
Comparison of the Behavior of Swarm Robots

with their Computer Simulations Applying

Target-Searching Algorithms

Vivienne Jia Zhong, Rolf Dornberger and Thomas Hanne
Institute for Information Systems, University of Applied Sciences and Arts Northwestern Switzerland,

Basel/Olten, Switzerland

Email: {viviennejia.zhong, rolf.dornberger, thomas.hanne}@fhnw.ch

Abstract—This paper investigates the functionality and

quality of the implementation of a search- and target-

surrounding swarm robotic algorithm using physical swarm

robots named Kilobots. The implementation was developed

and tested in the simulator V-REP, then transferred onto

the actually running Kilobots: Ten Kilobots were used for

the experiment, where one Kilobot acts as the target and

nine Kilobots act as the searchers. The algorithm allows the

searchers to swarm out to find the target while avoiding

collisions with other searchers, to orbit around other

searchers, which are closer to the target, and finally to

surround the target once it is found. The results of the

implementation using the physical Kilobots are compared

with the results of two adjusted computer simulations.

Differences between the simulations and the real robot

implementation are investigated: Discrepancies regarding

the locomotion and the communication capabilities are

identified and discussed.

Index Terms —

search-surrounding swarm algorithm,

target-surrounding swarm algorithm, collective behavior,

swarm robotics, swarm intelligence, Kilobot

I.

INTRODUCTION

This article is extending the conference paper of Zhong

et al. [1] applying an additional experimentation.

Compared to the conference paper, the article extends,

investigates and discusses the implementation of a search-

and target-surrounding swarm robotic algorithm using a

set of ten real swarm robots, the so-called Kilobots [2]. A

Kilobot is a robotic system, which was developed by the

Self-Organizing Systems Research Group of Harvard

University [2]. A Kilobot robot is equipped with

vibration-based differential drive locomotion, on-board

computation power and neighbor-to-neighbor

communication with a distance sensing capability of up to

10 cm using infrared light.

In their introduction paper, Rubenstein et al. have

demonstrated some Kilobot capabilities, such as orbiting

where a Kilobot moves along a circular path with the

assistance of a stationary robot by computing the distance

to this stationary robot [2]. In another work, Rubenstein et

al. demonstrated a self-assembly algorithm consisting of

three collective behaviors: edge-following, gradient

formation and localization [3]. In the algorithm for

gradient formation, every Kilobot sends a gradient value

message to its surrounding Kilobots, where this value is

transmitted from one Kilobot to another.

Magsino et al. reported the use of Kilobots to develop a

set of collective algorithms for target-surrounding and

search-and-rescue problems [4]. They validated their

algorithms in the simulator V-REP. The goal of the target-

surrounding algorithm is to surround a target Kilobot

(target) with a group of other Kilobots (searchers). The

algorithm uses the gradient value to determine the

distance towards the target. Magsino et al. proposed three

search-and-rescue algorithms. One of them is the dispersal

search algorithm: The setup consists of a group of

searchers, a target and a base. Both the searchers and the

target are moving arbitrarily. Only the base is stationary.

Once a searcher finds the target, the specific searcher

becomes the leader and the target becomes the first

follower. Other searchers join the group once they receive

a message from the leader. The group returns to the base

once the group is complete [4].

II. BACKGROUND AND RELATED WORK

During the last ten years, the study of multi-robot
systems attracted considerable interest in research. Swarm
robotic systems came into focus, which do not use a
central or hierarchical control of the whole system, but are
based on individual robots’ behavior including sensor and
communication features (e.g. Şahin and Winfieldq [5]). It
is generally assumed and often observed that such systems
lead to a sufficiently good coordination of the behavior of
the robots. Patterns of movement or other forms of
collective behavior are often similar to observations
among animals that form swarms or show other types of
more or less coordinated group behavior. Even with rather
simple movement, communication and control capabilities,
it is said that the resulting collective behavior might be
rather complex and suitable to solve particular problems
such as mapping the environment or finding particular
locations. Similar as for animals and for more abstract
models and algorithms, it is frequently referred to as
swarm intelligence [6]. For the respective robots, it is
mostly assumed that they can perform local interactions
with their environment or other robots and that the applied
control logic or rules are rather simple. The robots are

507

International Journal of Mechanical Engineering and Robotics Research Vol. 7, No. 5, September 2018

© 2018 Int. J. Mech. Eng. Rob. Res
doi: 10.18178/ijmerr.7.5.507-514

Manuscript received June 1, 2018; revised August 1, 2018.

considered to be autonomous, but may achieve common
decisions or a cooperative solution of tasks by simple
means of communication which usually do not allow for
communicating with all other robots, but, for instance,
only with those in the neighborhood.

Besides theoretical studies, such swarm robotic systems
can be analyzed by experiments. The experiments can be
performed with real robots or by using a model of the
robots. The models can be microscopic or macroscopic [6].
In particular, for microscopic models, simulation
approaches can be employed, which represent the
individual behavior of robots (including the sensing of the
environment, communication, and control characteristics)
and the environment they interact with. Currently, quite a
number of different robot simulators exist with different
levels of detail, accuracy, usability, and maturity. For
instance, in Vaughan [7] seven simulation tools are briefly
examined. The survey by Craighead et al. [8] discusses 14
tools, which also include simulators not related to robotics
such as a flight simulator. In Castillo-Pizarro et al. [9], 14
software packages for mobile robot simulation are
mentioned. 12 simulators are considered in Ivaldi et al.
[10] who also show some evaluation results based on
different criteria. The survey by Cook, Vardy, and Lewis
[11] discusses eight simulation tools with a focus on
autonomous vehicles.

Robot simulators are a convenient means for analyzing
robot behavior, the emergent behavior of a group of robots
or the effectiveness or efficiency of solving given
problems. In particular, the acquisition of real, physical
robots is not required and the effort to set up real
experiments, conduct them, and analyze the results can be
significantly reduced. For instance, for the Stage simulator,
it is reported [7] that it runs 1000 times faster than the real
system and is able to simulate systems of up to 100000
robots, which would hardly be possible in a real
experiment. A possible disadvantage of robot simulation
is the question of how good the simulations are and how
accurately they reflect the behavior of real robots.

In most cases, the representation of the control logic of
a real robot in a respective simulator should not be a
problem (especially when non-automatic programming
approaches are applied, see Biggs and MacDonald [12]).
Instead, the main problem in robot simulation is
frequently the accuracy of the robot geometry and
kinematics, the modelling of the sensors, the environment
model and the model of robot interaction with this
environment, including inter-robot communication. On the
one hand, there may be deviations of the respective
models from reality, just because of the model complexity
or granularity, the insufficient tuning of the models or
deviations of individual robots from the models due to
manufacturing deviations, and the noise in any physical
experiment. On the other hand, basic problems of the
modelling approaches such as the step size applied in
simulations can be relevant.

For single robot simulation, there are comparatively
many results, often showing good accuracy, even under
adverse conditions such as noise, e.g. in Balaguer, Carpin,
and Balakirsky [13]. However, with multi-robot
simulations, fewer results are available and the accuracy
can be more severely affected by collective effects of
communication or robot collisions. In Castillo-Pizarro et
al. [9], three robot simulators (Carmen, Gazebo, and ODE)

are compared and errors regarding the deviation in
movements (end-point position errors) are investigated.
As a result, these deviations are considered significant
(21-29 cm for relatively small distances).The errors result
as cumulative simulation errors because of fluctuations in
the range of movements, and differences in relation to the
direction of movement and rotation angle deviations
between model and reality. In the paper by Carpin et al.
[14], a generally high accuracy is reported for the
USARSim tool, which offers good rendering and physical
simulation. Relevant problems in accuracy are only
mentioned for legged robots. Specific problems with
contacts or collisions within humanoid robot simulation
are discussed in Ivaldi et al. [10]. Kudelski, Gambardella,
and Di Caro [15] analyze the effect of the communication
model on the simulation accuracy. Moreover, the effect of
the simulation step size is studied. Good results are found
for very exact, but computationally costly model variants,
whereas less detailed models lead to less accurate results.

III. PROBLEM DESCRIPTION

The problems addressed by this paper are twofold:

First, as discussed above, it is (almost) impossible to fully

accurate model the movements, sensations and

communications of the robots with others in computer-

based simulation, compared to the situation in a real world

experiment. Due to this discrepancy, the algorithm might

not operate the same way as expected in the real robotic

collective environment. Moreover, the simulation may

hide scaling issues within the algorithm that can be

discovered only when the algorithm is operated on a large

collection of robots [2].

Secondly, the collision avoidance of robots is an

important issue in the real world, because this could

greatly affect the localization of robots. However, this was

considered neither in Magsino et al.’s work [4] nor in the

algorithms developed by Self-Organizing Systems

Research Group [16]–[18].

In this paper, we aim to implement a search- and

target-surrounding algorithm for Kilobot robots that

incorporates collision avoidance. We test the mechanism

both in a simulator and on real Kilobots. Then we discuss

the results of both the actual implementation and the

simulation.

IV. ALGORITHMS

The dispersal and orbiting algorithm [16]–[18] served

as the starting point for the development of our search-

and target-surrounding algorithm. The algorithm consists

of three parts: searching, approaching the target and

orbiting a fellow.

A. Searching

The goal of this part is to allow a searcher to move

randomly and avoid collisions with other searchers by

detecting its neighbors. At start, each of the searchers is

initialized with a gradient value of 0. It broadcasts its

gradient value and listens to the environment (infrared

light) roughly twice in a second.

The dispersal algorithm enables a random walk. The

randomness is determined by dicing: A searcher can walk

508

International Journal of Mechanical Engineering and Robotics Research Vol. 7, No. 5, September 2018

© 2018 Int. J. Mech. Eng. Rob. Res

straight, turn left or right. Each direction has a one-third

probability of being chosen. While walking, the searcher

turns around when the collision distance is reached.

B. Approaching the Target

As soon as a searcher detects the target, it approaches

until a desired distance from the target is reached. Then it

stops moving. It sets its gradient value to 1 and broadcasts

it indicating that the target has been found.

C. Orbiting a Fellow

To enable an effective search for the target, a searcher
compares its gradient value with that of its neighbor. Two
scenarios apply: In the first scenario, a searcher that has
the initial gradient value orbits its neighbor if the neighbor
has a gradient value that is different from 0. This helps the
searcher to stay in touch with another searcher.

In scenario 2, a searcher that has an initial gradient
value that is different from 0 orbits its neighbor if the
neighbor has a lower gradient value (i.e. closer to the
target) than it does. The searcher adopts a new gradient
value by incrementing its neighbor’s gradient value by
one.

V. EXPERIMENTS

The algorithms were first implemented in the

programming language Lua and tested in the simulator V-

REP. For the actual implementation, the algorithms were

then translated in the programming language C.

Three experiments were tested in total, while two of the

experiments were tested in the simulator using a different

desired distance for reaching. In Simulation I, the desired

distance is 4 cm, whereas 6 cm is the desired distance in

Simulation II and the actual implementation. This can be

used to gain a better understanding of the effect of the

desired distance on the target to be found.

A. Settings of the Experiments

A set of ten Kilobots are used for both the actual

implementation and the simulations where one of the

Kilobots has the target role and the nine other Kilobots are

the searchers. The target is stationary. It sends messages to

its environment, waiting to be found and surrounded by

the searchers. A searcher is looking for the target. While

searching, the searcher communicates with its

environment by sending and listening to messages. It then

reacts (i.e. either searches, orbits its fellow or approaches

the target) according to the message it receives.

In the starting position, the searchers are placed around

the target in a circle. The distance between the target and

the searchers ranges from 21 to 23 cm, far beyond the 10-

cm sensing range of a Kilobot. All searchers face towards

the target (i.e. charging tab faces to the target). The

distance between a searcher and its neighbor is between

13 and 15 cm. The same overhead controller collectively

controls the Kilobots.

Table I shows the configurations used for the actual

implementation and simulations. During a test run, a

Kilobot might show different colors indicating its state as

described in Table II.

In the actual implementation, the target and the

searchers are placed on a desk with a smooth, flat, glossy

surface. The overhead controller hangs 45 cm above the

Kilobots.

In both simulations, the default time step of 50 ms is

used. Each test run stops automatically after it has been

run for one minute.

The following indicators are of interest when discussing

the results of the actual implementation and simulation,

because they reflect the results under the same conditions.

 Number of searchers close to the target when a test

run ends.

 Number of searchers that reach the target when a

test run ends.

 Time needed to find the target and to reach it for

the first time.

 Time needed to find the target and for the target to

be reached by a further searcher.

 Dispersal of the searchers during search.

B. Calibration of the Kilobots for the Actual

Implementation

According to the documentation of the Kilobot

developers [19], there are manufacturing differences.

Therefore, the Kilobots need to be calibrated to achieve

good forward and rotary motions. Table III depicts the

calibration value of the searchers.

TABLE I. CONFIGURATIONS OF THE EXPERIMENT

Configuration Value

Desired distance for reaching in Simulation I 4 cm

Desired distance for reaching in Simulation II

and actual implementation

6 cm

Collision distance 5 cm

Frequency of sending message to environment Twice every
second

Duration of a test run 1 minute

Number of test runs 10 test runs

 TABLE II. DESCRIPTION OF THE COLOR

Color State

Magenta Target blinking in magenta

Green Target found

Yellow Approaching target

Blue Orbiting fellow

White Other searchers detected, keep searching

Red Distance to neighbor too close, avoid
collision

Cyan No incoming message received

TABLE III. CALIBRATION VALUE OF THE SEARCHERS

Searcher No. Left Right Straight (Left/Right)

1 65 65 60/60

2 66 68 60/62

3 58 58 51/51

4 65 64 59/61

5 61 66 55/57

6 66 63 59/56

7 55 65 50/58

8 58 56 48/49

9 61 54 54/48

VI. RESULTS

A. Actual Implementation

The results of the actual implementation were recorded

using a smartphone camera. Table IV depicts the results.

509

International Journal of Mechanical Engineering and Robotics Research Vol. 7, No. 5, September 2018

© 2018 Int. J. Mech. Eng. Rob. Res

Fig. 1 illustrates the test runs and highlights the searchers

that were relatively close to the target in the respective test

run. The color used for highlighting corresponds to the

ones described in Table II.

Figure 1. Results of the actual implementation

Overall, there was an average of three searchers close

to the target at the end of a test run. In all test runs, the

target was successfully found by at least one searcher and

on average by two searchers. In four test runs, three

searchers successfully reached a target. In the test runs No.

3 and No. 6, only one searcher reached the target.

Across all test runs, the time required to find and reach

the target for the first time, ranged from 16 seconds to 58

seconds, whereas one half of the test runs needed more

than 21 seconds but less than 25 seconds (see Fig. 2).

The time required for the target to be found and reached

by a further searcher was between 23 to 52 seconds,

whereas in the majority of the test runs at least 48 seconds

were required for the target to be found and reached by a

further searcher.

TABLE IV. NUMBER OF SEARCHERS CLOSE TO THE TARGET IN THE

ACTUAL IMPLEMENTATION

Test

run

Number of searchers close to the target

Green:

target
found

Yellow:

approa-
ching

target

White:

other
searchers

detected,

still
searching

Cyan:

no
message

received,

keep
searching

Total

1 3 3

2 3 1 4

3 1 1 1 3

4 3 1 4

5 3 2 1 6

6 1 1

7 2 1 3

8 2 2

9 2 2

10 2 1 3

Aver

age

2,2 3,1

Med
ian

2 3

Figure 1. Time needed to find the target and to reach it in the actual
implementation

The time difference between the first successful

reaching and the second successful reaching seemed

arbitrary.

In all test runs, the searchers detected messages from

other searchers right at the beginning. In most test runs,

they spread across the area to find the target in the course

of the search.

B. Simulation in V-REP

The results of both simulations were recorded using the

integrated recording function of V-REP.

Simulation I: Table V shows the number of searchers

close to the target of Simulation I. Fig. 3 illustrates the test

runs.

In Simulation I with the desired distance of 4 cm, at

least one searcher could reach the target across all test

runs, whereas an average of 3.3 searchers reached the

target. In two test runs, a searcher was tipped over due to a

collision with others. In fact, while running the test, it

could be observed several times that some searchers came

closer to others and that searchers that were approaching

510

International Journal of Mechanical Engineering and Robotics Research Vol. 7, No. 5, September 2018

© 2018 Int. J. Mech. Eng. Rob. Res

the target pushed away the searchers that had reached the

target successfully.

Regarding the time required for the target to be found

and reached for the first time (see Fig. 5), the median time

required was on average 34.5 seconds respectively 35.8

seconds. After the target was found, a second searcher

would reach the target between 3 to 12 seconds.

As to the spreading of the searchers, in all test runs, the

searchers first walked towards the target. The spreading

behavior emerged after the test had been run for 10

seconds. The interaction with other searchers followed

soon. The change of color (i.e. state) of a searcher could

be observed well as soon as the searchers came closer to

each other and to the target.

Compared to other test runs, many searchers in the test

run No. 3 were located far away from the target at the end

of the test run. However, the video of the test run No. 3

does not show that the searchers had spread differently. It

seems that the searchers in the test run No. 3 failed to find

the target by chance.

Simulation II: Table VI shows the number of searchers

close to the target of Simulation I. Fig. 4 illustrates the test

runs.
An average of five searchers were close to the target.

Across all test runs, the target was found and reached by
at least two searchers. In seven out of ten test runs, at least
half of the searchers found and reached the target. In test
run No. 5, a searcher was tipped over due to a collision
with another searcher.

A closer look at the cyan colored searchers revealed
that these searchers were actually orbiting their fellow or
avoiding collision with their fellow. Because of the
asynchronous communication, the message from the
fellow was not received because the simulation stopped.

Concerning the time required for the target to be found

and reached for the first time (see Fig. 6), the data

conspicuously concentrated on the time span between 27

and 31 seconds. To be found and reached by a further

searcher, the required time span ranged between 29 to 42

seconds. In six out of ten test runs, the time difference

between the first and the second finding of the target was

less than five seconds.

TABLE V. NUMBER OF SEARCHERS CLOSE TO THE TARGET IN

SIMULATION I

Test run Number of Searchers close to the Target

Green Yellow White Cyan Total

1 3 2 5

2 4 1 1 6

3 1 2

4 5 5

5 3 2 5

6 4 2 6

7 4 1 5

8 4 1 5

9 3 1 4

10 2 1 3

Average 3,3 4,6

Median 3,5 5

TABLE VI. NUMBER OF SEARCHERS CLOSE TO THE TARGET IN

SIMULATION II

Test run Number of Searchers close to the Target

Green Yellow White Cyan Total

1 2 1 3

2 6 1 7

3 5 5

4 3 3

5 5 1 6

6 7 7

7 5 5

8 3 3

9 5 5

10 5 1 6

Average 4,6 5

Median 5 4,5

Figure 3. Results of the Simulation I

511

International Journal of Mechanical Engineering and Robotics Research Vol. 7, No. 5, September 2018

© 2018 Int. J. Mech. Eng. Rob. Res

Figure 4. Results of the Simulation II

Figure 5. Time required to find the target and to reach it in Simulation I

Like in Simulation I, the searchers in Simulation II first

walked towards the target, showed spreading behavior and

acted according to the interaction with other searchers

after roughly 10 seconds. The change of state was also

well observed in Simulation II.

Figure 6. Time required to find the target and to reach it in Simulation II

VII. DISCUSSION AND ANALYSIS

In this section, we compare and discuss the result of the

actual implementation of the Kilobots and their simulation

on the computer. Additionally, we report observations we

made during the implementation and simulation.

A. Results of the Actual Implementation of the Robots

and of the Simulations

The dispersal strategy and the communication with

other searchers were crucial to find the target in terms of

the number of searchers that reached the target and of the

time required to reach it. While searching the target, it

seems that the searchers in the actual implementation were

more willing to explore the surrounding area. In most test

runs, the searchers spread right at the beginning. This

dispersal behavior favors the finding of the target at the

beginning. This might explain why the time required to

find and reach the target for the first time in the actual

implementation was less than in both simulations.

However, the searchers in the simulations caught up

quickly by orbiting fellows that had already found the

target. This might explain why the time needed to find and

reach the target by a further searcher was shorter in

Simulation II than in the actual implementation given the

same desired distance.

Noticeably, the orbiting fellow strategy was not

observed in the actual implementation. Indeed, the

searchers approached the target on their own (i.e. the LED

was yellow). The absence of the orbiting strategy clearly

made the finding of the target less efficient.

The inefficient search lead to a higher probability that

the searchers would spread further than actually needed

and finally lose connection to the other searchers. This

phenomenon was more prevalent in the actual

implementation where more searchers were located far

away from the target when the test run ended.

Explanations for the absence of the orbiting strategy in

the actual implementation might be due to the dispersal of

the searchers and the fact that there were less searchers

that found the target and that many searchers still held the

gradient value of 0 during the entire test run, which did

not trigger the orbiting behavior.

An important observation made in the actual robot

implementation and simulation, is that a Kilobot can

receive a message from only a single source at the same

time. A preference of the message source could not be

pre-defined. This might explain that the searcher

approached the target on its own instead of orbiting.

The search behavior had implications on the success

rate. Overall, there was a higher probability to find the

target in the simulations than in the actual implementation

of the robots. Moreover, the increase of the desired

distance from 4 cm to 6 cm in the simulations clearly had

512

International Journal of Mechanical Engineering and Robotics Research Vol. 7, No. 5, September 2018

© 2018 Int. J. Mech. Eng. Rob. Res

an effect on the success rate of the finding, but not on the

searchers that were close to the target at the end of a test

run. Interestingly, the number of targets found and

reached in Simulation I (desired distance: 4 cm)

outperformed the actual implementation (desired distance:

6 cm). This outperformance again stresses the discrepancy

of the performance in the simulation and in the real world.

Interestingly, the results of Simulation I with a desired

distance of 4 cm were closer to the results of the actual

implementation where the desired distance was 6 cm.

Comparing the time required for a further searcher to

reach the target, the searchers in Simulation I needed more

time than the searchers in Simulation II. This difference

could be explained by the fact that the desired distance

was smaller in Simulation I. A further searcher in the

actual implementation needed more time than in

Simulation II, but less than in Simulation I.

In addition, the time required to find and reach the

target for the first time was less arbitrary in the simulation

than in the actual implementation. Compared to the actual

implementation, the variances across all test runs were

smaller in the simulation (see Fig. 2, Fig. 5 and Fig. 6).

While in the actual implementation a target that was found

and reached by two searchers almost simultaneously was

only observed once in test run No. 4, whereas the same

phenomenon could be observed four times in Simulation

II.

 Certainly, there were searchers in the simulations that

lost connection to the cohort. However, in comparison

with the actual implementation the number of searchers

that were lost was smaller. This was also reflected by the

number of searchers that were close to the target at the end

of the test run. To tackle the problem of lost searchers, the

communication architecture proposed by Jha et al. might

be used [20].

B. Locomotion of the Kilobots

While preparing the actual implementation, we noticed

that the calibration value of the Kilobots used for the

actual implementation revealed large manufacturing

differences. According to the developers of the Kilobot

[19], values between 60 and 75 achieve the best rotation.

In our case, four Kilobots exceeded the lower limit of this

recommendation.

The goal of the calibration is to allow the Kilobot

smooth moves on a given surface. The calibration,

however, does not guarantee a locomotion at the same

speed. In a preliminary test, we let the Kilobots turn right,

left and walk straight. Our observation indicated that the

Kilobots performed at a different speed with similar

calibration values. For instance, Kilobot No. 7 finished as

many left-turning rounds as Kilobot No. 5 even though the

power level for turning left of Kilobot No. 5 is higher than

that of Kilobot No. 7 (61 vs. 55). On the other hand, given

the same duration of time, Kilobots No. 8 and No. 4

finished the same numbers of left-turning rounds, but both

were slower than Kilobot No. 5 and No. 7 in turning left.

The simulation software V-Rep does not consider

manufacturing differences. Neither could we calibrate the

Kilobots with the simulation software, nor did they

perform individually.

The difference in speed has implications on the actual

implementation. For example, while two Kilobots perform

the same action such as to turn left and then go straight,

one of the Kilobots might make a larger rotation than the

other one and crash into it, thus adding some degree of

uncertainty to the operation. Fine-tuning the calibration of

the Kilobots to the same speed might add stability,

however.

Furthermore, the time interval for receiving messages is

roughly twice every second. This is good for determining

the course of action but might be less optimal for the

motion. We observed a strange behavior (e.g. side slipping)

when the Kilobot performed acute rotation.

C. Algorithm

The collision avoidance worked better in the actual

implementation than in the simulations. In the

implementation, we observed clearly that a Kilobot

succeeded to avoiding collision with another Kilobot in

the majority of test runs. This was less visible in the

simulation. Instead, the Kilobots were still standing next

to each other shortly after they had avoided a collision.

In addition, it happened often in the simulation that

three Kilobots clashed. In this case, the current algorithm

for collision avoidance worked less effectively. This

might be explained by the fact that, as mentioned before, a

Kilobot receives the message arbitrarily and that in the

current algorithms a Kilobot had no memory. It reacted

according to the incoming message. In the case of

multiple Kilobots, this configuration proved unfavorable

for the algorithm responsible collision avoidance. For

instance, Kilobot A receives a message from Kilobot B

and decides to walk away from it. Half a second later,

Kilobot A receives a message from Kilobot C and decides

to walk away from it as well. By doing so, Kilobot A

might reject the previous collision avoidance of Kilobot B

and clash with it.

Another illustrative example is the algorithm for

approaching the target. Currently, while approaching the

target, a Kilobot does not perform any collision avoidance

and therefore might run into another searcher as shown in

the simulation in which the searcher while approaching

the target sometimes pushed other searchers away. Due to

this communication characteristic, incorporating

avoidance collision in approaching a target would be very

ineffective because the searcher has no information about

other Kilobots standing between it and the target. In fact,

it prevents the searcher to come close to the target. To

solve this problem, we propose a memory-based approach

combined with synchronization and localization of nearby

Kilobots.

VIII. CONCLUSION AND OUTLOOK

 The presented algorithm based on dispersal and
orbiting enabled a successful search- and target-
surrounding strategy. While the dispersal strategy
facilitated the findings in terms of time, the orbiting
strategy increased the number of searchers that found and
reached the target. The interplay between the dispersal and
the orbiting affects the entire operation.

513

International Journal of Mechanical Engineering and Robotics Research Vol. 7, No. 5, September 2018

© 2018 Int. J. Mech. Eng. Rob. Res

The comparison of the results shows differences in the
number of searchers that found the target and in the time
required to reach the target. Overall, there were more
searchers reaching the target in the simulation than in the
actual implementation, while the time required to reach
the target was faster than in both simulations in the actual
implementation. The increase of the desired distance
affected the number of searchers that reached the target in
the simulations. Apart from that, no significant difference
could be observed within both simulations.

Moreover, the proper calibration of the motor of the

Kilobots and the time interval for changing the motion are

important for a smooth locomotion. Further research can

direct its effort on a memory-based approach combined

with synchronization and localization of nearby Kilobots

and on the fine-tuning of the interplay between the

dispersal and the orbiting. These would make the search

and the collision avoidance more effective.

REFERENCES

[1] V. J. Zhong, R. R. Umamaheshwarappa, D. Rolf, and H.
Thomas, “Comparison of a real Kilobot robot implementation

with its computer simulation focussing on target-searching
algorithms,” presented at the 2018 International Conference on

Intelligent Autonomous Systems, Singapore, 2018.

[2] M. Rubenstein, C. Ahler, and R. Nagpal, “Kilobot: A low cost
scalable robot system for collective behaviors,” in Proc.-IEEE

Int. Conf. Robot. Autom, pp. 3293–3298, 2012.

[3] M. Rubenstein, A. Cornejo, and R. Nagpal, “Programmable
self-assembly in a thousand-robot swarm,” Science, vol. 345, no.

6198, pp. 795–799, Aug. 2014.

[4] E. R. Magsino, F. A. V Beltran, H. A. P. Cruzat, and G. N. M.
De Sagun, “Simulation of search-and-rescue and target

surrounding algorithm techniques using kilobots,” pp. 70–74,

2016.
[5] E. Şahin and A. Winfieldq, “Special issue on swarm robotics,”

Swarm Intell., vol. 2, no. 2, pp. 69–72, 2008.

[6] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, Swarm
Robotics: A Review from the Swarm Engineering Perspective.

2013.

[7] R. Vaughan, “Massively multi-robot simulation in stage,”
Swarm Intell., vol. 2, no. 2–4, pp. 189–208, Dec. 2008.

[8] J. Craighead, R. Murphy, J. Burke, and B. Goldiez, “A Survey

of commercial open source unmanned vehicle simulators,” in
Proc. 2007 IEEE International Conference on Robotics and

Automation, 2007, pp. 852–857.

[9] P. Castillo-Pizarro, T. V. Arredondo, and M. Torres-Torriti,
“Introductory survey to open-source mobile robot simulation

software,” in Proc. 2010 Latin American Robotics Symposium

and Intelligent Robotics Meeting, 2010, pp. 150–155.
[10] S. Ivaldi, J. Peters, V. Padois, and F. Nori, “Tools for simulating

humanoid robot dynamics: A survey based on user feedback,” in

Proc. 2014 IEEE-RAS International Conference on Humanoid

Robots, 2014, pp. 842–849.

[11] D. Cook, A. Vardy, and R. Lewis, “A survey of AUV and robot

simulators for multi-vehicle operations,” in 2014 IEEE/OES
Autonomous Underwater Vehicles (AUV), 2014, pp. 1–8.

[12] G. Biggs and B. Macdonald, “A survey of robot programming

systems,” in in Proc. the Australasian Conference on Robotics
and Automation, CSIRO, 2003, p. 27.

[13] B. Balaguer, S. Carpin, and S. Balakirsky, “Towards

quantitative comparisons of robot algorithms: Experiences with
SLAM in simulation and real world systems,” in ResearchGate,

San Diego, 2007.

[14] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper,
“USARSim: A robot simulator for research and education,” in

Proc. 2007 IEEE International Conference on Robotics and

Automation, 2007, pp. 1400–1405.
[15] M. Kudelski, L. M. Gambardella, and G. A. Di Caro,

“RoboNetSim: An integrated framework for multi-robot and

network simulation,” Robot. Auton. Syst., vol. 61, no. 5, pp.
483–496, May 2013.

[16] Self-Organizing Systems Research Group, kilobotics-

labs/disperse.c. 2016.
[17] Self-Organizing Systems Research Group, kilobotics-

labs/orbit_star.c. 2016.

[18] Self-Organizing Systems Research Group, kilobotics-
labs/orbit_planet.c. 2016.

[19] SSR Lab, Harvard University, “Calibration,” Documentation.

[Online]. Available: https://www.kilobotics.com/documentation.
[Accessed: 05-Feb-2018].

[20] A. Jha, K. Gupta, and M. Sen, “M2M communication system

for networked robots with low memory footprint,” in 2014

International Conference on Information Technology Systems

and Innovation (ICITSI), 2014, pp. 310–316.

Vivienne Jia Zhong completed her master’s
degree in business information systems at the
University of Applied Sciences and Arts
Northwestern Switzerland (FHNW) in 2018.
She has been working as a research assistant
at the Institute for Information Systems of the
FHNW for three years. Her research fields
include robotics, computational intelligence,
human-machine interaction and business
information systems.

Prof. Dr. Rolf Dornberger holds a PhD and
a Diploma in Air- and Aerospace Engineering.
He is full professor and lecturer at the
University of Applied Sciences and Arts
Northwestern Switzerland FHNW (since
2002). He is the head of the Institute for
Information Systems at the School of
Business FHNW (since 2007). Before
becoming a professor, Prof. Dr. Dornberger
worked in industry in different management
positions as a consultant, IT officer and senior

researcher in different engineering, technology, and IT companies in the
field of energy, software, IT, and airline business. His current research
interests include artificial intelligence, particularly computational
intelligence and optimization, robotics, human-machine interaction, the
Internet of things as well as innovation management and learning
didactics.

Prof. Dr. Thomas Hanne received his
master’s degrees in Economics and Computer
Science, and his PhD in Economics. From
1999 to 2007, he worked at the Fraunhofer
Institute for Industrial Mathematics (ITWM)
as senior scientist. Since then he has been a
professor for Information Systems at the
University of Applied Sciences and Arts
Northwestern Switzerland. Since 2012, he has
been the head of the Competence Center
Systems Engineering. Prof. Dr. Hanne is the

author of more than 100 journal articles, conference papers, and other
publications and editor of several journals and special issues. His current
research interests include multicriteria decision analysis, evolutionary
algorithms, metaheuristics, optimization, simulation, systems engineering,
software development, logistics, and supply chain management.

514

International Journal of Mechanical Engineering and Robotics Research Vol. 7, No. 5, September 2018

© 2018 Int. J. Mech. Eng. Rob. Res

