0.87, 2.67) 

7 (2.07, 2.67) 

8 (3.57, 2.67) 

9 (3.87, 2.67) 

10 (4.47, 2.67) 

11 (4.87, 2.67) 

12 (5.17, 2.67) 

13 (5.47, 2.67) 

14 (0.66, 2.37) 

15 (3.67, 2.37) 

16 (9.05, 2.37) 

17 (0.75, 1.04) 

18 (6.05, 1.04) 

19 (7.05, 1.04) 

20 (9.15, 1.04) 

 

For the purposes of this study, the constraint is expressed 

as follows: 

 

𝑥(1) = 𝑥(𝑒𝑛𝑑) = 1                        (2) 

 

Figure 5. Binary occupancy grid generated  
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where the constraint represents the requirement to 

navigate starting from node 1, then return to node 1 after 

completing the task. The 𝑒𝑛𝑑 notation indicates the final 

sequence for the path in the generated route. 

 

C. Binary PSO 

A bio-inspired PSO approach was proposed by [22], 

which consisted of the population-based algorithm that 

performed a parallel search on a solution space. It is well-

known as a great optimization algorithm used to solve 

continuous-type problems. However, to solve a discrete-

type problem, adaptation of the original PSO is required 

and has been proposed by others [23-25]. 

In this paper, a modified version of binary PSO 

proposed by [26] was used to solve the mobile robot 

routing problem. In binary PSO, each particle represents 

its position in binary values which are 0 or 1. Then, each 

particle will then mutate from 1 to 0 or 0 to 1, depending 

on its velocity. The binary PSO steps used in this paper 

can be summarized as follows: 

1. Initialize the swarm 𝑋𝑖.The position of particles 

is randomly initialized and the elements of 𝑋𝑖are 

selected randomly based on permutation 

arrangement in maximum number of node 𝑛. 

2. Decode the sequence of particle elements from 

binary to real numbers. 

3. Evaluate the performance 𝐹  for each particle 

using the current particle position. 

4. Encode the particle into a sequence of binary 

number. 

5. Compare the performance of each particle to its 

best performance so far, 𝑃𝑖𝑏𝑒𝑠𝑡: 

If𝐹(𝑋𝑖(𝑡)) < 𝐹(𝑃𝑖𝑏𝑒𝑠𝑡) 

𝐹(𝑃𝑖𝑏𝑒𝑠𝑡) = 𝐹(𝑋𝑖(𝑡)) 

𝑃𝑖𝑏𝑒𝑠𝑡 = 𝑋𝑖(𝑡) 

6. Compare the performance of each individual to 

the global best particle, 𝑃𝑔𝑏𝑒𝑠𝑡: 

If𝐹(𝑋𝑖(𝑡)) < 𝐹(𝑃𝑔𝑏𝑒𝑠𝑡) 

𝐹(𝑃𝑔𝑏𝑒𝑠𝑡) = 𝐹(𝑋𝑖(𝑡)) 

𝑃𝑔𝑏𝑒𝑠𝑡 = 𝑋𝑖(𝑡) 

7. Change the velocity of the particle based on 

equation: 

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐𝜑1(𝑝𝑖𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) +

𝑠𝜑1 (𝑝𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) (3) 

8. Move each particle to a new position using 

equation: 

𝑥𝑖(𝑡 + 1) = {
1
0

 

 (4) 

9. Go to step 2 and repeat until maximum iteration, 

𝐼𝑚𝑎𝑥 occurs. 

 

Based on the steps for implementing PSO,𝜑1  is the 

inertia weight, 𝑐  represents the cognitive and 𝑠  is the 

social coefficient. The algorithm used in this study was 

modified from the original version proposed in [26] by 

adding some particle encoding, decoding, and constraints. 

Particle encoding and decoding are needed to represent 

the particle as a binary and real number for particle 

updating and fitness evaluation, respectively. Element 

checking is also conducted to avoid any repeating 

destinations during particle updating. 

D. Genetic Algorithm 

The second algorithm used in this paper is a GA. This 

algorithm consists of three different phases in the search 

mechanism: evaluation of the fitness in each chromosome, 

selection of the parent chromosomes, and lastly the 

mutation and recombination operator for the parent 

chromosome to produce offspring. Steps used to employ 

a GA in solving the routing problem can be summarized 

as follows: 

 

1. Create an initial population of chromosomes 

(generation 0) that consists of parent’s 

population containing permutation of maximum 

number of 𝑛 nodes. 

2. Evaluate the fitness of each chromosome 

(parent). 

3. Randomly select two parent chromosomes from 

the current population using a fitness cost 

sorting. 

4. In crossover operation, exchange the first two 

route arrangement inside the first parents’ 

chromosomes using a modified crossover to 

create the first offspring. 

5. Repeat step 4 by exchange the first two route 

arrangement inside the second parents’ 

chromosomes to create the second offspring. 

6. Fill in the remaining chromosome structure in 

the offspring that has not been filled in crossover. 

7. Repeat steps 4 and 5 until all parents (𝑁𝑝) and 

all offspring (𝑁𝑜𝑓𝑓) are created. 

8. Replace the old population of chromosomes 

with the new one. 

9. Evaluate the fitness of each chromosome in the 

new population (parents and offspring). 

10. Sort the chromosomes (parents and offspring) 

based on the fitness function cost and select the 

best of them. 

11. Return to Step 2and repeat until maximum 

iteration, 𝐼𝑚𝑎𝑥 occur. 

 

In the steps provided, the crossover type used in this 

implementation is the modified crossover designed in 

[27]. The modified crossover operation is illustrated in 

Fig. 6. 

 

 
Parent 2 5 7 2 6 1 4 3 

 
Parent 2 2 1 4 6 5 3 7 

 
Offspring 1 5 7 4 6 2 3 1 

 
Offspring 2 2 1 5 6 7 4 3 

 

Figure 6. Modified crossover mutation 
 

If 𝑣𝑖(𝑡 + 1) = 𝑚𝑎𝑥(𝑣𝑖(𝑡 + 1)) 

otherwise 
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In this method, a cut position is chosen at random on the 

first parent chromosome. In this case, the first two 

chromosomes are selected (gray box). Then, an offspring 

will be created by appending the second parent 

chromosome to the initial segment in the first parent. The 

duplicates number occurs in the offspring will be 

replaced randomly with the number, which is not 

included in the chromosome (light blue box). 

III. RESULTS AND DISCUSSION 

This section presents results in terms of a comparison 

between the implementation of binary PSO and GA to 

solve the robot routing problem for spraying application 

in agriculture. The comparisons were conducted to select 

the most applicable algorithm for the agricultural 

spraying operation. 

A. PSO and Genetic Algoritm Parameter Setup 

 To ensure the parameters being used in this experiment 

would provide an accurate and correct result, data 

samples were used with binary PSO and the GA validate 

good results with minimal computational cost. Table II 

shows the parameter used in Binary PSO, and Table III 

shows the parameter used in the GA, respectively. 

TABLE II.  PARAMETER USED IN GENETIC ALGORITHM 

Parameter Value 

 Maximum iteration(𝐼𝑚𝑎𝑥) 200 

Number of chromosomes (Parents) (𝑁𝑝) 500 

Number of chromosomes (Children) (𝑁𝑜𝑓𝑓) 400 

Type of crossover non-uniform 

 

TABLE III.  PARAMETER USED IN BINARY PSO 

Parameter Value 

 Maximum iteration (𝐼𝑚𝑎𝑥) 200 

Number of Particles(𝑋𝑖) 100 

Social coefficient(𝑆) 3.5 

Cognitive coefficient (𝐶) 0.5 

 

Based on Table II and III, the parameters were selected 

by executing the algorithm repeatedly to solve the 

proposed problem until satisfactory results were obtained. 

 

 
 

 

B. Performance Comparison 

  

In this section, a performance comparison between the 

application of Binary PSO and the GA was conducted 

based on convergence time, computational time, and 

solution quality. Fig.7 shows the response for the 

total distance cost in every iteration for binary PSO and 

the GA, respectively. 

 As Fig. 7 indicates, the GA with a modified crossover 

provided better solution quality with a total distance of 

40.34 m compared to binary PSO which had a total 

distance of 42.87 m. However, in terms of convergence 

time based on iteration number, binary PSO displayed a 

better convergence time at the 48
th

 iteration, and the GA 

converged at the 66
th

 iteration. Table IV provides the 

computational time between the algorithms execution. 

 

 

TABLE IV.  COMPUTATIONAL TIME COMPARISON 

Algorithm Implementation Computational time (s) 

Genetic Algorithm 27 

Binary PSO 76 

 

Based on Table IV, application of Binary PSO to solve an 

agricultural mobile robot routing problem offers a longer 

computational time compared to the GA, with values of 

76 and 27, respectively. The difference of 49 seconds in 

computational time is indicative of binary PSO’s higher 

level of computational complexity compared to the GA. 

The higher computational time of binary PSO was 

primarily due to the encoding and decoding process in the 

algorithm. In binary PSO, particle encoding is necessary 

to encode the crop routes in binary values. Then, particle 

decoding is needed to decode the binary value into the 

crop sequence as a real number to calculate the total 

distance. Both particle encoding and decoding was 

Figure 7. Total distance cost in each iteration 
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Optimal Crop Routes found in Genetic Algorithm 

necessary for each iteration, which led to a longer 

computational time for the execution. 

 In the application of the GA, the delay in total distance 

convergence as if calculated the optimal was due to the 

randomness of the modified crossover. In modified 

crossover, the chromosomes are exchanged by the 

selected part to enhance the search for an optimal solution, 

although it simultaneously degrades the exploitation of an 

optimal solution. 

 
Figure 8. Optimal Computed Route in the Greenhouse 

 

Thus, the search method in modified crossover computed 

as part of the GA provided a better result with respect to 

solving the mobile robot routing problem. Fig. 8 shows 

the computed path based on the optimal crop routes that 

was found with both algorithms, and Fig.9 shows the 

optimal crop routes found with binary PSO and the GA, 

respectively. 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
Figure 9. Optimal Crop Route Sequence 

 

Based on Fig. 8, it is clear that the optimal route that was 

selected by binary PSO, which covered a larger area 

compared to that of the GA, which is consistent with the 

results found in Fig. 7, where the total distance of the 

route found by the GA was lower than the route found by 

binary PSO. 

 

IV. CONCLUSION 

 

In this paper, a comparison between the performance 

of binary PSO GA application was conducted to solve a 

single-objective agricultural mobile robot routing 

problem. The routing problem was formulated based on 

the traveling salesman problem, which is commonly used 

in operational research. The evaluation has been 

conducted based on convergence time, solution quality, 

and computational time. Use of the GA to solve the 

agricultural mobile robot routing problem demonstrated 

better performance, and found an optimal solution with 

respect to distance traveled and computational time. 

Therefore, this approach has significant value as a 

method for solving the mobile robot routing problem in 

agriculture with an optimal solution. 
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