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Abstract—In this paper, an approach based on a multilayer 

neural network has been proposed for human–robot 

collision detection. The neural network was trained using 

the Levenberg–Marquardt algorithm to the dynamics of the 

robot with and without external contacts to detect any 

unwanted collisions between the human operator and the 

robot using only the proprietary position and joint torque 

sensors of the manipulator. The proposed method was 

evaluated experimentally using the 7-DOF KUKA LWR 

manipulator, and the results indicate that the developed 

system is efficient and very fast in detecting collisions.  

 

Index Terms—Collision Detection, Neural Networks, 

Levenberg-Marquardt, Proprietary Sensors. 

 

I. INTRODUCTION 

When robots and humans share the same workspace, 

safety is very important factor because the proximity of 

the operator to the robot can lead to potential injuries. 

Therefore, a system for safety based on collision 

avoidance or detecting the collision should be available. 

Collisions can be avoided by having knowledge of the 

environment using vision or proximity sensors. 

Mohammed et al. [1] introduced a solution based on 

vision using virtual 3D models of robots, real images of 

human operators from depth cameras and vision sensing 

units. Using proximity sensors, Lam et al. [2] presented 

an invisible sensitive skin built inside the robot arm using 

5 contactless capacitive sensors and specially designed 

antennas. Although these methods can be used to avoid a 

collision, modifications to the robot body are required for 

installing the sensors and the cost is increased. 
To further improve the safety of human-robot 

interaction (HRI) system, in addition to the level of 
collision avoidance, a second level of collision detection 
and reaction is required if the first level protection fails. 
Some researchers have sought to develop methods to 
detect collisions. Fault detection methods based on the 
principle that small changes or faults in a structure can 
cause significant deviations in its dynamic behavior have 
been proposed in robotics research. De Luca and 
Mattone’s idea was to handle a collision at a generic 
point along the robot as a fault of its actuating system [3]. 
Cho et al. [4] continued their research and proposed the 
disturbance observer method to detect collisions based on 
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the generalized momentum and on the joint torque 
sensors.  

Another approach to detect collisions is based on 

impedance control. Morinaga and Kosuge [5] proposed a 

non-linear adaptive impedance control law without using 

external sensors, which is based on the difference 

between the reference and actual input torque to the 

manipulator.  
Approaches based on fuzzy logic and neural network 

systems have been proposed. Dimeas et al. [6, 7] 
implemented two methods, one based on intelligent fuzzy 
identification and the other based on time series. The 
fuzzy system detected collisions rapidly and accurately 
and displayed the lowest threshold value. The time series 
system estimated the collision torque by only using the 
measured joint position signal, but its threshold was 
higher than the fuzzy system and similar to that of the 
model-based approach. Shujun Lu et al. [8] presented a 
collision detection approach using two six-axis 
force/torque sensors, one on the base and the other on the 
wrist, and they developed two systems, one based on 
neural network training and the other was model based. 
Although the results illustrated the validity of the 
developed collision detection scheme, using two sensors 
made the cost quite high. 

In this paper, a neural network (NN)-based approach 

has been proposed considering the properties of the NN. 

The NN derives its computing power through its 

massively parallel distributed structure and its ability to 

learn and to consequently generalize. These two 

information processing capabilities make it possible for 

neural networks to find good approximate solutions to 

complex (large-scale) problems that are intractable. The 

NN also offers useful properties and capabilities, such 

non-linearity, input–output mapping, and adaptivity [9]. 

The NN can approximate any function, or in other words, 

they have a kind of universality [10], e.g., the 

approximation of smooth batch data containing the input, 

output and possibly the gradient information of a function 

[11], and approximating the derivatives of a function [12]. 

In the proposed method, the NN was trained using the 

Levenberg–Marquardt (LM) algorithm, which does not 

require any prior knowledge of the dynamic model of the 

robot and is simple and easily applied. This method was 

applied without using any external sensors, only using the 

position and joint torque sensors, which are proprietary to 

the KUKA LWR manipulator used for the experiments. 

Our method can be used in any robot containing joint 

torque sensors without any knowledge of its model since 
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the estimation of the external torque given by the robot 

controller is used only for training the NN and it can be 

replaced by an external sensor. Subsequently, the trained 

NN was used to estimate the external torque and detect 

the collision. The NN toolbox in Matlab was applied to 

the data for fast training and convergence. 

II. COLLISION DETECTION METHOD 

The dynamics of an n-link robot assumed for the 

flexible joint robot can be defined as follows [13]: 

    𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐺(𝑞) = 𝜏 + 𝐷𝐾−1�̇� + 𝜏𝑒𝑥𝑡 ,     (1) 

                    𝐵�̈� + 𝜏 + 𝐷𝐾−1�̇� = 𝜏𝑚, and                (2) 

                              𝜏 = 𝐾(𝜃 − 𝑞),                         (3) 

where the vectors 𝑞, �̇�, �̈�  ∈  𝑅𝑛  contain the joint 

positions of the manipulator and their corresponding time 

derivatives,   𝜃 ∈  𝑅𝑛  is the measured motor position, 

𝑀(𝑞) ∈  𝑅𝑛×𝑛 is the inertia matrix that depends on the 

variable  𝑞  and contains unknown constant 

terms,  𝐶(𝑞, �̇�) ∈  𝑅𝑛×𝑛  is a matrix that contains the 

Coriolis and centrifugal terms that depends on the 

variables 𝑞  and �̇� and contains unknown constant terms, 

𝐺(𝑞) ∈  𝑅𝑛  is the gravity vector that depends on the 

variable  𝑞  and contains unknown constant terms. 

𝐾 = 𝑑𝑖𝑎𝑔(𝐾𝑖) ∈  𝑅𝑛×𝑛  and  𝐵 = 𝑑𝑖𝑎𝑔(𝐵𝑖) ∈  𝑅𝑛×𝑛  are 

the diagonal, positive definite joint stiffness, and motor 

inertia matrices, respectively, and they are unknown 

constants, and 𝐷 = 𝑑𝑖𝑎𝑔(𝐷𝑖) ∈  𝑅𝑛×𝑛  is the diagonal 

positive semi-definite joint damping matrix and it is an 

unknown constant. The vector 𝜏 ∈  𝑅𝑛  represents the 

measured joint torque, 𝜏𝑚 ∈  𝑅𝑛  is the motor input 

torques vector and 𝜏𝑒𝑥𝑡 ∈  𝑅𝑛 is the external torque vector 

from the collision acting on the robot and it can be 

calculated from (1) as follows: 

  𝜏𝑒𝑥𝑡 = 𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐺(𝑞) − 𝜏 − 𝐷𝐾−1�̇�.  (4) 

Because it is difficult to determine the unknown 

dynamic coefficients in the dynamic model of the 

manipulator, as shown from (1) to (4), a neural network 

based a non-linear estimation model was used in this 

paper to approximate the 𝜏𝑒𝑥𝑡  function given in (4). In the 

proposed method, a NN was trained using the data with 

and without the collision measured by the joint position 

and torque sensors. In this method, the estimation of the 

external torque given by the robot controller is used only 

for training the NN, but this could be measured by any 

other external sensor. Therefore, our method can be used 

in any robot equipped with joint torque sensors without 

any prior knowledge of its model. 

After many trials and experiments using different sets 

of inputs to train the network using the LM algorithm, it 

was found that the main inputs to the neural network that 

give us the minimum mean squared error (mse) are the 

current position error  𝑞𝑒(𝑘) between the desired and 

actual joint position, the previous position error 𝑞𝑒(𝑘 −
1) , the actual joint velocity �̇�, and the measured joint 

torque  𝜏 . We found that these inputs are greatly 

influenced by the presence of a collision. However, large 

alterations in these variables are not always indicators of 

a collision because these changes can also be observed 

under normal operation owing to the high inertial forces 

that occur during abrupt changes of the velocity. Since 

this phenomenon is related to the joint velocity, it is the 

reason for using the signal of the actual joint velocity �̇� as 

an input for the training in order to distinguish the 

collision spikes; this is also discussed in [6, 7]. In 

addition, it was found that while using the actual joint 

velocity, the mean squared error is significantly reduced 

during training the NN. Although the signals from the 

torque sensors include a small noise, no digital filters 

were used to avoid any delay. To ensure that this 

assumption is correct, a sinusoidal motion 𝑞 with variable 

frequency was commanded on a single joint of the 

KUKA LWR robot (Joint E1), and the collisions were 

performed by a human hand touching the manipulator, as 

shown in Fig. 1, where the 𝑞𝑒 , 𝑞,̇  and 𝜏 inputs to the NN 

without and with a collision are illustrated. 

From Fig. 1, it is clear that there are sudden changes 

and spikes in the variables in the case of a collision when 

compared with the corresponding variables without a 

collision. Without a collision, the small alterations and 

spikes in the position error and measured joint torques are 

a result of the friction and high inertial forces that appear 

on the links (blue dashed curves). In the case of a 

collision, the spikes in the position error and the 

measured joint torque diagrams (small black spot) that 

face the small spikes in the actual joint velocity diagram 

represent the collision and the other spikes come from the 

inertial forces. The spike at the end of the position error 

diagram (small blank spot) in the two curves means that 

the robot starts to brake. To show clearly what the small 

spikes in the actual joint velocity diagram represents, for 

example, the interval [0, 12] seconds from Fig. 1 is 

expanded in Fig. 2, where the small spikes at points c 

represent the collisions, whereas the spikes at points i 

come from the inertial forces. 

 
Figure 1. The main inputs of the neural network. 
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Figure 2. The small spikes in the actual joint velocity diagram that differentiate between the collisions and inertial forces. 

 

III. NEURAL NETWORK DESIGN 

A multilayer neural network is a powerful tool for 

non-linear system identification. It can adapt itself by 

changing the network parameters in a surrounding 

environment and can easily handle imprecise, fuzzy, 

noisy, and probabilistic information [14]. The NN has a 

vital role in the identification of dynamic systems and 

fault detection since it can not only detect the occurrence 

of the fault but also provides a postfault model of the 

robotic manipulator. This post-fault model can be 

effectively used to isolate and identify the fault and, if 

possible, for accommodation of the failure [15].  

Levenberg–Marquardt learning was used in this study 

to train the network and perform the work in a fast and 

stable manner. The Levenberg–Marquardt algorithm is a 

type of the second-order optimization technique that has a 

strong theoretical basis and provides a significantly fast 

convergence; it is considered as an approximation to 

Newton’s method [16, 17]. When compared with other 

learning methods, LM learning was used because it has 

the trade-off between the fast learning speed of the 

classical Newton’s method and the guaranteed 

convergence of the gradient descent [16, 18]. The LM 

algorithm always suits larger data sets and converges in 

less iterations in shorter times than the other training 

methods. 

Three layers were used to compose the network, as 

shown in Fig. 3. The first layer is the input layer, which 

contains the four inputs for the NN including the current 

joint position error  𝑞𝑒(𝑘),  the previous position 

error  𝑞𝑒(𝑘 − 1),  the actual joint velocity �̇�, and the 

measured joint torque  𝜏 . The second layer is the non-

linear hidden layer, and the third is the output layer, 

which calculates the estimated external torque 𝜏𝑒𝑥𝑡
′  that is 

compared with the estimated external torque 𝜏𝑒𝑥𝑡 derived 

using the Kuka robot controller (KRC). It should be noted 

here that the estimated external torque 𝜏𝑒𝑥𝑡  is only used 

for training the network. The external collision force can 

be measured using any external sensor and transformed to 

the joint torque using the Jacobian.  

 

Figure 3. The multilayer neural network. 

The training error 𝑒(𝑡) should be as small as possible. 

From the block diagram that illustrates the process of 

training the neural network shown in Fig. 4, the error is 

given as follows:  

 

                          𝑒(𝑡) = 𝜏𝑒𝑥𝑡 − 𝜏𝑒𝑥𝑡
′                             (5)  

 

Figure 4. The block diagram of the neural network system trained using 
the LM algorithm. 

IV. EXPERIMENTS 

The proposed contact detection method is implemented 

on a KUKA LWR IV manipulator (light weight robot), as 

shown in Fig. 5. The KUKA LWR robot is characterized 

by an extremely light anthropomorphic structure with 7 
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revolute joints driven by compact brushless motors via 

harmonic drives. The presence of such transmission 

elements introduces a dynamically time-varying elastic 

displacement at each joint between the angular position 

of the motor and that of the driven link. All joints are 

equipped with position sensors on the motor and link 

sides, and a joint torque sensor. The KR C5.6 lr robot 

controller unit, along with the so-called fast research 

interface (FRI) [19], is able to provide (at a 1 msec 

sampling rate) the link position  𝑞 , velocity �̇�  and joint 

torque 𝜏 measurements, and an estimation of the external 

torque 𝜏𝑒𝑥𝑡.    

 
 

Figure 5. The experimental set-up using the KUKA LWR manipulator. 

 

The robot performs a single joint motion around the 

vertical axis. The selected excitation signal 𝑞𝑑(𝑡) is a 

sinusoidal profile of the joint position with variable 

frequency since it enables the sufficient dynamic 

excitation of the structure and the acquisition of rich 

signals. The motion of joint E1 is given as follows:  

 

                      𝑞𝑑(𝑡)  = −𝐴 + 𝐴𝑐𝑜𝑠(2𝜋𝑓𝑡)                    (6) 

 

where 𝐴 =
𝜋

4
 and 𝑓  is the frequency, which is linearly 

increased from 0.05 to 0.326 Hz. This frequency 

produces an angular velocity ω of up to 2.05 rad/s. 

The training data are divided into two sets. In the first 

set, the robot joint performs the motion without any 

external force applied to the robot body and in the second 

set the same motion is performed with the user 

performing collisions suddenly and stochastically with 

their hand. During the experiments the robot is 

commanded to move with position control mode and no 

reaction strategy was implemented. The performed 

collisions were applied momentarily and the safety of the 

human operator during this experiment was considered. 

A. NN Training 

Using a combination of the data with and without a 

collision, the neural network system was created and 

trained. The total number of input-output pairs collected 

from the experiments and used was 56358. From these 

data, 90% are used for training, 5% for validation, and 5% 

for testing. After more trials and initializations, it was 

found that the best number of hidden neurons was 90 and 

the number of iterations was 932 to give the minimum 

mse and an adequate collision threshold. The training 

process was very fast and stable, and applied using 

Matlab on an Intel(R) Core(TM) i3-6100 CPU @ 3.70 

GHz processor. The experiments for NN structure 

determination and training are discussed in APPENDIX 

A. 

The trained NN was evaluated using the same data set 

used for the training process. The difference between the 

external torque 𝜏𝑒𝑥𝑡  given by the KRC  and the external 

torque 𝜏𝑒𝑥𝑡
′  estimated by the NN system is illustrated in 

Fig. 6. It is clear that the approximation error of the 

collision torque is high when compared to the error of 

contact-free motion (blue dashed curve), where the 

average of the absolute error values is very small (0.0955 

Nm) and the maximum value of the absolute value of the 

error is 1.6815 Nm  that was used as the collision 

threshold above which, a collision is assumed, 

when  |𝜏𝑒𝑥𝑡
′ | > 1.6815 . In the literature, the collision 

thresholds are defined in different ways. In [20], the 

threshold was defined as 10% of the maximum nominal 

torque of the robot. Dimeas et al. [6] used the maximum 

training error from the contact-free motion training, and 

in [8], it was defined as a value below the contact force 

that represents the unified pain tolerance limit of a human, 

which was determined in [21]. In this paper, the threshold 

was identified as that in [6], and after its calculation, it 

was also found to be near to 10% of the maximum 

nominal torque of the robot.  

To examine carefully the approximation error, the 

estimated external torque resulting from the KRC  and the 

estimated external torque from the NN were compared, as 

shown in Fig. 7.  

 
Figure 6. The neural network approximation error. 

 

Figure 7. The two estimated external collision torques obtained from the 

KRC  and NN. 
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Using the proposed method, the collision can be 

identified rapidly. For instance using the interval [2.5, 4.5] 

s from Fig. 7, where the first collision occurs, the 

collision detection time was easily calculated, as shown 

in Fig. 8. The collision detection time was calculated as 

the elapsed time from the start of a collision (point a in 

the curve, where the slope starts to monotonically 

increase) to the moment when the estimated external 

collision torque by the trained NN exceeds the threshold 

(point b in the curve). From Fig. 7, the collision detection 

time was determined to be 11.5 ms after the collision 

occurred. 

B. Verification and Testing 

Since the training data were obtained using the 

variable velocity only, the proposed method was tested in 

the experimental set-up by commanding the robot to 

perform a single joint motion around the vertical axis 

with constant velocity profiles to verify that the method 

was able to identify the collision and consider its ability 

to generalize under a variety of conditions. The trained 

NN was evaluated with two different speeds (0.5 rad/s 

and 1.0 rad/s), as shown in Fig. 9. Six collisions were 

used with different values and directions. 

 
Figure 8. Calculation the collision detection time for the first collision. 

 

 (a) At 0.5 rad/s. 

 
 

(b) At 1.0 rad/s 
Figure 9. The estimated external collision torque using the proposed 

method. 

At 0.5 rad/s (Fig. 9a), the trained NN is able to identify 

all the collisions (small rings in the curve), but two 

collision alerts were falsely detected since they did not 

correspond to an actual collision (points a and b in the 

curve). The collision detection time was low, e.g. during 

the second collision, the collision detection time was 

31.92 ms. At 1.0 rad/s (Fig. 9b), all the collisions were 

detected (small rings in the curve), but three collision 

alerts were falsely detected (points a, b, and c in the 

curve). The collision detection time during the second 

collision was 13.3 ms. 

To confirm the validity and efficiency of the proposed 

method under a wide range of operating conditions and to 

acquire a performance measure, another 25 trials of 

collisions (NC) were evaluated with various magnitudes, 

directions and different velocities of motion. Table I 

provides the performance in terms of the number of the 

correct detected collisions (CC), the number of false 

negatives (FN), which is the number of collisions not 

detected by the method and the number of the false 

positives (FP), which are the collision alerts provided by 

the method when there was no actual collision.  

TABLE I.  THE PERFORMANCE OF THE COLLISION DETECTION 

METHOD FOR DIFFERENT COLLISION SCENARIOS AND VELOCITIES. 

 

Method 

 

NC 

 

CC 

 

FN 

 

FP 

 

NN trained by LM  

 

25 

 

21 

 

4 

 

2 

 
 Percentage 

 
84% 

 
16% 

 
8% 

Conventions: NC = number of collisions, CC = number of correctly 
detected collisions, FN = number of false negatives and FP = number of 

the false positives. 
 

Table I shows that the proposed method (NN) 
successfully detects the collisions with a high percentage 
(84%). Also, the number of the false positive collisions is 
low (8%), which means that our method is robust and less 
sensitive to the external disturbances and unmodelled 
parameters. 

V. DISCUSSION  

The proposed method is easily applied and understood, 

and the training is very fast. The fuzzy-based part of [6] 

was compared with our method. The estimated external 

torque 𝜏𝑒𝑥𝑡  given by the Kuka robot controller is only 

used for NN training step, while Dimeas et al. [6] used 

the external torque measured by an ATI F/T Nano 25 

force sensor for verification and training. The data used 

in our proposed method for training the NN comprises 

56,358 input-output pairs, which is lower than the data 

used by Dimeas et al., which used 70,000 input–output 

pairs. The average error in the contact-free motion using 

our method was 0.0955 Nm, which is slightly lower than 

that found by Dimeas et al., which is 0.1 Nm. Using the 

previous position error 𝑞𝑒(𝑘 − 1) in the proposed method, 

the  convergence and reliability were improved when 

compared to the work of Dimeas et al.  
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In [8], the cost of the method proposed by Lu et al. 

was quite high because two force sensors were used, 

whereas our method does not require any external sensors 

and can be used with any robot containing joint torque 

sensors without any prior model knowledge.  

Our method also presents a low detection time for 

collisions. It should be noted that because of the different 

data and operating conditions used in our paper and the 

other two papers, it is difficult to quantitatively compare 

the time required for collision detection.   

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, a method has been proposed for human–
robot collision detection based on a multilayer neural 
network trained using the Levenberg–Marquardt 
algorithm. The training was stable and very fast. The 
inputs used for the NN were derived from the position and 
joint torque sensors, and the method was able to detect the 
collision of the robot with a human hand very quickly. 
The NN system was designed by trial and error to evaluate 
the external collision torque and was trained using the data 
collected with and without a collision after conducting the 
experiments based on the motion of a single joint (Joint 
E1) of the 7-DOF KUKA LWR robot. Consequently, a 
rich signal was obtained and the training error was very 
small.  

Owing to the good results obtained in this study, future 
work will involve the extension of the proposed approach 
by implementing the collision detection system to multiple 
joints in the manipulator, where apart from detecting the 
occurrence of a collision, the collided link will also be 
identified. 

APPENDIX A 

Many experiments were conducted using different sets 
of inputs to train the NN using the LM algorithm with the 
data obtained with and without contact. For every set of 
inputs, different numbers of hidden neurons, starting from 
30 to 120 hidden neurons, were used to train the NN and 
with every number of hidden neurons, many different 
initializations of the NN were used until the minimum 
and best mean squared error, and an adequate collision 
threshold were obtained. Only three cases from the 

experiments are presented here to show the process of 
NN structure determination and training.  

Case 1 (Fig. 10): The current position error 𝑞𝑒(𝑘), the 
actual joint velocity �̇�(𝑘), and the measured joint torque 𝜏 
were used as the three inputs to the NN. After many trials 
of using different numbers of hidden neurons and 
initializations, it was found that the lowest mse (0.046843) 
was obtained using 120 hidden neurons, as shown in Fig. 
10a. The average absolute error value of contact-free 
motion was 0.0856 Nm and the collision threshold was 
1.0335 Nm. Using this threshold value, the proposed 
method fails to properly detect the collisions, and the 
performance was poor because most of the collisions start 
at a point below the threshold value and there are FP, 
which are the collision alerts when no actual collision 
occurs, as shown in the interval [22, 25] s of Fig. 10b.  

Case 2 (Fig. 11): The current position error 𝑞𝑒(𝑘), the 
current actual joint velocity  �̇�(𝑘) , the previous actual 
joint velocity �̇�(𝑘 − 1), and the measured joint torque 𝜏 
were used as the inputs to the NN. After many trials using 
different numbers of hidden neurons and initializations, it 
was found that the lowest mse (0.069297) was obtained 
using 70 hidden neurons, which is higher than case 1, as 
shown in Fig. 11a. The average absolute error value of 
contact-free motion was 0.1010 Nm, which is also high 
when compared with the other cases. The collision 
threshold was 1.3495 Nm and using this value, the 
proposed method was better than case 1, but it gives a lot 
of FP (> 5 FP), as shown in Fig. 11b, so the performance 
of the method is also not good.  

Case 3: This is the best case used in this paper, where 
the current position error  𝑞𝑒(𝑘) , the previous position 
error  𝑞𝑒(𝑘 − 1) , the actual joint velocity �̇�(𝑘) and the 
measured joint torque 𝜏 were used as the inputs to the NN. 
After many trials of using different numbers of hidden 
neurons and initializations, it was found that the lowest 
mse (0.040644) was obtained using 90 hidden neurons, 
which is the lowest value compared with the all the cases 
studied, as shown in Fig. 12. The average absolute error 
values of contact-free motion was 0.0955 Nm. The 
collision threshold was 1.6815  Nm, and by using this 
value, the proposed method is the best case, which can 
detect the collisions accurately and succeeds with a high 
percentage as discussed in the paper and shown in Fig. 7. 

  
(a)                                                                                                             (b)  

Figure 10. Case 1: Using the current position error 𝑞𝑒(𝑘), the actual joint velocity �̇�(𝑘) and the measured joint torque 𝜏 as the inputs to the NN. (a) 
The lowest mse value. (b) The two estimated external collision torques obtained from the KRC and NN. 
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                                                         (a)                                                                                                                (b)  

Figure 11. Case 2: Using the current position error 𝑞𝑒(𝑘), the current actual joint velocity �̇�(𝑘), the previous actual joint velocity �̇�(𝑘 − 1) and the 

measured joint torque 𝜏 as the inputs to the NN. (a) The lowest mse value. (b) The two estimated external collision torques obtained from the KRC 
and NN. 

  

 
 

Figure 12. Case 3: The lowest mse value was obtained using the current position error 𝑞𝑒(𝑘), the previous position error 𝑞𝑒(𝑘 − 1), the actual joint 

velocity �̇�(𝑘) and the measured joint torque 𝜏 as the inputs to the NN. 
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