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Abstract—A magnetic levitation ball (MLB) is required to 

operate over large variations in the air gap. Specifically, it 

may be difficult to design a linear controller that can 

provide satisfactory performance, stability and disturbance 

rejection over a wide range of operating points. 

Conventional controllers with the linearisation of a 

nonlinear system exhibit a low-efficiency control 

performance. To simplify a complex control system, in this 

paper, we analyse the robustness and stability of 

disturbance for a magnetic levitation system using Jacobian 

linearisation from the equilibrium point, by adding one 

integrator in an open-loop model and servo control system 

design with a state observer. The experimental results show 

that this method can be effectively controlled by dynamic 

response criteria of the control system. 

 

Index Terms—MLB, stability, linearisation, servo, observer. 

 

I. INTRODUCTION 

Many physical systems are nonlinear in their behaviour 

and exhibit nonlinear responses. Many designs work 

satisfactorily with such linearised system models. The 

problem is viewed as trying to follow moving targets. 

Most of the problems that may be described as the servo 

type come from a field other than chemical industry. 

Tracking of missiles and aircraft and the automatic 

machining of intricate parts from a master pattern are a 

well-known example of the servo problem. 

The control area, the task of the nonlinear system, is 

one of the major problems owing to the complex 

behaviour, coupling, control and stability requirement. 

The robustness and stability of the nonlinear system have 

been widely studied [1]. Magnetic levitation ball (MLB) 

systems are inherently open-loop unstable systems and 

rely on feedback control for producing the desired 

levitation action. They are highly nonlinear and open-

loop unstable systems. An unpredictable aspect of the 

MLB and its inherent nonlinearities make the modelling 

and control problems very challenging. Linear system 

models only work well over a small region of the 

operating point. The tracking performance of the linear 

control strategies rapidly deteriorates with the increase in 

deviations from the nominal operating point. Several 

approaches ensure the consistency of using independent 

operating points, which have been reported in the 

literature. After that, several methods have been proposed 
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to solve this problem. In particular, some useful methods 

and linearisation techniques have been developed. 

Nonlinear control [2, 3], sliding mode control [4], neural 

networks [5], fuzzy logic control [6], which include 

linearisation, small gain theorem, Lyapunov theory, 

backstepping and feedback are all very successful [7, 8]. 

This paper is organised into five parts as follows. The 

first part presents an introduction to control systems and 

problems of the MLB system. The second part treats the 

mathematical modelling of the MLB system that is shown 

in the state-space model and the development of a 

linearisation technique for the MLB. The third part 

illustrates the design and compensation technique using a 

servo system with a state observer. The fourth part shows 

an experimental setup and discusses the experimental 

results of the MLB system that can control the distance of 

the permanent magnet ball and examines the stability of 

the monitoring system. Finally, the last part concludes the 

discussions on the control system design for the MLB 

system. 

II. THE MLB SYSTEM 
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Figure 1.  A schematic (A) and a free-body diagram (B) of an MLB 
system. 

MLB is a magnetic ball suspension system that is used 

to levitate a steel ball in the air by electromagnetic force 

generated by an electromagnet. The force (current 

function) and the air gap relationship of magnetic 

suspensions are nonlinear, which places significant 

demands on the control techniques used in magnetic 

suspensions. The current technology in many magnetic 

bearings limits the travel of the actuator to a small region 

around a nominal operating point in the magnetic field. 

These narrow gap devices employ linear control 

strategies that are based on the Taylor series expansion of 
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the actual nonlinear force distribution at the nominal 

operating point. 

The equations of the levitation object [9] are derived 

from Newton’s second law of motion and Kirchhoff’s 

voltage law. A schematic diagram is shown in Fig. 1. The 

damping force caused by the interaction of air and the 

levitation object is neglected. The equation of motion for 

the levitation object and the voltage across the Hall-effect 

sensor induced by the levitating magnet can be written as 

 

2

3 2
,  d

i d y di
mg k f m u Ri L

y dt dt
     , (1) 

where y  is the vertical position of the levitating 

magnet measured from the bottom of the electromagnet, 

m  is the mass of the permanent magnet ball, g  is the 

acceleration due to gravity and fd is the disturbing force 

of field strength when k  is a constant that depends on the 

geometry of the magnetic field strength. R  and L  are the 

resistance and inductance of the coil, respectively, i  is 

the current through the electromagnet and u  is the 

control input.  

Let  

   1 2 3

T T
x x x x y y i   

be the state of the system, z  be the controller output and 

v  be the measured output of the electromagnet, which are 

a function of constants that depend on the Hall-effect 

sensor 
0 1 2,   and c c c , respectively, which can be written 

in the state equation as follows: 
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where b  is the input vector with the Jacobian disturbing 

vector force d  and ( )f x is called the system vector of the 

MLB system.  

Such a linear system is equivalent to the nonlinear 

system considered within a limited operating range. We 

developed what is known as Jacobian linearisation of a 

nonlinear system. We can linearise the equilibrium point 

of the system as follows: 
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 (3) 

We then defined u0 as the equilibrium electromagnet 

voltage to suspend the levitating magnet at x1,0 = z0. Note 

that there is a unique equilibrium point, that is, 
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 (4) 

where A , B  and C  are called the system matrix, the 

input vector and the output vector of the Jacobian, 

respectively. 
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T

x x x x x x      x  

is a state vector at equilibrium, 
0u u u    is the voltage 

control and 
0z z z    is the output of the MLB system. 

In the next part, we will present state-space 

representations of system (4) in a controllable canonical 

form: 
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The eigenvalues of the matrix, det( ) 0 sI A , are the 

values of s ; one of the poles is in the right-half-plane 

(RHP). It has a positive real part, which means the system 

is unstable in the open loop. 

II. SERVO CONTROL BASED ON STATE OBSERVER  

 

kI

ObserverK

Servo Controller

-+-+

-
+

KO

u

ˆx

Magnetic 

Levitation

z

ˆz

ref e e

Oe

1

s

 
Figure 2.  A schematic of a state feedback servo system on a state 

observer. 

A controller design using state-variable feedback is 

used to create or test the function of the control design. It 

must contain information on all signals of the state vector 

of the system. However, conventional systems can 

measure the state variables using control state estimation. 

Different methods are used to design an observer that is 

used to estimate the state variables of the system fast and 

correctly. 
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In this section, we discuss the pole placement approach 

for the design of type servo control (integral control) [10]. 

Here, we will limit our systems to have a control signal δu 

and output δz. If the MLB system has no integrator (type 0 

plant), the principle of the design of a servo control will be 

to insert an integrator in the feed-forward path between 

the error comparator and the MLB plant, as shown in Fig. 

2. Using a state observer, the control and estimation of the 

system’s state variables need to ensure that the system 

exhibits controllability and observability. We can 

determine an nth-order completely controllable system if 

the controllability matrix is available [see Eq. (4)]. The 

observation of the system without disturbances can be 

represented as follows: 
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which can be rewritten as 

 O O O
   e A K C e  (6) 

where ˆ
O   e x x

 
is the difference ( 0O e ). If the dual 

system is completely controllable, then the state feedback 

gain 
OK

 
can be determined. Consequently, the matrix 

OA K C
 
yields a set of the desired eigenvalues. A set of 

1,o 2o  
and 

3o  are the selected eigenvalues for the 

state observer matrix, resulting in an effective 

observation of the state of the variables. As a general 

rule, the observer poles must be faster than the controller 

poles in order to ensure that the observation error 

converges to zero quickly. Thus, we obtain 

 1 2 3( )( )( )O s o s o s o       sI A K C  (7) 

To design a control law with feedback servo control, 

the observation is given by 

 ˆ
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 ˆ
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where e  is a signal at the output of integrals,
ref

 
is the 

input reference, Ik  is an integral gain of servo control 

and 

1 2 3[ ]K K KK  

is the gain state feedback matrix from the observer. 

The system can be described by an equation that is a 

combination of Eqs. (5) and (9):  
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We designed an asymptotically stable system [11]. The 

linear state feedback controls laws (8) and (10) can be 

rewritten as follows: 
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For all eigenvalues of Â , if  1 2 3 4, , , < 0,   Re  

then the equilibrium point is asymptotically stable, where 

P  is a positive definite symmetry solution of the Riccati 

algebra matrix equation, which is given by 

 ˆ ˆ ˆ ˆT T   PA A P PBB P Q  (13) 

Substituting the linear state feedback control law (11) 

into the new linearisation system (12), we can see that 

  ˆ ˆ T  X A B P X R  (14) 

We can form a Lyapunov function as follows: 

 ( ) TV X X PX  (15) 

Then, along the trajectory of system (15), its derivative 

is 
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Let 
1 22  and T T T T    V X QX X PR V X PBB X .  

We should know the function R that satisfies 
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where 0 , ref ref        and 
ref   and 

ref   are the 

minimum and maximum reference for control, 

respectively. According to the matrix theory, we should 

know 
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where P and Q are symmetric positive definite matrices 

and 2

min max( ) and ( ) Q P  are positive. Thus, we can 

have 

 
1 0V  (18) 

Combining Eqs. (17) and (18), we know that 0V  is 

asymptotically stable. 

III. SERVO CONTROL SYSTEM DESIGN  

In this section, we consider an MLB system using the 

pole placement based on Riccati matrix for warranting 
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asymptotical stability using the observer approach. We 

use the following design procedure: 

1. A state-space model of the MLB system (2).  

2. Obtain the mathematical model of the MLB system 

using Jacobian linearisation, which is stated in a 

controllable canonical form (4). 

3. Prove the observability condition by determining 

the desired observer poles (closed-loop poles) for 

pole placement and calculate the observer gains (7). 

4. Prove the controllability condition by choosing a 

matrix Q with a new linearisation system (12). 

5. Solve Eq. (13), the matrix Riccati equation, to 

obtain the matrix P, and substitute this matrix P into 

Eq. (11) to solve matrix K̂ , which is an optimal 

matrix. 

The considered system rank 2[ : : ( ) ]T T T T T
C A C A C

 
is 

3. Thus, this system is observable. The design consists of 

a gain matrix of the observer, which has to be determined. 

We make such a choice because a set of closed-loop 

poles result in a reasonable or acceptable transient 

response. The specifications and system parameters of the 

proposed MLB system are listed in the Table I. 

TABLE I.  PARAMETERS OF THE MAGNETIC LEVITATION SYSTEM.  

Description Parameters Value Unit 

Magnetic coil    

Mass of ball 

(barium-strontium) 
m 41.30 × 10−3 kg 

Resistance R 1.71 Ω 

Inductance L 15.10 × 10−3 H 

Electromagnetic 

constant 
k 3.10 × 10−6 kg·m5/s2/A 

Hall-effect sensor    

Output voltage 

(equilibrium) 
u0 1.79 V 

Sensor gain c0 2.48 V 

 c1 4.25 × 10−4 V·m2 

 c2 0.31 V/A 

In the conventional approach to design a SISO system, 

we designed a compensator where the dominant closed-

loop poles have the desired damping ratio ζ and natural 

frequency ωn. In this approach, we assume that the effects 

on the responses of nondominant closed-loop poles are 

negligible. We have the pole of the observer at 

1,2 3210 42  and 200o i o      , which can be written 

in a characteristic equation as follows: 

3 2 5 6620 (1.2986 10 ) 9.1729 10 0s s s       

The gain matrix of the observation yielded 

O sI A K C , which is equal to zero and can solve the 

matrix gain observer as follows: 

 0.0067 1.2367 13.0654 .
T

O K  

The next step is to verify the controllability of the 

system. The new system’s rank 2 3ˆ ˆ ˆˆ ˆ ˆ ˆ[ : : ( ) : ( ) ]B AB A B A B

is 4. Thus, this system has the ability Q  of the arbitrarily 

positive defined matrix to control the design matrix gain 

of the controller.
 

310 IQ  

We used MATLAB to compute the matrix Riccati 

equation, in order to obtain the matrix P.  

9
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5 4
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2.1123 10

5.6018 10 1.8507 10  Symmetric

3.9428 10 1.2157 10 85.3441

3.3794 10 2.1352 10 31.6228 201.8905
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P
 

The resulting matrix 

5ˆ 10 [3.9428 0.1216 0.0009 0.0003]  K  

is the optimal matrix. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION  

The experiment setup of the MLB system is shown in 

Fig. 3 on an electrodynamic shaker system. The MLB 

system is manufactured by Zeltom LLC [12]. This system 

consists of an electromagnet, a permanent magnet ball, a 

Hall-effect sensor, a data acquisition analogue-to-

digital/digital-to-analogue (AD/DA) board and a control 

computer. The Hall-effect sensor is connected to one of 

the analogue inputs of a RABCON control board, and the 

electromagnet is driven by one of the H-bridges of the 

same board. Two forces act on the steel ball: gravity and 

the electromagnetic force from the coil. Additionally, the 

system is connected to a computer with a PCI serial card 

that can implement the controller in a Simulink model. 

The control circuitry consists of a set of power supplies 

and amplifiers connected to a control computer. The 

control computer has a dedicated digital signal processor, 

programmed through it. The power supplies and 

amplifiers receive the signal from the position sensor and 

send power to the actuator. Input and output boxes wired 

to the AD and DA converters on the computer allow the 

power electronics and the computer to talk to each other.  

Here, we achieved real-time operation with a sampling 

rate of 2.048 kHz. Comparisons also highlighted the 

importance of servo controller procedures and 

investigated the boundary stability of control system on 

the observer from position control to be provided to 

demonstrate effectiveness. 

A. Examining the Stability of the Control System  

The operation of experimentation must define the 

boundary conditions and the function of each control type. 

The ramp signal is the condition of reference input to 

trace the performance of the servo controller for 

controlling the MLB system as follows: 
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Figure 3.  Experiment setup of the MLB system. 

17.9  150ref t   mm. 

Ten seconds from a set point until the magnet is out of 

control and can be defined as the lower and upper limit 

boundary of the control system as shown in Figs. 4 and 5. 

The signal can adapt to the reference input signal, which 

is a linear relationship. 
 

 

Figure 4.  Stability of the upper boundary. 

 

Figure 5.  Stability of the lower boundary. 

B. Tracking Responses 

The experimental result demonstrates the effects that 

respond to the dynamics of the system when there is a 

change in the input step without external force 

interference. The reference system is the input signal. The 

system functions by allowing signals in the voltage to 

enter into the induction coils to generate a magnetic field, 

and the levitating ball responds to the input signal.  

 

Figure 6.  Responding to Case 1. 

 

Figure 7.  Responding to Case 2. 

 

Figure 8.  Responding to Case 3. 
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The test responses to the step input and the sinusoidal 

input references are as follows: 

 Case 1. Set point at 17.9 mm and increase by 

0.5 mm, every 10 s, and then return to the set 

point. 

 Case 2. Change the sinusoidal range for high 

frequencies. Amplification is functionalities at  

t > 10 s from the set point:  

17.9 + 150sin(0.4 )ref t t  mm. 

 Case 3. Similarly, the sinusoidal variation range 

in Case 2 is changed to be sin(0.2 )t mm. 

 

Figs. 6, 7 and 8 show the response caused by the 

operation of the servo controller with a state observer. 

The observation state estimates the state of a variable of 

the system to use in feedback for effective control. The 

following behaviour of observation is consistent with the 

actual system and responds in the same direction. The 

lifting of the magnetic ball is swung with a harmonic 

because of the nature of the system. The signal must be 

controlled in the manner of a harmonic magnetic force to 

keep the displacement of the lifting of magnetic levitation.  

C. Robust Disturbance 

In the final test, the experimental result with a 

disturbance response was studied with the response effect 

to the dynamics of the system when there is a change of 

the external force interference. The reference system is 

the input signal. The system functions by allowing signals 

in the voltage to enter into the induction coils, and the 

levitating ball responds to the input signal at  the 

equilibrium point. This regulation is controlled within the 

range of the linear boundaries as mentioned in the 

previous section. The disturbance of response shown in 

Fig. 9 is a sinusoidal function with a peak amplitude of 

±1.5 mm and ramped at t > 10 s from the set point. This is 

considered the robust external interference that occurred. 

Figure 10 shows the response of the servo controller with 

the disturbance. As a result, servo controllers are also 

robust to external disturbances. 

 

 

Figure 9.  Responding to disturbance. 

The fundamental feature of the system is nonlinearity, 

as well as instability. Therefore, controls have a dramatic 

effect on the effectiveness of the system response. On the 

contrary, the servo controller has advantages regarding its 

ability to track the input reference. According to types, 

this control is an integral component that increased the 

system type and reduces error values at equilibrium. The 

responsiveness of the system needs to meet the 

requirements of the users, and it needs to be robust to 

external disturbances under control conditions such as 

limited settings, and the error at the equilibrium point 

must be zero. The state observation of the system can also 

substitute the sensing instruments effectively.  

 

 

Figure 10.  Response of the servo controller with a disturbance. 

The servo techniques is also becoming increasingly 

applicable in the industry, which places significant 

demands on accurate positioning. Moreover, it proved 

superior to other approaches, such as precision motion 

control systems, since it provides large travel, high 

bandwidth and high accuracy (limited only by the sensing 

technology). An additional advantage of this techniques 

can apply to operate a precision work and a noncontact 

actuator such as the magnetic bearing system, 

transportation, magnetic suspension, vibration isolation, 

etc.  

V. CONCLUSIONS  

The MLB system is a nonlinear, dynamic, open-loop, 

unstable system. The control system design for the MLB 

system should be uncomplicated and easy to use. In this 

paper, we demonstrated examining the stability and servo 

control system design with a state observer. The 

mathematical model of the MLB system was linearised 

on the basis of Jacobian linearisation with the equilibrium 

point. The selected linearised model of the MLB system 

is used to design a controller for suspending the magnet 

ball away from the electromagnet. In addition, these 

closed-loop poles correspond to the desired poles in the 

Lyapunov theory via the estimation of immeasurable state 

variables using a state observer. The experimental results 

verified the robustness and stability of disturbance. 
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