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Abstract—In this paper, we investigate fault diagnosis of 

composite asynchronous sequential machines with cascade 

composition. An adversarial input can infiltrate one of two 

submachines comprising the composite asynchronous 

machine, causing an unauthorized state transition. The 

main objective is to specify the condition under which the 

controller can diagnose any fault occurrence. Two control 

configurations, state feedback and output feedback, are 

considered in this paper. In the case of output feedback, the 

exact estimation of the state of the front machine is 

impossible since the current state is inaccessible. Due to 

feature of cascade composition, we must consider the case 

where the rear submachine undergoes a faulty transition 

caused by the adversarial input occurring to the front 

submachine. Fault detectability is also addressed in the case 

of output feedback. 

 

Index Terms—asynchronous sequential machines, cascade 

composition, corrective control, fault diagnosis 

 

I. INTRODUCTION 

Corrective control is a novel automatic control theory 

that is used to compensate for the stable-state behavior of 

asynchronous sequential machines. It has been mainly 

applied to correcting faulty operations of the machine, 

e.g., critical races [1], infinite cycles [2], nondeterministic 

transitions [3], etc. Recently, it has been successfully 

applied to tolerating various faults occurring to the 

machine; refer to [4], [5] for theoretical development of 

this topic, and to [6], [7] for experimental verification on 

asynchronous digital systems. 

In this paper, we study fault diagnosis for a cascaded 

asynchronous sequential machine, which is a composite 

system made of two single asynchronous sequential 

machines, termed front and rear machines, in a series 

connection. The motivation of our study is that many 

built-in asynchronous sequential machines are combined 

into a cascaded one for various purposes [8]. When 

cascaded systems are operated in hazardous environments, 

adversarial inputs causing unwanted transitions may 

happen to the systems. In comparison with the case of 

single asynchronous sequential machines [4]-[7], it is 

more difficult to diagnose fault situations occurring to 

cascaded asynchronous sequential machines. The major 

reason is that owing to the structure of the cascaded 
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system, the adverse effect of a fault occurring to the front 

machine can be propagated to the rear machine. 

Moreover, often only output feedback of the cascaded 

asynchronous sequential machine is available to the 

controller. The foregoing constraint makes it impossible 

for a controller to conduct exact fault diagnosis on the 

cascaded asynchronous sequential machine. 

In this study, two control configurations, state 

feedback and output feedback, are considered separately 

in fault diagnosis. When state feedback is available, the 

controller knows the state at which the fault occurs as 

well as the state reached by the machine as the result of 

the fault. On the other hand, the controller cannot derive 

the exact state of the machine only with the use of output 

feedback. Instead, we derive the change of state 

uncertainty throughout the unauthorized state transition. 

Due to feature of cascade composition, we must consider 

the case where the rear submachine undergoes a faulty 

transition caused by the adversarial input occurring to the 

front submachine. Note that the construction of a fault 

tolerant controller is not discussed in this paper. A simple 

example is provided to demonstrate the proposed 

methodology of fault diagnosis. Recent results of 

modeling and control of composite asynchronous 

sequential machines can be found in, e.g., [9], [10]. 

II. PRELIMINARIES 

A composite asynchronous sequential machine Σ is 

made of two single input/state asynchronous sequential 

machines Σf and Σr whose dynamics are described as 

Σf = (A∪W, X, sf) 

Σr = (X∪W, Y, sr) 

where A is the set of external inputs, W is the set of 

adversarial inputs, X and Y are the state sets, and  

sf: X×(A∪W)→X 

sr: Y× (X∪W)→Y 

are the stable recursion function of Σf and Σr, respectively. 

In our paper, each machine is represented by a stable-

state machine in which a transition involves no transient 

states. Let us discuss the feature of single asynchronous 

sequential machines using Σf (the following is equally 

applied to Σr). If sf(x,u)=x, xX is a stable state of Σf with 

respect to the input uA; else if sf(x,u)x, it is a transient 
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state with u. Owing to the absence of a synchronizing 

clock, Σf stays at a stable combination (x,u) indefinitely. 

If the input u changes to another value u for which (x,u) 

is a transient combination, Σf engages in the transition 

from x to  

sf(x,u) = x 

asynchronously where x is called the next stable state of 

(x,u).  

For later usage, we extend the mapping of sf and sr as 

follows. Let χX be a subset of X. Then sf:P(X)×A→P(X) 

is defined as follows, where P(X) is the power set of X. 

sf[χ,u] = {sf(x,u)| xχ} 

where ‘[⋅]’ is used to highlight that sf[χ,u] is a set value. 

In association with sf and sr, we define the inverse 

functions s
-1

f:X×X→P(A) and s
-1

r:Y×Y→P(X) as 

s
-1

f(x,x) = {vA| sf(x,v)=x} 

s
-1

r(y,y) = {xX| sr(y,x)=y}. 

Note that the set of adversarial inputs W are excluded 

from the range of s
-1

f and s
-1

r. 

Since Σf and Σr are combined in a series connection, X 

serves as the external input set of Σr and Y as the output 

set of the cascaded asynchronous sequential machine Σ. 

As Σf undergoes a transition, the next stable state of Σf is 

transmitted to Σr as the new input. In particular, assume 

that Σf and Σr have been staying at a stable state x and y, 

respectively, with the control input u. This means that 

sf(x,u)=x and sr(y,x)=x. Assume further that the control 

input changes to u. Then Σf first undergoes a stable 

transition from x to sf(x,u). If sf(x,u)x, the transition of 

Σf also induces that of Σr, namely Σr transfers from y to 

sr(y,sf(x,u)). Hence it can be said that in response to u, Σ 

transfers from (x,y) to (sf(x,u), sr(y,sf(x,u))). 

C
yuv

Σf

wf

x
Σr

wr

Σ

 
Figure 1.  Control configuration of the composite asynchronous 

sequential machine  with cascade composition. 

Fig. 1 illustrates the corrective control system for a 

composite asynchronous sequential machine Σ, where C 

is the corrective controller that has the form of an 

input/output asynchronous sequential machine, vA is the 

external input, uA is the control input generated by C, 

xX and yY are the state of Σf and Σr, respectively, and 

wfW and wrW are the adversarial input to Σf and Σr. 

We denote by Σc the closed-loop system composed of C 

and Σ. 

If wf occurs to Σf that has been staying at a stable state 

x, Σf is forced to transfer to sf(x,wf) regardless of the 

current external input. Σr can be also influenced by an 

occurrence of wf since its input, or the state of Σf, is 

switched by an occurrence of wf. On the other hand, wr 

causes Σr to undergo an unauthorized state transition 

without affecting Σf. 

In this paper, we consider two control configuration 

separately — (i) state feedback and (ii) output feedback. 

To stress this setting, the route of state feedback is 

marked in dashed lines in Fig. 1. In the case of state 

feedback, both x and y are transmitted to C. Hence the 

formulation of C is written as 

C = (X×Y×A, A, Ξ, ξ0, ϕ, η) with (x,y). 

where X×Y×A is the input set (x, y, and v), A is the output 

set serving as the control input u, Ξ is the state set, ξ0Ξ 

is the initial state, ϕ:Ξ×X×Y×A→ Ξ is the recursion 

function, and η:Ξ→Z is the output function. In the case of 

output feedback, on the other hand, only y from Σr is 

relayed to C as the output feedback. Hence the 

formulation of C is 

C = (Y×A, A, Ξ, ξ0, ϕ, η) with y. 

The objective of fault diagnosis by C is also 

determined depending on the control configuration as 

follows. 
(i) In the case of state feedback, C must identify not 

only the original state of Σ at which the unauthorized 
state transition initiates, but also the deviated state 
reached by Σ as the result of the fault. 

(ii) In the case of output feedback, the exact observation 
of the state of Σf is impossible. Instead of deriving the 
current state of Σf, we must specify a subset of X, one 
element of which Σf stays at the moment of the fault 
occurrence, and another subset of X that represents 
all the possible states that can be reached by Σf as the 
result of the fault. 

The final purpose of fault diagnosis is to conduct fault 

tolerant control that drives Σ to return to the normal 

input/state or input/output behavior. In this paper, 

however, we only discuss fault diagnosis and leave fault 

tolerant control as a future topic. 

To prevent unpredictable results caused by the absence 

of a synchronizing clock, the closed-loop system Σc is 

supposed to preserve the principle of fundamental mode 

operations [11] whereby a variable must change its value 

when both C and Σ are in stable states, and no two or 

more variables can be altered simultaneously. Under this 

principle, an adversarial input can happen only when both 

Σf and Σr stay at stable states, and Σr can engage in a 

transition only after the transition of Σf terminates and 

vice versa. 

II. MAIN RESULT 

A. State Feedback 

We first study the problem of fault diagnosis in the 

control configuration with access to state feedback, i.e., 

both x and y are delivered to C as feedback. As 

mentioned before, an unauthorized state transition of Σ 

may stem from either an occurrence of wf or that of wr. 

First, assume that Σ has been staying at stable states (x,y) 

when wf occurs, enforcing Σf to reach sf(x,wf)=x. One can 

perceive the occurrence of wf by observing that the state 
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feedback of Σf changes to x while the external input v 

remains fixed. Since the state of Σf enters Σr as its input, 

Σr may also experience an unauthorized state transition 

from y to sr(y,x)=y if (y,x) is a transient combination of 

Σr. In this case, one will observe almost simultaneous 

change of state feedback from (x,y) to (x,y), as 

asynchronous sequential machines have zero transient 

time.  

Next, suppose that wr occurs to Σr when Σ stays at 

stable states (x,y). Referring to Fig. 1, the output channel 

of Σr is detached from Σf. Hence, only Σr experiences the 

unauthorized state transition from y to sr(y,wr) while Σf 

stands still. 

In either occurrence of wf or wr, we can identify with 

certainty both the original state at which an adversarial 

input occurs and the next stable state reached by Σf and Σr 

as the result of the fault. Let us summarize our analysis 

on fault diagnosis with full state feedback as follows. 

 

(i) (x,y)→(x,y): wf occurs to Σf such that sf(x,wf)=x and 

sr(y,x)=y. 

(ii) (x,y)→(x,y): wf occurs to Σf such that sf(x,wf)=x and 

sr(y,x)=y. 

(iii) (x,y)→(x,y): wr occurs to Σr such that sr(y,wr)=y. 

B. Output Feedback 

Since the exact identification of the current state of Σf 

is impossible in the control configuration with output 

feedback, in this paper we introduce the notion of state 

uncertainty of Σf. Provided that Σ stays at a stable 

combination with the control input uA and the output 

feedback value yY, denote by  

Xn(u,y)  X 

state uncertainty about Σf with u and y in the normal 

behavior. Explicitly, Xn(u,y) is defined as 

Xn(u,y) = {xX| sf(x,u)=x,  sr(y,x)=y}. 

Xn(u,y) implies that the exact state of Σf is unknown; 

but it stays at a stable combination with a state of Xn(u,y). 

Suppose now that Σ has been staying at stable states 

with u, y, and uncertainty Xn(u,y) when an adversarial 

input occurs so that y changes to y. As addressed before, 

the unauthorized state transition from y to y may stem 

from one of two faults: First, wf may have happened to Σf 

so that Σf transfers from a (unknown) state xXn(u,y) to 

sf(x,wf)=x and Σr in turn transfers from y to sr(y,x)=y. 

Next, wr may have happened to Σr so that Σr undergoes 

the transition from y to sr(y,wr)=y. Since the current state 

of Σf is still uncertain in either case, we have to estimate it 

using the current information, i.e., using u, y, Xn(u,y), and 

y. For this purpose, let us define two subsets Wf(x,x)W 

for x,xX and Wr(y,y)W for y,yY as 

Wf(x,x) = {wfW| sf(x,wf)=x} 

Wr(y,y) = {wrW| sr(y,wr)=y}. 

Wf(x,x) and Wr(y,y) symbolize the set of adversarial 

inputs causing the unauthorized state transition from x to 

x in Σf and from y to y in Σr, respectively. At the end of 

the unauthorized state transition, the procedure of state 

estimation of Σf must be conducted by checking Wr(y,y) 

and s
-1

r(y,y).  

1) Wr(y,y) and s
-1

r(y,y)=: First of all, if Wr(y,y)  

 and s
-1

r(y,y)=, the unauthorized state transition from 

y to y must be caused solely by an occurrence of 

wrWr(y,y), since no state of X exists that takes Σr from y 

to y. Hence Σf stays at the same state of Xn(u,y) during 

the unauthorized state transition and the uncertainty 

Xn(u,y) remains unchanged. 

2) Wr(y,y)= and s
-1

r(y,y): Second, if Wr(y,y)= 

and s
-1

r(y,y), the unauthorized state transition must be 

relayed from Σf, which has undergone an unauthorized 

state transition caused by an occurrence of wfW. To 

address this case further, we remind that Σf stays at a state 

of Xn(u,y) before the fault occurrence. Since s
-1

r(y,y), 

we have to examine which states among s
-1

r(y,y) can 

be reached by Σf as the result of the unauthorized state 

transition. A subset of s
-1

r(y,y) defined with respect to u, 

y, and y, termed Xd(u,y,y), represents such states. 

Xd(u,y,y) = {xs
-1

r(y,y)| wfW, xXn(u,y)  

such that sf(x,wf)=x}. 

Xd(u,y,y) equals the updated uncertainty about the 

state of Σf after the fault occurrence. 

3) Wr(y,y) and s
-1

r(y,y): Finally, if Wr(y,y) 

and s
-1

r(y,y), the unauthorized state transition may be 

caused either by indirect influence by wf or direct 

influence by wr. In this case, uncertainty about the state of 

Σf must be the sum of Xn(u,y) and Xd(u,y,y). Let  

Ω(u,y,y)  X 

be uncertainty about the state of Σf induced after the 

unauthorized state transition from y to y with the input u. 

Then, assembling the foregoing discussions, we derive 

Ω(u,y,y) as follows. 

Ω(u,y,y) =  

{

𝑋𝑛(𝑢, 𝑦) 𝑊𝑟(𝑦, 𝑦) ≠ , 𝑠𝑟
−1(𝑦, 𝑦) = 

𝑋𝑑(𝑢, 𝑦, 𝑦) 𝑊𝑟(𝑦, 𝑦) = , 𝑠𝑟
−1(𝑦, 𝑦) ≠ 

𝑋𝑛(𝑢, 𝑦) ∪ 𝑋𝑑(𝑢, 𝑦, 𝑦) 𝑊𝑟(𝑦, 𝑦) ≠ , 𝑠𝑟
−1(𝑦, 𝑦) ≠ 

 

III. EXAMPLE 

To address applicability of the presented analysis of 

fault diagnosis, consider an example machine Σ shown in 

Fig. 2. Here, A={a,b,c,d}, X={x1,x2,x3,x4}, Y={y1,y2,y3,y4}, 

and W={w1,w2,w3} where w1 and w3 may occur to Σf at x3 

and x2, respectively, and w2 to Σr at y2. Since fault 

diagnosis is self-evident in the case of state feedback, we 

investigate only fault occurrence and its diagnosis for the 

closed-loop system Σc with access to output feedback y.  

For instance, suppose that Σ has been staying at a stable 

combination with u=c and y=y2. Then, uncertainty about 

the current state of Σf is  

Xn(c,y2) = {xX| sf(x,c)=x,  sr(y2,x)=y2} 

= {x2,x3}. 
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Figure 2.  Composite asyncronous sequential machine Σ with Σf and Σr. 

Suppose further that the output feedback changes from 

y2 to y4 while the control input remains unchanged. 

Referring to Fig. 2, this unauthorized state transition can 

be caused either by an occurrence of w2 in Σr, i.e., 

sr(y2,w2)=y4, or by an occurrence of w1 or w3 in Σr, i.e., 

sf(x3,w1)=sf(x2,w3)=x1 and sr(y2,x1)=y4. s
-1

r(y2,y4) and 

Xd(c,y2,y4) are derived as 

s
-1

r(y2,y4) = {xX| sr(y2,x)=y4} 

={x1} 

Xd(c,y2,y4) = {xs
-1

r(y2,y4)| wfW, xXn(c,y2) 

such that sr(y2,x)=y4}  

= {x1}.  

Using the derived formula of state uncertainty, we 

easily derive Ω(c,y2,y4), uncertainty about the current 

state of Σf estimated at the end of the unauthorized 

transition, as follows. 

Ω(c,y2,y4) = Xn(c,y2)  Xd(c,y2,y4) 

= {x2,x3}  {x1} 

 = {x1,x2,x3}. 

The above analysis can be said that upon observing the 

unauthorized transition from y2 to y4, the state uncertainty 

of Σf changes from Xn(c,y2)={x2,x3} to 

Ω(c,y2,y4)={x1,x2,x3}. 

IV. CONCLUSION 

We have investigated fault diagnosis of a class of 

composite asynchronous sequential machines made of 

cascade composition of two single asynchronous 

machines. We have examined whether an unauthorized 

state transition can be identified in the closed-loop system 

of the composite asynchronous sequential machine with 

access to state feedback or output feedback. While state 

identification of front and rear submachines is feasible in 

the case of sate feedback, it is impossible in the case of 

output feedback. Instead, we update uncertainty about the 

current state of the front machine in the course of an 

unauthorized state transition according to the available 

information of the machine. The proposed methodology 

has been validated using a simple example instance. 
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