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Abstract—Modeling the frictional performance of a brake 

pad material is difficult and requires the use of complex 

numerical models. The current work utilizes one of the 

Artificial Intelligence techniques, least squares support 

vector machine (LS-SVM), to model the nonlinear 

relationships between the input braking conditions and the 

frictional and thermal performance of previously developed 

noncommercial brake pad materials. Experimental data 

were produced and used in training and testing the proposed 

LS-SVM models. The results indicate that LS-SVM 

constitutes a robust methodology and the proposed models 

could be used to predict the friction coefficients and the 

induced interface temperature of brake pad materials in 

order to reduce experimental time and cost. 

 

 

Index Terms—Support vector machine, regression, friction 

performance, brake pad materials, material informatics, 

machine learning. 

 

I. INTRODUCTION 

In automotive braking systems, brake pads slow down 

the car’s speed by transforming kinetic energy into 

frictional heat at the interface between the brake pad and 

the rotor disc. Whenever a brake-related problem arises, 

brake pads are always to blame. This is because brake 

pads appear to be more vulnerable to severe braking 

conditions, such as pedal pressure, vehicle speed, and disc 

temperature, as well as dry and wet environmental 

conditions [11]. Accordingly, frictional brake pad 

materials should maintain a relatively high, stable, and 

reliable friction coefficient at a wide range of braking 

conditions, irrespective of temperature, humidity, age, and 

degree of wear and corrosion, among others. Frictional 

performance and temperature are commonly evaluated 

through expensive and time-consuming experiments. In 

other words, this process requires developing frictional 

materials, selecting a test setup, conducting experiments, 

and evaluating the results. Therefore, researchers 

nowadays rely on alternative approaches, such as 

numerical modeling methods, to minimize the time 

consumption and cost. However, modeling the frictional 
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properties of brake pad materials is difficult and requires 

the use of complex numerical models.  

Recently, machine learning techniques have been used 

as a powerful technique in the field of material science for 

modeling complex nonlinear relationships. These 

techniques were utilized to predict the tribological 

properties of some materials when they are exposed to 

various conditions, such as different heat conditions and 

load. In addition, they were used in guiding the 

development of new composite materials with previously 

specified mechanical properties.  

Artificial neural networks (ANNs) are one of the 

popular machine learning techniques that have been used 

in the field of material science. Leifer [18] trained an 

ANN to predict the pit depth of aluminum alloy 1100 

when subjected to natural water corrosion. In [12, 13, 19], 

ANN, genetic algorithm–ANN (GA-ANN), and fuzzy 

ANN models were trained to predict the fatigue 

performance of precorroded specimens of aluminum 

alloys. Rathod [23] used ANNs to predict the tribological 

behavior of cast Al6061-Si3N4 composites. The cast 

composites were developed by the stir casting method and 

its tribological behavior was experimentally evaluated 

using a pin-on-disc tribometer adopting loads and sliding 

velocities in the ranges of 20–100 N and 0.314–1.5740 

m/s, respectively. The predictions of friction coefficients 

and wear rates of cast composites by ANNs were very 

close to the experimental data. Grzegorzek [15] used feed-

forward back propagation ANNs to predict the friction 

coefficient in disk brakes using different material 

compositions subjected to different conditions. Aleksendri 

[1] used the GA-ANN to stabilize and optimize the brake 

performance during a braking cycle by controlling the 

brake hydraulic pressure level. The ANN predicts the 

braking torque at the change of the brake actuation 

pressure, whereas the GA is used for the optimization of 

the brake actuation pressure in order to obtain the desired 

level of braking torque. 

Support vector machines (SVMs) are another machine 

learning technique that is currently dominating ANNs and 

is widely used in classification and regression. SVMs 

provide a global solution and are less prone to overfitting, 

whereas ANNs can suffer from multiple local minima. 



 

  

 

 

 

  

   

           

    

 

 
        

 

 
 

 

 

 

  

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

106

International Journal of Mechanical Engineering and Robotics Research Vol. 7, No. 2, March 2018

© 2018 Int. J. Mech. Eng. Rob. Res.
 

SVMs were first introduced by Vapnik [29] to solve 

binary classification problems, and then they were 

extended to nonlinear regression problems. SVMs are 

based on structural risk minimization, unlike ANNs that 

are based on empirical risk minimization, and they use a 

nonlinear mapping to transform the input data into a 

multidimensional feature space. After this transformation, 

the SVM finds the best hyperplane inside the feature space. 

The nonlinear mapping depends on the so-called kernel 

function. 

Ampazis [2] utilized SVMs to predict the degradation 
of the mechanical properties, due to surface corrosion, of 
the Al2024-t3 aluminum alloy used in the aircraft industry. 
Fang [14] used least squares support vector machine (LS-
SVM) in simulating and monitoring the aging process of 
Al-Zn-Mg-Cu series alloys. Abuomar [3] used SVMs to 
analyze and classify a large dataset of vapor-grown carbon 
nanofiber/vinyl ester nanocomposites into three classes of 
desired mechanical properties, which are high storage 
modulus, high true ultimate strength, and high flexural 
modulus. Hou [16] trained SVMs to model the 
relationships between the heat treatment (heating 
temperature and heating period) and the mechanical 
properties of Tc4alloy  (i.e., tensile strength, yield strength, 
and elongation). The accuracy of the SVM model reached  
95%. Dong [8] used SVMs and ANNs to model the 
complex relationship between geological factors and 
mechanical behaviors of rocks. The results showed that 
the SVM model outperforms the ANN model. Martinsa 
[20] developed three models based on multiple regression 
(MR), ANN, and SVM to predict the mechanical 
properties (uniaxial compressive strength and deformation 
modulus) of Oporto granite. The SVM model showed the 
most accurate prediction results. 

The objective of this paper is to develop two 
independent models for one of the previously developed 
noncommercial brake pad materials, based on the LS-
SVM technique. The first model will represent the 
relationship between the input braking conditions and the 
friction force, whereas the second model will represent the 
relationship between the input braking conditions and the 
induced interface temperature. The developed models 
should be able to predict the frictional behavior of the 
material with minimum cost and time. 

This paper is organized as follows. Section 2 discusses 
the methodology, which includes the process of 
developing the noncommercial materials, the testing 
experiments to gather the dataset required to train the 
proposed models, and the training process of the LS-SVM 
models. Section 3 discusses the results. Finally, Section 4 
concludes the paper. 

II. METHODOLOGY 

A. Material Experiments and Data Gathering 

1) Frictional Materials 

A great deal of effort has been made to improve the 

friction performance of brake rotors, including the 

development of nonferrous materials such as copper alloys, 

aluminum metal matrix composites, and carbon 

composites as new candidates. However, gray cast iron 

materials are still commonly used to fabricate frictional 

brake rotor discs because of their excellent damping 

capacity, high thermal conductivity, and, in particular, low 

cost and relative ease of casting and machining [10, 11]. 

Thus, gray cast iron (GCI) of Flocast 4E grade was chosen 

as the rotor disc used in the experiments [11]. The 

chemical composition of the GCI rotor disc is given in 

Table I. 

TABLE I. CHEMICAL COMPOSITION (VOL.%) OF GCI. 

Material   

 C Si Mn S Cr Cu P Mo Ti Fe 

GCI 
3.0-

3.8 

1.8-

2.2 

0.2-

0.4 

 0.04 

max 
 0.01  0.01  0.07  0.01 

 0.15-

0.25 

  

Bal
. 

 Brake pad materials are usually fabricated from a 

phenolic resin binder with the addition of mineral fibers, 

fillers, friction modifiers, abrasives, and metallic particles 

to modify the heat flow characteristics [11]. In previous 

work [11], four different base matrices of noncommercial 

materials (NF1, NF2, NF4, and NF5) were designed and 

manufactured, that is, non-asbestos semimetallic materials 

containing ten different ingredients. These ingredients 

comprise fiber reinforcements, binders, friction modifiers, 

solid lubricants, abrasives, and fillers. The relative 

amounts and types of these ingredients are given in Table 

II. The noncommercial frictional materials were 

manufactured by dry mixing, preforming, hot press 

molding at 2,500 psi and 180°C, postcuring, and heat 

treatment. All noncommercial frictional materials were 

manufactured at CL Industries Sdn. Bhd. for brake pad 

manufacturing, Malaysia.  

2) Preparation of Specimens 

In the literature,  numerous test methods have been 

developed  for evaluating friction brake pad materials. 

These methods range  from small coupon rub tests to full-

sized vehicles, on the road tests.. For this work, specimens 

of size 9.5 mm × 9.5 mm × 20 mm were machined from 

noncommercial brake pad plates of size 250 mm × 250 

mm × 20 mm by Mazak CNC milling machine (Fig. 1). 

TABLE II. THE INGREDIENTS OF THE NONCOMMERCIAL FRICTION 

BRAKE PAD MATERIALS (VOL.%). 

Raw materials            Sample code 

NF1 NF2 NF4 NF5 

Metal fiber 

    Steel fiber 

 

15 

 

20 

 

15 

 

20 

Friction modifiers 

    Brass 

    Cashew dust 

 

6 

10 

 

6 

10 

 

6 

10 

 

6 

10 

Solid lubricant 
    Graphite (C) 

 
8 

 
8 

 
8 

 
8 

Abrasive  

    Zircon (ZrSiO4) 

 

3 

 

3 

 

3 

 

3 

Binder (matrix) 

    Phenolic resin 
    Rubber (SBR) 

 

20 
- 

 

15 
- 

 

20 
10 

 

15 
10 

Organic fiber 
    Aramid pulp 

 
10 

 
10 

 
- 

 
- 

Fillers, reinforcements 
    CaCO3 

    BaSO4 

 
8 

20 

 
8 

20 

 
8 

20 

 
8 

20 
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Fig. 2 shows the microstructure of the polished cross 

section of the developed noncommercial friction brake 

pad material. The complexity of this proprietary friction 

material is clearly visible in the mixture of shiny metallic 

constituents and nonmetallic particles within a polymeric 

binder. From the figure, it is clear that NF2 and NF5 show 

a relatively higher percentage of steel and brass elements 

(shining elements), whereas NF1 and NF4 contain a high 

percentage (20%) of phenolic resin (dark phases). 

 

Figure 1. Friction brake pad materials [11]: (a) noncommercial brake 

pad material, (b) commercial brake pad, (c) the prepared brake pad 
specimens, and (d) specimen’s dimensions. 

 
Figure 2. Microstructure of frictional materials [11]: (a) NF1, (b) NF2, 

(c) NF4, and (d) NF5. 

 

3)  Friction Test Procedure 
A small-scale tribotester is designed to work at a low 

and moderate brake nominal pressure (up to 2.22 MPa) 
and speed (up to 2.1 m/s). These braking conditions were 
chosen to simulate the brake applications needed to 
maintain a specimen and the rotor disc. 

4) Temperature Measurements 
The rotor disc’s temperature was measured during dry 

tests using a noncontact infrared (IR) thermometer 
(Infrared Thermometer SUMMITTM SIR10B series, 
accuracy: ±2% of reading). The infrared thermometer was 
placed approximately 8 cm away from the trailing edge of 
the friction material (specimen), focusing on the rotor disc 
as illustrated in Fig. 3. Prior to the actual test, the IR 
thermometer was calibrated by heating up the counter face 
and using a surface thermocouple. However, the 
emissivity of the cast iron was changed because of a 
transfer film that developed on the wear track, and hence 
the accuracy of IR temperature should be considered as 
approximate. Besides that, the IR thermometer could not 
be relied on during wet tests. 

 
Figure 3. Braking test setup [11]: (1) dead weight, (2) specimen holder, 

 (3) counter face, (4) pad specimen, (5) IR thermometer,  

(6) strain gauge, and (7) load level. 

B. The Proposed LS-SVM Models 

For each of the noncommercial brake pad materials 

(NF1, NF2, NF4, and NF5), two independent LS-SVM 

models should be developed: one to predict the friction 

force in newton (N) and the other to predict the induced 

interface temperature. The inputs to each model are the 

braking conditions, which are the load (N), speed (rpm), 

and duration (s). The following subsections discuss the 

development process of the proposed models. 

1) LS-SVM mathematics 

LS-SVM is a variant of SVM that was proposed by 

Suykens and Vandewalle in 1999 [26, 27]. In LS-SVM, 

the solution is found by solving a set of linear equations, 

instead of a convex quadratic programming (QP) problem 

for classical SVMs. Considering a regression problem 

with training set D = {(xi, yi)}, i = 1 to n, where xi ∈ R
n
 is 

the input pattern and yi ∈ R is the corresponding output. 

LS-SVM solves the following optimization problem: 

 

            minw,b,e =  
1

2
wTw + γ

1

2
∑ ei

2n
i=1 , 

subject to the equality constraints 

𝑦𝑖 =  [𝑤𝑇𝜑(𝑥𝑖) + 𝑏] + 𝑒𝑖 ,       𝑖 = 1, . . . , 𝑛, 

where φ(xi) is a nonlinear mapping that maps the input 

data into a high-dimensional feature space (it is called 

kernel function); γ is the positive regularization factor that 

balances the trade-off between the fitting error and model 

complexity; parameter 𝑒𝑖 is the model prediction error.  

By introducing the Lagrangian function and 

differentiating it, LS-SVM can be described as follows: 

[
K +

1

γ
I 1N

1N
T 0

] [
α
b

] =  [
Y
0

], 

where α = (α1, α2, … . . αN)T  is a vector of Lagrange 

multipliers, 1N
T = [1, … . . , 1]T , Y = [y1, y2, … . . yN)T , I is 

an N × N identity matrix, and K is a kernel matrix 

with K(xi, xj) = φ(xi)
Tφ(xj).  

The resulting LS-SVM model for regression becomes 

f(x) =  ∑ αi
∗N

i=1 K(xi,, x) + b∗ , 

where α∗  and b∗  are the solutions to Eq. (2) and α is 

proportional to the error vector e at the training patterns. 

Model selection is an important issue in LS-SVM 

research. It involves the selection of the kernel function 

φ(xi) and the associated kernel parameters and the 

selection of the regularization parameter γ.  

Kernels used in this paper are polynomial and radial 

basis function (RBF). They are defined by the following 

equations: 

Polynomial kernel: 

φ(  xj, xi) =  (xj
T
 xi

   
+ t)

d       
t ≥ 0, 

where t is the intercept and d is the degree of the 

polynomial. 

RBF kernel: 

φ(  xj, xi) =  (xj
T
 xi

   
+ t)

d       
t ≥ 0, 
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where 2σ2
  is the variance of the Gaussian kernel. 

2) Data preprocessing 

The dataset gathered through the experiments for each 

noncommercial material was partitioned into two subsets: 

(1) a training set (70%) to construct the model and (2) a 

test set (30%) to estimate the performance of the trained 

model.  

Both of the training and testing datasets were 

normalized to prevent the model from being dominated 

by the input features with large values. The performance 

of LS-SVM with scaled (normalized and zero mean) 

input data has been shown to outperform the same with 

nonnormalized input data. Scaling is carried out using the 

following formula: 

𝑥′ =
𝑥 − mean

standard deviation
, 

where x and x′ are the old and the new values of each 

variable in the dataset, respectively. The LS-SVM model 

output is denormalized to be transformed back to its 

original form. 

3) Performance Measure 

The mean absolute error (MAE) and root mean square 

error (RMSE) criteria were used to measure how close the 

predicted values by LS-SVM are to the experimental ones. 

MAE and RMSE are defined by the following equations: 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑓𝑖 − 𝑦𝑖|

𝑛

𝑖=1

=  
1

𝑛
∑|𝑒𝑖|

𝑛

𝑖=1

, 

       RMSE =√
1

𝑛
∑ (𝑓𝑖 − 𝑦𝑖)2,𝑛

𝑖=1  

where 𝑓𝑖  and 𝑦𝑖  are the predicted and experimental values, 

respectively. 

4) LS-SVM hyperparameter selection 

LS-SVM hyperparameters are the regularization 

parameter γ and the kernel parameters (σ2 for the RBF 

kernel and t,d for the polynomial kernel). The selection of 

these parameters plays a crucial role in the performance of 

the LS-SVM regression models. The regularization 

parameter γ is critical as it determines the trade-off 

between the fitting error minimization and smoothness of 

the estimated function. It is not known beforehand which 

values are the best for a particular problem to achieve the 

maximum performance with LS-SVM models. A 

methodology should be adopted to search in the 

hyperparameter space during the development period of 

regression models. This research adopts L-fold cross-

validation (CV), coupled simulated annealing (CSA) [30], 

and Nelder–Mead simplex algorithms [21] for this 

purpose. 

a) L-Fold CV  

The training dataset D is permutated randomly and 

then partitioned into L disjoint subsets almost equal in size 

(D1, D2, …, Di, …, DL). At the iteration i, the subset i is 

used in testing or validating the model trained using the 

rest (L − 1) of the subsets. The training and validating 

process is continued until each subset is used for 

validation once. Consequently, L candidate LS-SVMs are 

obtained and the best of them is selected. The mean of the 

performance assessments of the L obtained LS-SVMs is 

called CV performance or CV error and is used as a 

predictor of the performance of the LS-SVM model when 

verified by D. To select the suitable hyperparameters 

using L-fold CV, the CV error is computed for different 

values of hybrid parameters, and then the model with the 

lowest CV error is selected and trained using the whole 

training dataset.  

b) Hyperparameters initialization and tuning 

The initialization and search in the parameter space are 

performed using CSA for global optimization and simplex 

algorithms for local optimization. Firstly, the CSA 

determines the suitable parameters according to some 

criterion. Then, these parameters are fine-tuned using 

Nelder–Mead simplex. The CSA has a better optimization 

efficiency than multistart simulated annealing [30]. 

Moreover, the CSA is less sensitive to the initialization 

parameters. 

III. RESULTS AND DISCUSSION 

Two independent LS-SVM models were trained: one 

to predict the friction force in newton (N) and the other to 

predict the temperature using the dataset for material NF1 

under different braking conditions; we called them F-LS-

SVM and T-LS-SVM. RBF and polynomial kernels were 

adopted. LS-SVM Lib. v.1.8 [7] was used for the purpose 

of training and testing the models.  

A. RBF Kernel Based Models 

F-LS-SVM and T-LS-SVM were developed using 

RBF kernels. Tables III and IV list the hyperparameters of 

the best seven F-LS-SVM and seven T-LS-SVM models 

resulting from applying threefold to tenfold CV. Each of 

these models was trained using the training dataset and 

then tested twice, once using the training dataset and then 

using the testing datasets of NF1. MAE and RMSE were 

computed for each model and are listed in the tables 

(where MAE-Te and RMSE-Te are the MAE and RMSE 

values when verifying the models using the testing data, 

whereas MAE-Tr and RMSE-Tr are the MAE and RMSE 

values when verifying the models using the training data). 

By looking at Table III and comparing the values of 

MAE-Te and RMSE-Te to the corresponding MAE-Tr 

and RMSE-Tr, it can be concluded that the performance 

of each of the seven F-LS-SVMs over the trained data is 

better than the performance of each model over the testing 

data, which may indicate that the models suffer from an 

underfitting problem. The increase in the size of the 

training dataset will not result in better performance 

models. While it is obvious from Table IV and Figs. 4 and 

5 that some of the trained T-LS-SVM models generalized 

well, the best of them is the one that resulted from the 

fivefold CV, where MAE-Te = 1.44, RMSE-Te = 1.93, 

the difference between MAE-Te and MAE-Tr = 0.33, and 
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the difference between RMSE-Te and RMSE-Tr = 0.7, 

which are the minimum compared to the other models. 

B. Polynomial Kernel Based Models 

The training process was repeated again to develop F-

LS-SVM and T-LS-SVM models using polynomial 

kernels. Tables V and VI list the hyperparameters, MAE, 

and RMSE for each developed F-LS-SVM and T-LS-

SVM model. Figures 6–9 visualize the MAE and RMSE 

when verifying the models using testing and training 

datasets of NF1. As observed, polynomial kernel based F-

LS-SVM models generalized better than RBF based 

models. The performance of the polynomial kernel F-LS-

SVM, degree three, that resulted from threefold CV is the 

best (MAE-Te = 0.17, RMSE-Te = 0.35). It is also noted 

that the performance of the polynomial kernel, degree 

three, T-LS-SVM model (MAE-Te = 1.42, RMSE-Te = 

1.88) is the best among all the polynomial and RBF kernel 

T-LS-SVM models.  

Figs. 10, 12, and 14 show the predicted friction force 
(using F-LS-SVM, polynomial kernel, degree three) 
against the measured ones at different values of load, 
speed, and duration. Figs. 11, 13, and 15 show the 
predicted temperature (using T-LS-SVM, polynomial 
kernel, degree three) against the measured ones at 
different values of load, speed, and duration.  

TABLE III. TRAINED F-LS-SVM TO MODEL NF1, RBF KERNEL, USING THREEFOLD TO TENFOLD CV. 

  
L-fold CV 

  
3-fold  4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold 

F-LS-SVM model  
γ 1026 1000 35074488 122177 8106 4275632 37713 13871 

σ2 0.151 0.136 0.195 0.083 0.065 0.138 0.088 0.047 

Performance 

evaluation (MAE, 

RMSE) 

MAE-Te 0.995 1.002 13.494 1.697 1.060 5.352 1.352 1.083 

MAE-Tr 0.040 0.039 0.016 0.016 0.019 0.016 0.019 0.015 

RMSE-Te 1.42 1.43 28.44 2.42 1.53 8.89 1.98 1.54 

RMSE-Tr 0.11 0.11 0.03 0.03 0.05 0.03 0.04 0.03 

TABLE IV. TRAINED T-LS-SVM TO MODEL NF1, RBF KERNEL, USING THREEFOLD TO TENFOLD CV. 

  
L-fold CV 

  
3-fold  4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold 

T-LS-SVM 

model  
γ 397 106 480 624 532 1773 374 2054 

σ2 1.72 1.90 0.79 0.46 0.57 0.96 0.52 1.28 

Performance 

evaluation 

(MAE, 

RMSE) 

MAE-Te 1.81 1.69 1.44 3.63 2.53 1.50 2.79 1.74 

MAE-Tr 1.22 1.32 1.11 1.05 1.08 1.11 1.08 1.15 

RMSE-Te 2.59 2.33 1.93 5.54 3.70 2.06 4.14 2.36 

RMSE-Tr 2.93 3.20 2.63 2.49 2.54 2.62 2.53 2.74 

 

 

Figure 4. MAE when verifying T-LS-SVM (RBF kernel) models using 

training and testing datasets of NF1. 

 

Figure 5. RMSE when verifying T-LS-SVM (RBF kernel) models using 

training and testing datasets of NF1. 

TABLE V. TRAINED F-LS-SVM TO MODEL NF1, POLYNOMIAL KERNEL, USING THREEFOLD TO TENFOLD CV. 

 

  
L-fold CV 

  
3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold 

F-LS-SVM model 
γ 2.634 0.281 2384.588 0.003 4.565 140.093 13.097 1379.124 

t 7.86 31.35 11.97 2.16 24.97 5.38 13.78 3.30 

d 4 6 5 3 6 4 7 4 

Performance 

evaluation (MAE, 

RMSE) 

MAE-Te 0.17 0.47 0.23 1.01 0.17 0.28 0.22 0.24 

MAE-Tr 0.18 0.26 0.11 0.95 0.19 0.11 0.17 0.09 

RMSE-Te 0.35 0.63 0.38 1.35 0.37 0.42 0.37 0.38 

RMSE-Tr 0.39 0.51 0.28 1.15 0.44 0.29 0.40 0.24 

0

1

2

3

4

T-LSSVMs, RBF Kernel 

MAE-Te

MAE-Tr
0

2

4

6

T-LSSVMs, RBF Kernel 
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Figure 6. MAE when verifying polynomial F-LS-SVM models using 

 training and testing datasets of NF1. 

 

Figure 7. RMSE when verifying polynomial F-LS-SVM models using 
training and testing datasets of NF1. 

 

TABLE VI. TRAINED T-LS-SVM TO MODEL NF1, POLYNOMIAL KERNEL, USING THREEFOLD TO TENFOLD CV. 

 

  
L-fold CV 

  
3-fold  4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold 

T-LS-SVM model  

γ 515.96 0.01 0.18 91.38 4.06 0.01 0.29 0.01 

t 3.53 61.99 7.86 3.74 6.19 57.74 6.22 13.67 

d 4 3 3 5 4 3 5 3 

Performance 

evaluation (MAE, 

RMSE) 

MAE-Te 1.42 11.92 8.75 1.52 1.62 12.13 7.31 11.89 

MAE-Tr 1.41 6.73 3.74 1.55 1.88 7.27 3.20 6.69 

RMSE-Te 1.88 7.87 2.80 1.93 2.49 7.60 2.49 3.70 

RMSE-Tr 2.00 1.73 1.73 2.24 2.00 1.73 2.24 1.73 

 

 
 

Figure 8. MAE when verifying T-LS-SVM (polynomial kernel) models 

using training and testing data of NF1. 

 

Figure 9. RMSE when verifying T-LS-SVM (polynomial kernel) 
models using training and testing data of NF1. 

  

 
 

Figure 10. Predicted (Fp) and measured (Fm) friction (N)  

of NF1 at load = 120 N and speed = 335 m/s. 
Figure 11. Predicted (Tp) and measured (Tm) interface temperature  

 of NF1 at load =120 N and speed = 335 m/s. 

  

Figure 12. Predicted (Fp) and measured (Fm) friction (N)  
of NF1 at load = 120 N and speed = 427 m/s. 

Figure 13. Predicted (Tp) and measured (Tm) interface temperature  
of NF1 at load = 120 N and speed = 427 m/s. 
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Figure 14. Predicted (Fp) and measured (Fm) friction (N)  

of NF1 at load = 63 N and speed = 390 m/s. 
 

 

 

 

 
Figure 15. Predicted (Tp) and measured (Tm) interface temperature  

of NF1 at load = 63 N and speed = 390 m/s. 
 

IV. CONCLUSION AND FUTURE WORK 

In the field of engineering tribology, very complex and 

highly nonlinear relationships are involved. This is the 

reason why analytical models are difficult and machine 

learning techniques are preferred over other modeling 

techniques, the reason being their capability in modeling 

nonlinear behaviors through learning from experimental 

data and generalization. One of these techniques is LS-

SVM, which is a reformulation of the traditional SVM 

technique where the regression problem is solved by a 

linear equation system rather than QP, as in SVM.  

In this paper, two independent LS-SVM models were 

developed in order to predict the frictional and thermal 

behavior of a previously developed noncommercial brake 

pad material under various pressure and speed conditions. 

A set of data was produced experimentally and used 

in training and testing the LS-SVM models.  

LS-SVM models with different kernel functions (RBF 

and polynomial kernel) were developed. L-fold CV, CSA, 

and Nelder–Mead simplex algorithms were used to select 

for each model its kernel parameters.  

Results showed that some of the models were not able 

to generalize well, whereas some other models were able 

to generalize efficiently and predict both of the friction 

force and the induced temperature. The best performance, 

in terms of MAE and RMSE, was produced by the models 

that are based on polynomial kernels, degree three.  

As the results are prominent, we are currently working 

on developing models for the other three noncommercial 

materials (NF2, NF4 & NF5), in addition to considering 

more mechanical properties like hardness and density in 

developing the models.  

REFERENCES 

[1] D. Aleksendri, D. C. Barton, "Neuro-gentic optimization of disc 

brake speed sensitivity," International Journal of Vehicle Design, 

vol. 66, no. 3, pp. 258-271, 2014.  
[2] N. Ampazis and N. D. Alexopoulos, "Prediction of aircraft 

aluminum alloys tensile mechanical properties degradation using 

support vector machines,” Artificial Intelligence: Theories, 
Models and Applications Lecture Notes in Computer Science, vol. 

6040, pp. 9-18, 2010. 

[3] O. Abuomar, S. Nouranian, R. King, T. M. Ricks, T. E. Lacy, 

"Comprehensive mechanical property classification of vapor-
grown carbon nanofiber/vinyl ester nanocomposites using support 

vector machines", computational material science , Elsevier, 2015 

[4] A. Besalatpour, M. Hajabbasi, S. Ayoubi, A. Gharipour, A. Jazi1, 
"Prediction of soil physical properties by optimized support vector 

machines," International Agrophysics, vol. 26 , 2012. 

[5] O. Chapelle and V. Vapnik, "Model selection for support vector 
machines," Advances in Neural Information Processing Systems 

12, MIT Press, Cambridge, MA, pp. 230-236,2000.  

[6] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, 
"Choosing multiple parameters for support vector machines," 

Machine Learning, vol. 46, no. 1, pp. 131-159, 2002. 

[7] C. C. Chang and C. J. Lin, libsvm: a library for support vector 
machines, 2001, available: 

http://www.csie.ntu.edu.tw/~cjlin/libsvm 

[8] L. J. Dong, X. B. Li, and Z. L. Zhou, "Nonlinear model-based 
support vector machine for predicting rock mechanical behaviors," 

Advanced Science Letters, vol. 5, no. 2, pp. 806-810, 2012. 

[9] J. De Brabanter, K. Pelckmans, J. A. K. Suykens, J. Vandewalle, 
"Robust crossvalidation score function for LS-SVM non-linear 

function estimation," in Proc. International Conference on 

Artificial Neural Networks (ICANN 2002), Madrid Spain, Madrid, 
Spain, pp.713-719, Aug. 2002. 

[10] N. S. M. EL-Tayeb, K. W. Liew, and V. C. Venkatesh, 

"Evaluation of new frictional brake pad materials," International 
Journal of Precision Technology, vol. 1, No.2 pp. 213 - 222,2009. 

[11] N. S. M. EL-Tayeb and K. W. Liew, "On the dry and wet sliding 

performance of potentially new frictional brake pad materials for 

automotive industry," Wear 266 , pp. 275-287,2009. 

[12] C. Fan, Y. He, H. Zhang, H. Li, F. Li, "Predictive model based on 

genetic algorithm-neural network for fatigue performances of pre-

corroded aluminum alloys," Key Engineering Materials, pp. 353-
358, pp. 1029-1032, 2007. 

[13] C. Fan, Y. He, H. Li, and F. Li, "Performance prediction of pre-

corroded aluminum alloy using genetic algorithm-neural network 
and fuzzy neural network," Advanced Materials Research, pp. 

1283-1288, 2008. 

[14] S. Fang, M. Wanga, and M. Song, "An approach for the aging 
process optimization of al-zn-mg-cu series alloys," Materials and 

Design 30, pp. 2460-2467, 2009. 

[15] W. Grzegorzek and S. F. Scieszka, "Prediction on friction 
characteristics of industrial brakes using artificial neural 

networks," in Proc. the Institution of Mechanical Engineers Part J: 

Journal of Engineering Tribology, vol. 228, no. 10, pp.1025-1035, 
2013.  

[16] Z. Z. Hou, Y. L. Du, M. Zhao, W. G. Zhao, and S. C. Peng, 

"Application of support vector machine to predicting mechanical 
properties of tc4", Advanced Materials Research, pp. 1854-1857, 

2011. 

[17] T. Hastie, R. Tibshirani, and J. Friedman, "The Elements of 

Statistical Learning", Springer Series on Statistics, 2008. 

[18] J. Leifer, "Prediction of aluminum pitting in natural waters via 

artificial neural network analysis", Corrosion 56, pp.563-571,2000. 

0

1

2

3

4

5

1 5 9 13 17 21 25 29 33 37

Fm

Fp
25

27

29

31

33

35

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Tm Tp



 

 

 

 

  

 

   

 

 
 

 

  

 

   

      

    

   

 

 

  

 

 

  

 

 

 

 

   

 

 

 

  

   

 

   

   

 

 

  

 

112

International Journal of Mechanical Engineering and Robotics Research Vol. 7, No. 2, March 2018

© 2018 Int. J. Mech. Eng. Rob. Res.
 

[19] Y. Liu, Q. Zhong, and Z. Zhang, "Predictive model based on 
artificial neural network for fatigue performance of prior-corroded 

aluminum alloys", Acta Aeronautica Et Astronautica Sinica 22, pp. 

135-139, 2001. 
[20] F. F. Martinsa, A. Begonhab, and M. A. S. Braga, "Prediction of 

the mechanical behaviour of the oporto granite using data mining 

techniques," Expert Systems with Applications, Elsevier , 2012 
[21] J. A. Nelder and R. Mead,"A simplex method for function 

minimization," Computer Journal, 7, pp. 308-313,1965. 

[22] R. Pidaparti and E. Neblett, "Neural network mapping of corrosion 
induced chemical elements degradation in aircraft aluminum. 

Computers," Materials and Continua 5, pp. 1-9, 2007. 

[23] N. U. Rathod, V. Seram, and K. Karthik, "Prediction of coefficient 
of friction and sliding wear rates of cast Al6061-Si3N4 composites 

using ANN Approach," International Journal of Scientific 

Engineering and Researc (IJSER),vol. 3 ,no. 2, 2015. 
[24] J. A. K. Suykens, J. De Brabanter, L. Lukas, J. Vandewalle, 

"Weighted least squares support vector machines: robustness and 

sparse approximation," Neurocomputing, Special Issue on 

Fundamental and Information Processing Aspects of 

Neurocomputing, 48(1-4), pp. 85-105, 2002.  

[25] J. A. K. Suykens, J. Vandewalle, and B. De Moor, "Intelligence 
and cooperative search by coupled local minimizers", 

International Journal of Bifurcation and Chaos, 11(8), 2001. 

[26] J. A. K Suykens and J. Vandewalle, "Least squares support vector 
machine classifiers", Neural Processing Letters, vol. 9, no. 3, 

pp.293-300, 1999. 

[27] J. A. K Suykens, T. Van, De brabanter, B. Demoor, and J. 
Vandewalle, "Least squares supportvector machines", World 

Scientific, 2002. 

[28] H. Heikh and S. Serajzadeh, "Estimation of flow stress behavior of 
aa5083 using artificial neural networks with regard to dynamic 

strain ageing effect", Journal of Materials Processing Technology 

196, pp. 115-119, 2008. 
[29] V. Vapnik and O. Chapelle, "Bounds on error expectation for 

support vector machines", Neural Computation, vol. 12. no. 9, 

pp.2013-2036, 2000. 
[30] S. Xavier de Souza, J. A. K. Suykens, J. Vandewalle, and D. 
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