Fault Diagnosis for Composite Asynchronous Sequential Machines with Cascade Composition

Jung-Min Yang

School of Electronics Engineering, Kyungpook National University 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea E-mail: jmyang@knu.ac.kr

Abstract-In this paper, we investigate fault diagnosis of composite asynchronous sequential machines with cascade composition. An adversarial input can infiltrate one of two submachines comprising the composite asynchronous machine, causing an unauthorized state transition. The main objective is to specify the condition under which the controller can diagnose any fault occurrence. Two control configurations, state feedback and output feedback, are considered in this paper. In the case of output feedback, the exact estimation of the state of the front machine is impossible since the current state is inaccessible. Due to feature of cascade composition, we must consider the case where the rear submachine undergoes a faulty transition caused by the adversarial input occurring to the front submachine. Fault detectability is also addressed in the case of output feedback.

Index Terms—asynchronous sequential machines, cascade composition, corrective control, fault diagnosis

I. INTRODUCTION

Corrective control is a novel automatic control theory that is used to compensate for the stable-state behavior of asynchronous sequential machines. It has been mainly applied to correcting faulty operations of the machine, e.g., critical races [1], infinite cycles [2], nondeterministic transitions [3], etc. Recently, it has been successfully applied to tolerating various faults occurring to the machine; refer to [4], [5] for theoretical development of this topic, and to [6], [7] for experimental verification on asynchronous digital systems.

In this paper, we study fault diagnosis for a cascaded asynchronous sequential machine, which is a composite system made of two single asynchronous sequential machines, termed front and rear machines, in a series connection. The motivation of our study is that many built-in asynchronous sequential machines are combined into a cascaded one for various purposes [8]. When cascaded systems are operated in hazardous environments, adversarial inputs causing unwanted transitions may happen to the systems. In comparison with the case of single asynchronous sequential machines [4]-[7], it is more difficult to diagnose fault situations occurring to cascaded asynchronous sequential machines. The major reason is that owing to the structure of the cascaded system, the adverse effect of a fault occurring to the front machine can be propagated to the rear machine. Moreover, often only output feedback of the cascaded asynchronous sequential machine is available to the controller. The foregoing constraint makes it impossible for a controller to conduct exact fault diagnosis on the cascaded asynchronous sequential machine.

In this study, two control configurations, state feedback and output feedback, are considered separately in fault diagnosis. When state feedback is available, the controller knows the state at which the fault occurs as well as the state reached by the machine as the result of the fault. On the other hand, the controller cannot derive the exact state of the machine only with the use of output feedback. Instead, we derive the change of state uncertainty throughout the unauthorized state transition. Due to feature of cascade composition, we must consider the case where the rear submachine undergoes a faulty transition caused by the adversarial input occurring to the front submachine. Note that the construction of a fault tolerant controller is not discussed in this paper. A simple example is provided to demonstrate the proposed methodology of fault diagnosis. Recent results of modeling and control of composite asynchronous sequential machines can be found in, e.g., [9], [10].

II. PRELIMINARIES

A composite asynchronous sequential machine Σ is made of two single input/state asynchronous sequential machines Σ_f and Σ_r whose dynamics are described as

$$\Sigma_f = (A \cup W, X, s_f)$$

$$\Sigma_r = (X \cup W, Y, s_r)$$

where A is the set of external inputs, W is the set of adversarial inputs, X and Y are the state sets, and

$$s_f: X \times (A \cup W) \to X$$
$$s_r: Y \times (X \cup W) \to Y$$

are the stable recursion function of Σ_f and Σ_r , respectively. In our paper, each machine is represented by a stablestate machine in which a transition involves no transient states. Let us discuss the feature of single asynchronous sequential machines using Σ_f (the following is equally applied to Σ_r). If $s_f(x,u)=x, x \in X$ is a stable state of Σ_f with respect to the input $u \in A$; else if $s_f(x,u)\neq x$, it is a transient

Manuscript received July 1, 2017; revised October 22, 2017.

state with *u*. Owing to the absence of a synchronizing clock, Σ_f stays at a stable combination (x,u') indefinitely. If the input *u'* changes to another value *u* for which (x,u) is a transient combination, Σ_f engages in the transition from *x* to

$$s_f(x,u) = x'$$

asynchronously where x' is called the next stable state of (x,u).

For later usage, we extend the mapping of s_f and s_r as follows. Let $\chi \subset X$ be a subset of *X*. Then $s_f \cdot P(X) \times A \rightarrow P(X)$ is defined as follows, where P(X) is the power set of *X*.

$$s_f[\chi, u] = \{s_f(x, u) | x \in \chi\}$$

where '[·]' is used to highlight that $s_f[\chi, u]$ is a set value.

In association with s_f and s_r , we define the inverse functions $s^{-1}_{f}:X \times X \rightarrow P(A)$ and $s^{-1}_{r}:Y \times Y \rightarrow P(X)$ as

$$s^{-1}_{r}(x,x') = \{ v \in A | s_{f}(x,v) = x' \}$$

$$s^{-1}_{r}(v,v') = \{ x \in X | s_{r}(v,x) = v' \}.$$

Note that the set of adversarial inputs *W* are excluded from the range of s_{f}^{-1} and s_{r}^{-1} .

Since Σ_f and Σ_r are combined in a series connection, X serves as the external input set of Σ_r and Y as the output set of the cascaded asynchronous sequential machine Σ . As Σ_f undergoes a transition, the next stable state of Σ_f is transmitted to Σ_r as the new input. In particular, assume that Σ_f and Σ_r have been staying at a stable state x and y, respectively, with the control input u. This means that $s_f(x,u)=x$ and $s_r(y,x)=x$. Assume further that the control input changes to u'. Then Σ_f first undergoes a stable transition from x to $s_f(x,u')$. If $s_f(x,u')\neq x$, the transition of Σ_f also induces that of Σ_r , namely Σ_r transfers from y to $s_r(y,s_f(x,u'))$. Hence it can be said that in response to u', Σ transfers from (x,y) to $(s_f(x,u'), s_r(y,s_f(x,u')))$.

Figure 1. Control configuration of the composite asynchronous sequential machine Σ with cascade composition.

Fig. 1 illustrates the corrective control system for a composite asynchronous sequential machine Σ , where *C* is the corrective controller that has the form of an input/output asynchronous sequential machine, $v \in A$ is the external input, $u \in A$ is the control input generated by *C*, $x \in X$ and $y \in Y$ are the state of Σ_f and Σ_r , respectively, and $w_f \in W$ and $w_r \in W$ are the adversarial input to Σ_f and Σ_r . We denote by Σ_c the closed-loop system composed of *C* and Σ .

If w_f occurs to Σ_f that has been staying at a stable state x, Σ_f is forced to transfer to $s_f(x, w_f)$ regardless of the current external input. Σ_r can be also influenced by an occurrence of w_f since its input, or the state of Σ_f , is

switched by an occurrence of w_f . On the other hand, w_r causes Σ_r to undergo an unauthorized state transition without affecting Σ_f .

In this paper, we consider two control configuration separately — (i) state feedback and (ii) output feedback. To stress this setting, the route of state feedback is marked in dashed lines in Fig. 1. In the case of state feedback, both x and y are transmitted to C. Hence the formulation of C is written as

$$C = (X \times Y \times A, A, \Xi, \xi_0, \phi, \eta)$$
 with (x, y) .

where $X \times Y \times A$ is the input set (x, y, and v), A is the output set serving as the control input u, Ξ is the state set, $\xi_0 \in \Xi$ is the initial state, $\phi:\Xi \times X \times Y \times A \rightarrow \Xi$ is the recursion function, and $\eta:\Xi \rightarrow Z$ is the output function. In the case of output feedback, on the other hand, only y from Σ_r is relayed to C as the output feedback. Hence the formulation of C is

$$C = (Y \times A, A, \Xi, \xi_0, \phi, \eta)$$
 with y.

The objective of fault diagnosis by C is also determined depending on the control configuration as follows.

- (i) In the case of state feedback, C must identify not only the original state of Σ at which the unauthorized state transition initiates, but also the deviated state reached by Σ as the result of the fault.
- (ii) In the case of output feedback, the exact observation of the state of Σ_f is impossible. Instead of deriving the current state of Σ_f , we must specify a subset of *X*, one element of which Σ_f stays at the moment of the fault occurrence, and another subset of *X* that represents all the possible states that can be reached by Σ_f as the result of the fault.

The final purpose of fault diagnosis is to conduct fault tolerant control that drives Σ to return to the normal input/state or input/output behavior. In this paper, however, we only discuss fault diagnosis and leave fault tolerant control as a future topic.

To prevent unpredictable results caused by the absence of a synchronizing clock, the closed-loop system Σ_c is supposed to preserve the principle of fundamental mode operations [11] whereby a variable must change its value when both *C* and Σ are in stable states, and no two or more variables can be altered simultaneously. Under this principle, an adversarial input can happen only when both Σ_f and Σ_r stay at stable states, and Σ_r can engage in a transition only after the transition of Σ_f terminates and vice versa.

II. MAIN RESULT

A. State Feedback

We first study the problem of fault diagnosis in the control configuration with access to state feedback, i.e., both *x* and *y* are delivered to *C* as feedback. As mentioned before, an unauthorized state transition of Σ may stem from either an occurrence of w_f or that of w_r . First, assume that Σ has been staying at stable states (*x*,*y*) when w_f occurs, enforcing Σ_f to reach $s_f(x,w_f)=x'$. One can perceive the occurrence of w_f by observing that the state

feedback of Σ_f changes to x' while the external input v remains fixed. Since the state of Σ_f enters Σ_r as its input, Σ_r may also experience an unauthorized state transition from y to $s_r(y,x')=y'$ if (y,x') is a transient combination of Σ_r . In this case, one will observe almost simultaneous change of state feedback from (x,y) to (x',y'), as asynchronous sequential machines have zero transient time.

Next, suppose that w_r occurs to Σ_r when Σ stays at stable states (x,y). Referring to Fig. 1, the output channel of Σ_r is detached from Σ_f . Hence, only Σ_r experiences the unauthorized state transition from y to $s_r(y,w_r)$ while Σ_f stands still.

In either occurrence of w_f or w_r , we can identify with certainty both the original state at which an adversarial input occurs and the next stable state reached by Σ_f and Σ_r as the result of the fault. Let us summarize our analysis on fault diagnosis with full state feedback as follows.

- (i) $(x,y) \rightarrow (x',y')$: w_f occurs to Σ_f such that $s_f(x,w_f) = x'$ and $s_r(y,x') = y'$.
- (ii) $(x,y) \rightarrow (x',y)$: w_f occurs to Σ_f such that $s_f(x,w_f) = x'$ and $s_r(y,x') = y$.
- (iii) $(x,y) \rightarrow (x,y')$: w_r occurs to Σ_r such that $s_r(y,w_r) = y'$.

B. Output Feedback

Since the exact identification of the current state of Σ_f is impossible in the control configuration with output feedback, in this paper we introduce the notion of state uncertainty of Σ_f . Provided that Σ stays at a stable combination with the control input $u \in A$ and the output feedback value $y \in Y$, denote by

$$X_n(u,y) \subset X$$

state uncertainty about Σ_f with u and y in the normal behavior. Explicitly, $X_n(u,y)$ is defined as

$$X_n(u,y) = \{x \in X | s_t(x,u) = x, s_r(y,x) = y\}$$

 $X_n(u,y)$ implies that the exact state of Σ_f is unknown; but it stays at a stable combination with a state of $X_n(u,y)$.

Suppose now that Σ has been staying at stable states with u, y, and uncertainty $X_n(u,y)$ when an adversarial input occurs so that y changes to y'. As addressed before, the unauthorized state transition from y to y' may stem from one of two faults: First, w_f may have happened to Σ_f so that Σ_f transfers from a (unknown) state $x \in X_n(u,y)$ to $s_f(x,w_f)=x'$ and Σ_r in turn transfers from y to $s_r(y,x')=y'$. Next, w_r may have happened to Σ_r so that Σ_r undergoes the transition from y to $s_r(y,w_r)=y'$. Since the current state of Σ_f is still uncertain in either case, we have to estimate it using the current information, i.e., using u, y, $X_n(u,y)$, and y'. For this purpose, let us define two subsets $W_f(x,x') \subset W$ for $x,x' \in X$ and $W_r(y,y') \subset W$ for $y,y' \in Y$ as

$$W_f(x,x') = \{ w_f \in W | s_f(x,w_f) = x' \}$$

$$W_r(y,y') = \{ w_r \in W | s_r(y,w_r) = y' \}.$$

 $W_f(x,x')$ and $W_r(y,y')$ symbolize the set of adversarial inputs causing the unauthorized state transition from x to x' in Σ_f and from y to y' in Σ_r , respectively. At the end of the unauthorized state transition, the procedure of state estimation of Σ_f must be conducted by checking $W_r(y,y')$ and $s^{-1}r(y,y')$.

1) $W_r(y,y') \neq \emptyset$ and $s^{-1}_r(y,y') = \emptyset$: First of all, if $W_r(y,y') \neq \emptyset$ and $s^{-1}_r(y,y') = \emptyset$, the unauthorized state transition from y to y' must be caused solely by an occurrence of $w_r \in W_r(y,y')$, since no state of X exists that takes Σ_r from y to y'. Hence Σ_f stays at the same state of $X_n(u,y)$ during the unauthorized state transition and the uncertainty $X_n(u,y)$ remains unchanged.

2) $W_r(y,y')=\emptyset$ and $s^{-1}_r(y,y')\neq\emptyset$: Second, if $W_r(y,y')=\emptyset$ and $s^{-1}_r(y,y')\neq\emptyset$, the unauthorized state transition must be relayed from Σ_f , which has undergone an unauthorized state transition caused by an occurrence of $w_f \in W$. To address this case further, we remind that Σ_f stays at a state of $X_n(u,y)$ before the fault occurrence. Since $s^{-1}_r(y,y')\neq\emptyset$, we have to examine which states among $s^{-1}_r(y,y')\neq\emptyset$ can be reached by Σ_f as the result of the unauthorized state transition. A subset of $s^{-1}_r(y,y')$ defined with respect to u, y, and y', termed $X_d(u,y,y')$, represents such states.

$$X_d(u, y, y') = \{x \in s^{-1}_r(y, y') | \exists w_f \in W, x' \in X_n(u, y) \\ \text{such that } s_t(x', w_f) = x\}.$$

 $X_d(u,y,y')$ equals the updated uncertainty about the state of Σ_f after the fault occurrence.

3) $W_r(y,y') \neq \emptyset$ and $s^{-1}_r(y,y') \neq \emptyset$: Finally, if $W_r(y,y') \neq \emptyset$ and $s^{-1}_r(y,y') \neq \emptyset$, the unauthorized state transition may be caused either by indirect influence by w_f or direct influence by w_r . In this case, uncertainty about the state of Σ_f must be the sum of $X_n(u,y)$ and $X_d(u,y,y')$. Let

$$\Omega(u,y,y') \subset X$$

be uncertainty about the state of Σ_f induced after the unauthorized state transition from *y* to *y'* with the input *u*. Then, assembling the foregoing discussions, we derive $\Omega(u,y,y')$ as follows.

$$\begin{split} \Omega(u,y,y') &= \\ \begin{cases} X_n(u,y) & W_r(y,y') \neq \emptyset, s_r^{-1}(y,y') = \emptyset \\ X_d(u,y,y') & W_r(y,y') = \emptyset, s_r^{-1}(y,y') \neq \emptyset \\ X_n(u,y) \cup X_d(u,y,y') & W_r(y,y') \neq \emptyset, s_r^{-1}(y,y') \neq \emptyset \end{cases}$$

III. EXAMPLE

To address applicability of the presented analysis of fault diagnosis, consider an example machine Σ shown in Fig. 2. Here, $A = \{a, b, c, d\}$, $X = \{x_1, x_2, x_3, x_4\}$, $Y = \{y_1, y_2, y_3, y_4\}$, and $W = \{w_1, w_2, w_3\}$ where w_1 and w_3 may occur to Σ_f at x_3 and x_2 , respectively, and w_2 to Σ_r at y_2 . Since fault diagnosis is self-evident in the case of state feedback, we investigate only fault occurrence and its diagnosis for the closed-loop system Σ_c with access to output feedback *y*.

For instance, suppose that Σ has been staying at a stable combination with u=c and $y=y_2$. Then, uncertainty about the current state of Σ_f is

$$X_n(c,y_2) = \{x \in X | s_f(x,c) = x, s_r(y_2,x) = y_2\}$$

= $\{x_2, x_3\}.$

Figure 2. Composite asyncronous sequential machine Σ with Σ_f and Σ_r .

Suppose further that the output feedback changes from y_2 to y_4 while the control input remains unchanged. Referring to Fig. 2, this unauthorized state transition can be caused either by an occurrence of w_2 in Σ_r , i.e., $s_r(y_2,w_2)=y_4$, or by an occurrence of w_1 or w_3 in Σ_r , i.e., $s_f(x_3,w_1)=s_f(x_2,w_3)=x_1$ and $s_r(y_2,x_1)=y_4$. $s^{-1}_r(y_2,y_4)$ and $X_d(c,y_2,y_4)$ are derived as

$$s^{-1}_{r}(y_{2},y_{4}) = \{x \in X | s_{r}(y_{2},x) = y_{4}\}$$

= $\{x_{1}\}$
$$X_{d}(c,y_{2},y_{4}) = \{x \in s^{-1}_{r}(y_{2},y_{4}) | \exists w_{f} \in W, x' \in X_{n}(c,y_{2})$$

such that $s_{r}(y_{2},x') = y_{4}\}$
= $\{x_{1}\}.$

Using the derived formula of state uncertainty, we easily derive $\Omega(c,y_2,y_4)$, uncertainty about the current state of Σ_f estimated at the end of the unauthorized transition, as follows.

$$\Omega(c, y_2, y_4) = X_n(c, y_2) \cup X_d(c, y_2, y_4)$$

= {x_2, x_3} \cup {x_1}
= {x_1, x_2, x_3}.

The above analysis can be said that upon observing the unauthorized transition from y_2 to y_4 , the state uncertainty of Σ_f changes from $X_n(c,y_2)=\{x_2,x_3\}$ to $\Omega(c,y_2,y_4)=\{x_1,x_2,x_3\}$.

IV. CONCLUSION

We have investigated fault diagnosis of a class of composite asynchronous sequential machines made of cascade composition of two single asynchronous machines. We have examined whether an unauthorized state transition can be identified in the closed-loop system of the composite asynchronous sequential machine with access to state feedback or output feedback. While state identification of front and rear submachines is feasible in the case of sate feedback, it is impossible in the case of output feedback. Instead, we update uncertainty about the current state of the front machine in the course of an unauthorized state transition according to the available information of the machine. The proposed methodology has been validated using a simple example instance.

ACKNOWLEDGMENT

This research was supported in part by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MSIP) (No. 2015M3A9A7067220), and in part by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (No. 2015R1A2A1A15054026).

REFERENCES

- T. E. Murphy, X. Geng, and J. Hammer, "On the control of asynchronous machines with races," *IEEE Trans. Autom. Control*, vol. 48, no. 6, pp. 1073–1081, 2003.
- [2] N. Venkatraman and J. Hammer, "On the control of asynchronous sequential machines with infinite cycles," *Int. J. Control*, vol. 79, no. 7, pp. 764–785, 2006.
- [3] J. Peng and J. Hammer, "Bursts and output feedback control of nondeterministic asynchronous sequential machines," *Euro. J. Control*, vol. 18, no. 3, pp. 286–300, 2012.
- [4] J. M. Yang and J. Hammer, "State feedback control of asynchronous sequential machines with adversarial inputs," *Int. J. Control*, vol. 81, no. 12, pp. 1910–1929, 2008.
- [5] J. M. Yang, "Fault tolerance in asynchronous sequential machines using output feedback control," *IEEE Trans. Autom. Control*, vol. 57, no. 6, pp. 1604–1609, 2012.
- [6] J. M. Yang and S. W. Kwak, "Fault diagnosis and fault-tolerant control of input/output asynchronous sequential machines," *IET Control Theory Appl.*, vol. 6, no. 11, pp. 1682–1689, 2012.
- [7] J. M. Yang and S. W. Kwak, "Output feedback control of asynchronous sequential machines with disturbance inputs," *Inf. Sci.*, vol. 259, pp. 87–99, 2014.
- [8] C. H. Van Berkel, M. B. Josephs, and S. M. Nowick, "Applications of asynchronous circuits," *Proc. IEEE*, vol. 87, no. 2, pp. 223–233, 1999.
 [9] J. M. Yang, "Corrective control of composite asynchronous
- [9] J. M. Yang, "Corrective control of composite asynchronous sequential machines under partial observation," *IEEE Trans. Autom. Control*, vol. 61, no. 2, pp. 473–478, 2016.
- [10] J. M. Yang, "Modeling and control of switched asynchronous sequential machines," *IEEE Trans. Autom. Control*, vol. 61, no. 9, pp. 2714–2719, 2016.
- [11] Z. Kohavi and N. K. Jha, *Switching and Finite Automata Theory*, 3rd ed., Cambridge University Press: Cambridge, UK, 2010.

Jung-Min Yang received the B.S., M.S., and Ph.D. degrees in Electrical Engineering from Korea Advanced Institute of Science & Technology (KAIST), Korea, in 1993, 1995, and 1999, respectively. From March 1999 to February 2001, he was a Senior Member of Engineering Staff at Electronics and Telecommunications Research Institute (ETRI), Korea. Since September 2013, he has been with the School of Electronics Engineering, Kyungpook National University, Daegu, Korea, where he is currently a professor. His research interests are in control of asynchronous sequential machines, fault-tolerance in real-time systems, and control of complex networks.