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Abstract—In this paper, we propose a state transformation 

technique for the position control of a quadrotor. First, we 

derive the dynamics of a quadrotor using the Newton-Euler 

formulation. Second, we present a state transformation 

technique to derive the position dynamics of a quadrotor. 

Then, we present backstepping based position control of a 

quadrotor. The stability analysis based on Lyapunov 

theorem shows that the proposed control method can realize 

a quadrotor system that is asymptotically stabilized. Finally, 

we verify the performance of the proposed position control 

method through the comparison simulations.  

 

Index Terms—quadrotor, position control, state 

transformation, backstepping control, small angle 

assumption 

 

I. INTRODUCTION 

Unmanned aerial vehicles (UAVs) received a lots of 

attention in the past few years due to huge potential 

application such as exploration, transportation, 

reconnaissance and surveillance. Among all the UAVs, 

the quadrotor is the most widely applied. Since it has the 

advantage of easy implementation compared to other 

aerial vehicles, and it has the vertical take-off and landing 

(VTOL) ability, high agility and maneuverability. 

Recently, much interest in quadrotor applications has 

been increased, so there has been attention on the studies 

that focus on the control of a quadrotor. Meanwhile, 

quadrotor has have complex nonlinear dynamics and 

coupled states. Therefore, linear control method such as 

proportional-integral-differential (PID) control and linear 

quadratic (LQ) control methods [1, 2], which focus on 

local behavior of the system, are difficult to expect good 

performance in a quadrotor system having the nonlinear 

dynamics. For these reasons, various nonlinear control 

methods have been proposed such as nested saturations 

[3], feedback linearization [4], sliding mode control [5], 

backstepping control [6], integral predictive nonlinear 𝐻∞ 

control [7], and neural network based adpative control [8].  

On the other hand, the position control of a quadrotor 

is not easy because the quadrotor position system is an 
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underactuated system unlike the attitude system. 

Therefore, it is generally difficult to directly control the 

x, y position of a quadrotor by controlling the speed of the 

motors. Most previous studies use the small angle 

assumption (SAA) or linearize method [9-10], when 

deriving reference attitude angles for position control. 

However, in this case, if the change of the attitude angle 

is large, the performance of the position control is not 

good.  

In this paper, we derive a reference attitude angles for 

position control using state transformation technique 

without special assumption. First, we derive the dynamics 

of the quadrotor using the Newton-Euler formulation. 

Then, we present the state transformation technique to 

derive the altitude and position control of a quadrotor. 

From the Lyapunov stability theory, we prove that all 

signals of a quadrotor system are asymptotically stable. 

Finally, through comparison simulations with other 

position control method, we verify the performance of the 

proposed position control method. 

II. DYNAMIC MODEL OF A QUADROTOR 

To derive the equation for the movement of a 

quadrotor, we should consider the coordinates of a 

quadrotor system. The generalized coordinates of a 

quadrotor system is shown in Figure 1, where B and E 

denote the body-fixed and earth inertial frames, 

respectively.  

 

Figure 1.  The coordinates and thrusts of a quadrotor. 

Let us assume that the generalized velocity vectors 

with respect to the earth inertial and body-fixed frames 
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are in the form of 𝜉̇ = [Γ̇𝐸 Θ̇𝐸]𝑇  and ν = [𝑉𝐵 𝜔𝐵]𝑇 , 

respectively. Here, Γ𝐸 = (𝑋 𝑌 𝑍)  represents the 

position of the center of mass of a quadrotor and Θ𝐸 =
(𝜙 𝜃 𝜓)  are the Euler angles representing the 

orientation of a quadrotor, namely roll-pitch-yaw, with 

respect to the earth inertial frame. Similarly, 𝑉𝐵 =
(𝑢 𝑣 𝑤)  and 𝜔𝐵 = (𝑝 𝑞 𝑟)  represents the linear 

and angular velocity of the quadrotor with respect to the 

body-fixed frame, respectively.  

Now, we describe the kinematics of a generic six-DOF 

rigid-body as follows: 

𝜉̇ = [
𝑅 03×3

03×3 𝑇
] 𝜈,                (1) 

where, 03×3 is a 3 by 3 submatrix filled with all zeros, 

matrices 𝑅 and 𝑇 are defined respectively, as follows: 

𝑅 = [

𝑐𝜓𝑐𝜃 −𝑠𝜓𝑐𝜙 + 𝑐𝜓𝑠𝜃𝑠𝜙 𝑠𝜓𝑠𝜙 + 𝑐𝜓𝑠𝜃𝑐𝜙
𝑠𝜓𝑐𝜃 𝑐𝜓𝑐𝜙 + 𝑠𝜓𝑠𝜃𝑠𝜙 −𝑐𝜓𝑠𝜙 + 𝑠𝜓𝑠𝜃𝑐𝜙
−𝑠𝜃 𝑠𝜙𝑐𝜃 𝑐𝜙𝑐𝜃

], 

𝑇 = [

1 𝑠𝜙𝑡𝜃 𝑐𝜙𝑡𝜃
0 𝑐𝜙 −𝑠𝜙
0 𝑠𝜙/𝑐𝜃 𝑐𝜙/𝑐𝜃

],  

where 𝑐𝑘 = cos(k), 𝑠𝑘 = sin(k), and 𝑡𝑘 = tan(k). 
The dynamic model of a quadrotor is described by 

[
𝑚 03×3
03×3 𝐼3×3

] [�̇�
𝐵

�̇�𝐵
] + [

𝜔𝐵 × (𝑚𝑉𝐵)

𝜔𝐵 × (𝐼𝜔𝐵)
] = [𝐹

𝐵

𝜏𝐵
],   (2) 

where 𝑚 is the mass of a quadrotor, 𝐼3×3 means a 3 by 3 

identity matrix. 𝐹𝐵  is the force vector and 𝜏𝐵  is the 

torques vector of the body-fixed frame. 

The nonlinear dynamics of a quadrotor can be 

described as follows [11]: 

�̈�=(cosϕsinθcosψ+sinϕsinψ)
𝑢1
𝑚
,

�̈�=(cosϕsinθsinψ−sinϕcosψ)
𝑢1
𝑚
,

�̈�=(cos(𝜙) cos(𝜃))
𝑢1
𝑚
−𝑔,

�̈�=�̇��̇�
(𝐼𝑦𝑦−𝐼𝑧𝑧)

𝐼𝑥𝑥
−

𝐽

𝐼𝑥𝑥
�̇�Ω𝑟+

𝑢2
𝐼𝑥𝑥

,

�̈�=�̇��̇�
(𝐼𝑧𝑧−𝐼𝑥𝑥)

𝐼𝑦𝑦
−

𝐽

𝐼𝑦𝑦
�̇�Ω𝑟+

𝑢3
𝐼𝑦𝑦

,

�̈�=�̇��̇�
(𝐼𝑥𝑥−𝐼𝑦𝑦)

𝐼𝑧𝑧
+
𝑢4
𝐼𝑧𝑧

,

(3) 

where 𝐽 is the rotor inertia, 𝐼𝑘𝑘 (𝑘𝑘 = 𝑥, 𝑦, 𝑧) is the total 

inertia moment of each axis of a quadrotor, g  is the 

gravitational acceleration, and the 𝑢𝑖(𝑖 = 1, 2, 3, 4)  are 

the altitude, the roll, the pitch and the yaw control inputs 

represented by 

𝑢1 = 𝑏(Ω1
2 + Ω2

2 + Ω3
2 + Ω4

2) 
𝑢2 = 𝑙 ∙ 𝑏(Ω1

2 − Ω3
2) 

𝑢3 = 𝑙 ∙ 𝑏(Ω2
2 − Ω4

2) 
𝑢4 = 𝑑(Ω1

2 − Ω2
2 + Ω3

2 − Ω4
2) 

Ω𝑟 = 𝑏(Ω1 + Ω1 + Ω1 + Ω1). 
Here, Ω𝑖(𝑖 = 1, 2, 3, 4) is the propeller speed of the 𝑖-th 

rotor, 𝑙 is the distance between the center of a quadrotor 

and the center of a propeller, 𝑏 and 𝑑 are the thrust and 

drag factors of a quadrotor, respectively. 

III. DESIGN OF THE POSITION CONTROLLER 

In this section, we design an altitude, position and 

attitude controller of the quadrotor based on the 

backstepping control method. Specially, we use the state 

transformation technique to derive the reference attitude 

angles for position control without special assumption. 

A. Altitude Control of a Quadrotor 

The altitude dynamics in (3) can be rewritten in state-

space form using the following states: 

𝑥5 = 𝑍, 𝑥6 = �̇�. 

We have the altitude state-space equation of a 

quadrotor as follows: 

{
�̇�5 = 𝑥6

�̇�6 =
𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃

𝑚
(𝑢1 − 𝑔

𝑚

𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃
) = 𝑇1(𝜙, 𝜃) ∙ 𝑣1

  (4) 

where 𝑣1 is the pseudo altitude control input defined by 

𝑣1 ∶= (𝑢1 − 𝑔
𝑚

𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃
),                     (5) 

and 𝑇1(𝜙, 𝜃) is the first transformation variable given by 

𝑇1(𝜙, 𝜃) =
𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃

𝑚
.                        (6) 

First of all, the first error 𝑒1  and its derivative are 

defined as follows: 

𝑒1 = 𝑥5 − 𝑧𝑑 , �̇�1 = 𝑥6 − �̇�𝑑,                 (7) 

where 𝑧𝑑 is the reference altitude of a quadrotor.  

To converge the first error 𝑒1  to zero, The virtual 

altitude control input for 𝑥6 is defined by 

�̅�6 = −𝑘1𝑒1 + �̇�𝑑,                      (8) 

where 𝑘1 is a positive constant. 

Secondly, the second error 𝑒2  and its derivative are 

defined as follows: 

𝑒2 = 𝑥6 − �̅�6, �̇�2 = 𝑇1(𝜙, 𝜃) ∙ 𝑣1 − �̅�6̇.         (9) 

To converge the second error 𝑒2  to zero, The virtual 

altitude control input for 𝑣1 is defined by 

𝑣1 = 𝑇1(𝜙, 𝜃)
−1(−𝑘2𝑒2 + �̅�6̇ − 𝑒1),         (10) 

where 𝑘2 is a positive constant. 

For the invertibility of 𝑇1(𝜙, 𝜃), throughout the paper, 

we use the following assumption. 

 

Assumption 1: The attitude angles 𝜙, 𝜃, and 𝜓 satisfy 

the following conditions: 

‖𝜙, 𝜃, 𝜓‖ <
𝜋

2
(∀𝜙, 𝜃, 𝜓 ∈ ℝ) 

Therefore, based on the definition of 𝑣1 in (4) and (5), 

we can derive the actual altitude control input as follows:  

𝑢1 = 𝑣1 + 𝑔
𝑚

𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃
.                   (11) 

 

Theorem 1: Consider the altitude system (4) of a 

quadrotor controlled by the virtual and pseudo altitude 

control inputs (8), (10), respectively. Then, there exist the 

design parameters 𝑘1 and 𝑘2 such that the actual altitude 

control input (11) of a quadrotor asymptotically stabilizes 

the altitude system (4) of a quadrotor.  

Proof: Let us consider the following Lyapunov 

function candidate: 
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𝑉𝑧(𝑒1, 𝑒2) =
1

2
(𝑒1

2 + 𝑒2
2).               (12) 

Differentiating 𝑉𝑧(𝑒1, 𝑒2) with respect to the time and 

substituting (7) ~ (10), we obtain 

�̇�𝑧(𝑒1, 𝑒2) = 𝑒1(−𝑘1𝑒1 + 𝑒2) + 𝑒2(−𝑘2𝑒2 − 𝑒1) 

= −𝑘1𝑒1
2 − 𝑘2𝑒2

2 < 0(13) 

Therefore, by the Lyapunov stability theorem, the 

altitude system (4) of a quadrotor is asymptotically stable 

with the actual altitude control input (11).            

B. Position Control of a Quadrotor 

In this subsection, to realize the position control of a 

quadrotor, we define the variable �̃�1 , using the actual 

altitude control input 𝑢1, as follows: 

�̃�1 = 𝑇1(𝜙, 𝜃)𝑢1 =
𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃

𝑚
𝑣1 + 𝑔.         (14) 

To design the position control of a quadrotor, the 

dynamics of a quadrotor (2) can be rewritten in the state-

space form using the following states: 

𝑥1 = 𝑋, 𝑥2 = �̇�, 𝑥3 = 𝑌, 𝑥4 = �̇�. 

We obtain the (𝑥, 𝑦) position state-space equations of a 

quadrotor as follows: 

{

�̇�1 = 𝑥2

�̇�2 = 𝑢1(cosϕsinθcosψ + sinϕsinψ)/𝑚
�̇�3 = 𝑥4

�̇�4 = 𝑢1(cosϕsinθsinψ − sinϕcosψ)/𝑚

    (15) 

Rearranging these equations, we finally obtain the 

following position dynamics of a quadrotor as follows: 

{

�̇� = 𝑉

�̇� = �̃�1 [
𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜓
𝑠𝑖𝑛𝜓 −𝑐𝑜𝑠𝜓

] [
𝑡𝑎𝑛𝜃

𝑠𝑒𝑐𝜃𝑡𝑎𝑛𝜙
]

= 𝑇2(𝑒1, 𝑒2, 𝜙, 𝜃, 𝜓)𝑢𝑝

,        (16) 

where 𝑃 ∶= [𝑋 𝑌]𝑇 , 𝑉 ∶= �̇�.  𝑢𝑝  is the actual position 

control input vectors given by 

𝑢𝑝 = [
𝑢11
𝑢22

] = [
𝑡𝑎𝑛𝜃

𝑠𝑒𝑐𝜃𝑡𝑎𝑛𝜙
],                  (17) 

and 𝑇2(𝑒1, 𝑒2, 𝜙, 𝜃, 𝜓)  is the state transformation matrix 

given by 

𝑇2(𝑒1, 𝑒2, 𝜙, 𝜃, 𝜓) = �̃�1 [
𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜓
𝑠𝑖𝑛𝜓 −𝑐𝑜𝑠𝜓

].     (18) 

To design the position control input using 

backstepping technique, the third error vector 𝑒3 and its 

derivative are defined as follows: 

𝑒3 = 𝑃 − 𝑃𝑑 , �̇�3 = 𝑉 − �̇�𝑑,               (19) 

where 𝑃𝑑 is the target position vector of a quadrotor. 

To converge the third error 𝑒3  to zero, The virtual 

position control input vector for 𝑉 is defined by 

�̅� = −𝑘3𝑒3 + �̇�𝑑,                       (20) 

where 𝑘3 is a positive constant. 

The forth error vector 𝑒4 and its derivative are defined 

as follows: 

𝑒4 = 𝑉 − �̅�, �̇�4 = 𝑇2(𝑒1, 𝑒2, 𝜙, 𝜃, 𝜓)𝑢𝑝 − �̇̅�.    (21) 

To converge the forth error vector 𝑒4 to zero, the actual 

position control input vector 𝑢𝑝 is defined by 

𝑢𝑝 = 𝑇2(𝑒1, 𝑒2, 𝜙, 𝜃, 𝜓)
−1(−𝑘4𝑒4 + �̇̅� − 𝑒3),   (22) 

where 𝑘4 is a positive constant. 

 

Theorem 2: Consider the position system (15) of a 

quadrotor controlled by the actual position control input 

(22). Then, there exist the design parameters 𝑘3  and 𝑘4 

such that the actual altitude control input (22) of a 

quadrotor asymptotically stabilizes the position system 

(15) of a quadrotor.  

 

Proof: Let us consider the following Lyapunov function 

candidate: 

𝑉𝑝(𝑒3, 𝑒4) =
1

2
(‖𝑒3‖

2 + ‖𝑒4‖
2).               (23) 

Differentiating 𝑉𝑝(𝑒3, 𝑒4) with respect to the time and 

substituting (19) ~ (22), we obtain 

�̇�𝑝(𝑒3, 𝑒4) = 𝑒3(−𝑘3𝑒3 + 𝑒4) + 𝑒4(−𝑘4𝑒4 − 𝑒3) 

= −𝑘3‖𝑒3‖
2 − 𝑘4‖𝑒4‖

2 < 0.(24) 

Therefore, by the Lyapunov stability theorem, the 

position system (15) of a quadrotor is asymptotically 

stable with the actual position control input (22).         

The motion along the 𝑥  and y  axes is related to the 

pitch and roll angles, respectively. The reference roll(𝜃𝑑) 
and pitch (𝜙𝑑)  angles of a quadrotor that enable a 

quadrotor to converge in the desired position are obtained 

from the position control input 𝑢𝑝  designed in the 

subsection 3.2 [12, 13]. Therefore, the reference roll(𝜃𝑑) 
and pitch(𝜙𝑑) angles are obtained by using the position 

control input (17) as follows: 

{
𝜃𝑑 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑢11)

𝜙𝑑 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑢22

𝑠𝑒𝑐𝜃𝑑
)
.                   (25) 

 

C. Attitude Control of a Quadrotor 

In (3), the attitude dynamics about roll movement can 

be rewritten in the state-space form using the following 

states: 

𝑥7 = 𝜙, 𝑥8 = �̇�. 

We have the attitude about roll movement state-space 

equation of a quadrotor as follows: 

{
�̇�7 = 𝑥8

�̇�8 = 𝑓1 +
𝑢2
𝐼𝑥𝑥
                    (26) 

where 𝑓1 = �̇��̇�
(𝐼𝑦𝑦−𝐼𝑧𝑧)

𝐼𝑥𝑥
−

𝐽

𝐼𝑥𝑥
�̇�Ω𝑟. 

As in the case of altitude control, to design the attitude 

about roll movement control input using backstepping 

technique, the roll error 𝑒7 and its derivative are defined 

as follows: 
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𝑒7 = 𝑥7 − 𝜙𝑑 , �̇�7 = 𝑥8 − �̇�𝑑,             (27) 

where 𝜙𝑑 is the reference roll angle of a quadrotor. 

The virtual control input about roll movement �̅�8  is 

defined by 

�̅�8 = −𝑘7𝑒7 + �̇�𝑑,                     (28) 

where 𝑘7 is a positive constant. 

The eighth error 𝑒8  and its derivative are defined as 

follows: 

𝑒8 = 𝑥8 − �̅�8, �̇�8 = 𝑓1 +
𝑢2
𝐼𝑥𝑥

− �̅�8̇,           (29) 

To converge the second error 𝑒8  to zero, The actual 

control input about roll movement 𝑢2 is defined by 

𝑢2 = 𝐼𝑥𝑥(−𝑘8𝑒8 − 𝑓1 + �̅�8̇ − 𝑒7),          (30) 

where 𝑘8 is a positive constant. 

Similarly, the actual control inputs about pitch and yaw 

movement 𝑢3 and 𝑢4 are defined by 

𝑢3 = 𝐼𝑦𝑦(−𝑘10𝑒10 − 𝑓2 + �̅�10̇ − 𝑒9),          (31) 

𝑢4 = 𝐼𝑧𝑧(−𝑘12𝑒12 − 𝑓3 + �̅�12̇ − 𝑒11),          (32) 

where 𝑘10  and 𝑘12  are positive constants, 𝑓2 =

�̇��̇�
(𝐼𝑧𝑧−𝐼𝑥𝑥)

𝐼𝑦𝑦
−

𝐽

𝐼𝑦𝑦
�̇�Ω𝑟 , 𝑓3 = �̇��̇�

(𝐼𝑥𝑥−𝐼𝑦𝑦)

𝐼𝑧𝑧
, and virtual 

control inputs about pitch and yaw movement �̅�10 and �̅�12 

are defined by 

�̅�10 = −𝑘9𝑒9 + �̇�𝑑,                      (33) 

�̅�12 = −𝑘11𝑒11 + �̇�𝑑,                  (34) 

where 𝜃𝑑, 𝜓𝑑 are the reference pitch and yaw angles of a 

quadrotor, respectively, and 𝑘9, 𝑘11 are positive constants.  

The stability proof for the quadrotor attitude system is 

derived the same as in Theorem 1, by the Lyapunov 

stability theorem, the attitude system in (3) is asymp-

totically stable with the attitude control inputs (30) ~ (32). 

IV. SIMULATION RESULTS AND ANALYSIS 

In order to verify the effectiveness of the proposed 

position controller of a quadrotor using state 

transformation technique, we perform some computer 

simulations. The dynamics (3) of a quadrotor is employed 

in the simulations. The simulation is performed with the 

following parameters presented in Table 1. In addition, 

the sampling time was fixed at 0.01 [s] for simulation. 

TABLE I.  THE SIMULATION PARAMETERS. 

Parameter Value 

m 1.0 [kg] 

g 9.806 [m/𝑠2] 

𝐼𝑥𝑥 , 𝐼𝑦𝑦 2.3× 10−3[kg ∙ 𝑚2] 

𝐼𝑧𝑧 5.09× 10−3[kg ∙ 𝑚2] 

J 6.5× 10−5[kg ∙ 𝑚2] 

 

In this simulation, we compare the performance of the 

position control using SAA with that of the proposed 

method using state transformation technique when 

deriving the reference angles for position control. Here, 

SAA means to assume that the range of roll and pitch 

angles of a quadrotor are small. In this simulation, the 

ascending circular trajectory is set as the reference 

trajectory, and the initial position of a quadrotor is 
(x, y, z) = (0, 1, 0)[m]. 

The control performance depends on several gains. 

Therefore, selection of the gain is important for the 

proper performance comparison. To select the proper 

gains, the range of the reference attitude angle and the 

magnitude of the altitude input should be similar between 

two cases. Since, the range of the reference attitude 

angles for the position control changes according to the 

gains for position control. 

 

Figure 2.  Backstepping based position control with state 
transformation technique (720-degree circular trajectory) 

 

 

Figure 3.  The reference angles for the backstpping based position 
control (720-degree circular trajectory) 

 

Figure 4.  PD position control with small angle assumption (720-

degree circular trajectory) 
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Figure 5.  The reference angles for the PD position control (720-degree 
circular trajectory) 

Figs. 2 and 3 show the simulation results obtained by 

applying the backstepping based position control of a 

quadrotor with state transformation technique. And Figs. 

4 and 5 show the simulation results for the position 

control by applying PD controller with SAA. As shown 

in Figs. 2~5, there is no significant difference between 

two cases when the reference angles for the position 

control are small. 

Figs. 6 and 7 show the simulation results for 2160-

degree circular trajectory obtained by applying the 

backstepping based position control of a quadrotor with 

state transformation technique. And Figs. 8 and 9 show 

the simulation results for 2160-degree circular trajectory 

for the position control by applying PD controller with 

SAA. As shown in Figs. 7 and 9, the larger reference 

angles are required to track the circle trajectory faster. 

When the change of the attitude angle is large, in the case 

of deriving the reference angle using SAA, the position 

tracking control performance is degraded as shown in Fig. 

8. On the other hand, when the reference angles for 

position control are derived using the proposed state 

transformation technique, the position tracking control 

performance is better as shown in Fig. 6. From the 

simulation rusults, we verify that the proposed position 

control method is effective and efficient. 

 

 

Figure 6.  Backstepping based position control with state 
transformation technique (2160-degree circular trajectory) 

 

Figure 7.  The reference angles for the backstpping based position 
control (2160-degree circular trajectory) 

V. CONCLUSIONS 

In this paper, we focused on the state transformation 

technique for the position control of a quadrotor. First, we 

derived the dynamics of a quadrotor using the Newton-

Euler formulation. Then, we presented backstepping 

based position control of a quadrotor by using state 

transformation technique. The stability analysis based on 

Lyapunov theorem showed that the proposed control 

method resulted in the asymptotically stability. Finally, 

from the simulation results, we verified that the proposed 

position control method is effective and efficient. 
 

 

 

Figure 8. 

 

PD position control with small angle assumption (2160-

degree circular trajectory)  
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Figure 9.  The reference angles for the PD position control (2160-
degree circular trajectory) 
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