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Abstract—In this paper, An adaptive controller with an 

orthogonal neural network (ONN) and a third order sliding 

mode(TOSM) observer for robot manipulators is proposed. 

Firstly, the TOSM observer is designed to observe joint 

velocities. Then, the ONN is designed to compensate robot 

dynamic uncertainties on line inside a computed torque 

control structure. Therefore, the proposed controller allows 

only position measurements due to the TOSM observer and 

achieve highly accurate trajectory tracking performance 

due to the ONN’s uncertainty compensation. Finally, 

computer simulation for a 2-DOF manipulator is performed 

to show verify the effectiveness of  the proposed controller.  

Index Terms—orthogonal neural network, third order 

sliding mode observers, on line dynamic compensation 

 

I.  INTRODUCTION 

Now a day, robots have been widely applied in 
industry and daily life. The robot manipulator control is 
always a challenge in control fields because of the high 
nonlinearity and the dynamic uncertainties. Various 
control schemes have been developed over the past few 
decades, including PID controller [1], Sliding mode 
controller [2], adaptive controller [3], Fuzzy [4] and neural 
network controller[5]. But, the most of these are based on 
the supposition that position and velocity are available 
measurements. The robot usually uses only position 
encoder to measure joint position. The numerical 
differentiation of the joint position is often used to obtain 
the joint velocities so that the unwanted high velocities is 
caused over fast and unsmooth trajectories. The 
tachometers could be used for measuring the joint velocity. 
But, the use of the tachometeris limited due to noises in 
signal response and more expensiveness. In order to solve 
this problem, the velocity observer design has been 
studied with various techniques such as linear observers 
[6], traditional sliding mode observer[7-8], neural network 
observer and fuzzy observer.  In this paper,  a TOSM 
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observer  is used to reduce the estimation error with finite 
time convergence  in our control scheme. 

Adaptive methods based on intelligent techniques 
using neural network for robot manipulator have been 
proposed by many researchers [9-10]. Most researches are 
based on feed forward neural network which has some 
drawbacks such local minimum, slow convergence and 
the difficulty of choosing learning rate and initial weight 
values. The problem of selecting the initial weights and 
slow convergence has been improved, seen in [11]. To 
overcome most of  above problems, Yen and Chen [12] 
proposed an orthogonal neural network and orthogonal 
active function. The ONNs are also used in anti-lock 
braking system [13] and robot control [14]. In this paper, 
the ONN will be used to estimate the dynamic 
uncertainties and added to the proposed control structure. 

In this paper, an adaptive controller with an ONN and 
a TOSM observer for robot manipulators is proposed. The 
rest of this paper is arranged as follow. Problem 
formulation is given based on the robot dynamic models 
and conventional computed torque controller in section 2. 
Section 3 presents third order sliding mode observers to 
estimate joint velocities. Section 4 shows the structure of 
an orthogonal neural network. In section 5, the proposed 
control structure is presented. Computer simulations for a 
2-DOF manipulator is shown  in section 6 and conclusions 
are given in section 7. 

II. STATEMENT OF THE PROBLEM 

The dynamic models of  a robot manipulator is given 
as 

 ( ) ( , ) (q)
f c

M q q V q q G F       (1) 

where , ,
n

q q q  are the vector of joint accelerations, 

velocity and position, respectively. ( )
n n

M q


 is 

inertia matrix, ( , )
n

V q q   represents the centripetal 

and Coriolis matrix, G( )
n

q   represent the gravitation 
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torques, 
fF  is friction term , c  is uncertainties in robot 

dynamic and  is torque provided at joint.    

 
The equation (1) can be rewritten as 

  
1 1

( ){ ( , )} ( ){ }q H q q q F
f c

q M M 
 

    (2) 

where ( , ) ( , ) ( )H q q V q q G q  . By define 
1

n
x q 

and  
2

n
x q  . Eq. (2) can be described in state space 

form as 

  

1 2

2 1 2 1 2

                                         

( , , ) ( , , )

x x

x f x x u x x t



 





 (3) 

where u  ,
1

( , , ) ( ){ ( , )}
1 2

f x x u M q H q q


   and 

1
( , , ) ( ){ }

1 2
x x t M q F cf

 


   . Here,  represents 

the dynamic uncertainties. 

The computed torque control law is given as 

 
 

( )[ ( ) ( )] ( , )M q q K q q K q q H q qv ed d d
      

 
(4) 

where dq , dq  and dq  are the desired position, velocity 

and acceleration, respectively. vK and eK  are positive 

gain matrix. The conventional computed torque controller 
(CTC) has drawbacks in real application such as 
requirement of an exact model of the robot dynamics, 
which might be impossible and low robustness to 
structured and unstructured uncertainties. 

The paper thus aims to design an adaptive controller 
with an orthogonal neural network so that it could 
compensates the dynamic uncertainties. 

III. THIRD ORDER SLIDING MODE OBSERVER FOR 

JOINT VEOLOCITY 

In this section, the TOSM observer is presented. The 
TOSM  observer  is expressed  in form of  state observer 
as 

.

1 12 1

2 2 1 2 1 2

1 2

2/3

1 1 1

1/2

1 2

3

.

( )                   

. .

( , , ) ( )

. .

( )                                                

x

z

x k x x sign x x

x f x x u k x x sign x x

z k sign x x

   

    

 











        (5) 

where ik  is the sliding mode gain to be designed and 1x

and 2x are estimates of 1x  and 2x , respectively. 

From Eqs. (3) and (5),  the dynamics of state 
estimation error can be written as 

21
1 1

1/2

2
2 2 1 2

1 2

2/3

1 1 1

2 1 211 2

3

.

.

, , ,

( )                                            

. .

( , , ) ( ) ( )

. .

( )                                                   

x

x x t z

x k x x sign x x

d x x x u x k x x sign x x

z k sign x x



   

     

                      











(6) 

 

Where x x x   is the state estimate error. The 

differentiator converges to zero as 

  

1 2 1 2 1 2

1/2

2

. .

( ) 0( , , ) k x x sign x xx x t z      (7) 

In Eq. (7), after the estimate state 1 2( , )x x  converges 

to the true state 1 2( , )x x  the Eq. (7) becomes as 

  1 2( , , )z x x t  (8) 

From Eqs. (5) and (8), the uncertainties can be directly 

identified by the equivalent output injection z .  

IV. THE ORTHOGONAL NEURAL NETWORK 

In this section, the orthogonal neural network(ONN) is 
explained. It is based on feed forward neural 
network(FNN) and polynomial functions as active 
functions. According to the theory of orthogonal function, 

an arbitrary function (x), f : [a, b]f   will have an 

orthogonal polynomial as 

  1 1 2 2
( ) ( ) ( ) ... ( )

n n n
F x w x w x w x       (9) 

Such that 

  
2

( ( ) ( )) 0lim
n

n
b

f x F x dxa


 

where 

  

0  
( ) ( )

  

i jb
x x dxa i j A i ji

 









 (11) 

  
( ) ( ) /     1, 2,...,ii i

b
w f x x dx A i na    (12) 

which  1 2( ), ( ), ...x x   is an orthogonal set. The 

orthogonal functions such as Fourier series, Bessel 
function, Legendre, and Chebyshev polynomial. 

In case that there is a function with m  variables, an 

orthogonal function set is denoted as 1 2( ), ( ), ...x x   . 

Then, each orthogonal function is defined as 

  1 1 2 2( ) ( ) ( )... ( )mi mi ii X x x x     (13) 

where  1 2, , ...,
T

nX x x x  is input vector. 

ONN based on feedforward network with one hidden 
layer is shown in Figure 1 by Tseng and Chen. Fig. 1 
shows a) multi input-one output and b) multi input-multi 
output. The weight connections between input layer and 
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hidden layer are 1 and the bias is 0. The i ( 0,1,.., )i n   

is an orthogonal function. The weights between them are

ijw  (with i  is number orthogonal function and j is 

number output). The output of ONN can be shown as 

  1
( ) ( ) ( ) ( )

n T
i i

i
y F X w t X W t


          (14) 

 

Figure 1.The orthogonal neural network. a) Single output b) Multi 

output 

V. THE PROPOSED CONTROLLER 

In this section, an adaptive control with an ONN and a 
TOSM observer is expressed as 

( )[ ( ) ( )] ( , )
ONNed d dvM q q K q q K q q H q q f        (15) 

where
ONN

f  is output of ONN. The ONN is based on feed 

forward network  and has three layers. 

 1) The input layer: The input vector of the ONN is 
denoted as 

  1 2 1 1 2 23 4
,[ , , ] [ , , , ]

T T
xX x x x e e e e   (16) 

where , , 1,2i d i de q q e q q i     .In the ONN, the 

input must be inside [-1,1].The input inside [a, b] can be 
transformed as 

  

2 1
,    [ 1,1]T

b
x Ti i i

b a b a


   

 
     (17) 

 2) The hidden layer: The hidden layer using 
Chebyshev polynomial of the first kind for orthogonal 
function  is expressed as 

( 2) ! 2 2 1/2
( ) 1 (1 )  0,1, 2, ...,

(2 )!

i i

i i

i d i
x x x i n

i dx


 
    (18) 

Eq.(18) can be rewritten as 

  

0

1

2
2

3
3

4 2
4

5 3
5

1 1

( ) 1

( )

( ) 2 1

( ) 4 3

( ) 8 8 1

( ) 16 20 5

         

( ) 2 ( ) ( )nn n

x

x x

x x

x x x

x x x

x x x x

x x x x















  





 

 

  

  

 

 

(19) 

In this paper, n is chosen as 10. 
 3) The output layer: The weight connection matrix 
between the hidden layer and output layer is shown as 

  1 2[w , w ,..., w ]
T

nW   (20) 

  The output of ONN is simply expressed as 

  
T

y W   (21) 

where 1 2{ (X), (X),..., (X)}n      is shown in Eq. 

(13) . 
The separate training of the ONN  for each joint could 

be allowed. It means that the columns of weight matrix in 
Eq. (20) can be separately adjusted like column by column. 
And also, the weights of the ONN are adjusted with the 
gradient descent method. The weights update law of  the 
ONN is given as 

  
W e   (22) 

where and e are  the learning rate and the learning error, 

respectively. 

The learning error is defined with the sliding function 
as 

  s e e   (23) 

where  is positive matrix. 

The block diagram of the proposed adaptive controller 
with an ONN and a TOSM observer is shown  in Fig. 2. 

 

Figure 2. The block diagram of the proposed controller 
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VI. THE RESULT SIMULATION 

To show the effectiveness of the proposed controller, 
computer simulation for a 2DOF manipulator  was carried 
out. 

The kinematic and dynamic parameters of the 
manipulator shown in Fig. 3 are given in Table I. 

Links

 
Parameter of each links

 

Length(m)

 

Weight(Kg)

 

Link 1

 

1 1l 

 

1 1m 

 

Link 2

 

2 1l 

 

2 1m 

 

 

 

Figure 3. The 2-DOF robot manipulator . 

 

2 2 2
1 2 1 2 2 2 1 2 2 2 2 2 1 2 2

2 2
2 2 2 1 2 2 2 2

( ) 2
( )

m m l m l m l l c m l m l l c
M q

m l m l l c m l

   




 
 
 

 

2
2 1 2 1 2 2 2

2
2 1 2 1 2

(2 )
( , )

m l l q q q s
V q q

m l l q s

 

 
 
 

 

1 2 1 1 2 2 12

2 12

( )

2

( )

gl c
G q

m

m m gl c m gl c


  
 
 

 

fF and c  are the friction matrix and load disturbance 

matrix, respectively. For this simulation, they are assumed 
to be as 

2
1

2

2

1.2

3.2
f

q
F

q

 
 
  

 

and 

1

2

0.25sin(2 )

3sin(2 )

q

c
q

 
 
 
   

where cos( ), sin( ), 1, 2i i i ic q s q i   ,

12 1 2sin( )s q q   , 12 1 2cos( )c q q 
2

9.81( / )g m s , 

mi  is weight of link- i, il  is length of link- i.  

The desired inputs are set to be 1 sin(2 / ) 1q t   and 

2 sin( / / 2)q t    . The control gain parameters are 

set as 
2 2

20eK I


  ,
2 2

100vK I


  , where 2 2I   is identity 

matrix with dimension 2x2. The learning rate of ONN is 

set as 0.5  . The third order sliding mode gains are set 

as 1 2 390, 20, 50K K K   .  To show the effectiveness 

of  the TOSM observer and the ONN compensation,  the 
velocity estimation results of  the TOSM is compared with 
the second order sliding mode (SOSM) observer  and  the 
joint position tracking errors  from the proposed control is 
compared with those from the conventional computed 
torque control(CTC). Those results are given in Figs. 4-5.  

 

a) Velocity at joint 1 

 
b) Velocity at joint 2 

Figure 4.The estimate velocity at each joint. 
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TABLE. I. THE PARAMETERS OF A ROBOT MANIPULATOR.

The dynamic models of the manipulator in Eq. (1) is 
given as



 
b) Error at joint 2 

Figure 5.The error at each joint. 

VII. THE CONCLUSION 

This paper, a adaptive controller using combination of 
orthogonal neural network and third order sliding mode 
observers are presented. The result of tracking trajectory 
had been shown that the propose controller achieve higher 
accuracy than conventional CTC also the third order 
sliding mode observers reduce chatting than SOSM 
observers . 

In this paper, an adaptive control with an orthogonal 
neural network (ONN) and a third order sliding mode 
(TOSM) observer for robot manipulators is proposed. 
From computer simulation for the 2 DOF manipulator, the 
TOSM observer is superior to the SOSM observer in 
estimating joint velocities and reducing chattering. And 
the proposed control is very effective in reducing joint 
position tracking errors compared with the conventional 
computed torque control.  
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