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Abstract—This paper discusses a solution to one of the key 

issues in the swarm robotics field which is the dynamic task 

allocation problem in which a group of robots needs to be 

allocated to a set of tasks scattered in the environment in an 

efficient and decentralized way. The application considered 

in this context is the foraging application which can be 

addressed as a searching job followed by a transportation 

job. The near-optimal allocation scheme is found by using 

the Particle swarm optimization (PSO) technique to handle 

the whole task execution in a minimal time. Two case studies 

have been considered using different swarm sizes and the 

implemented code has been executed for a distinctive 

number of iterations. A stability proof for the PSO 

technique’s parameters choices is presented. Simulation 

results were verified by comparing the proposed algorithm 

with the simulated annealing optimization technique in 

terms of computational time, number of iterations needed 

and quality of solution to demonstrate the robustness and 

efficiency of the algorithm.  

 

Index Terms—dynamic task allocation, swarm robotics, 

particle swarm optimization, simulated annealing, swarm 

optimization, homogeneous robots. 

I. INTRODUCTION 

One of the major problems exists in robotics field is 

the task planning problem. Task planning consists of two 

main parts. First, there is a decomposition of a complex 

task into small simple sub-tasks in which a swarm of 

robots must cooperate with each other and with the 

environment to perform those tasks. Second, a task 

allocation (TA) is needed to distribute and schedule a set 

of tasks to be accomplished by a group of robots to 

optimize the performance while satisfying operational 

constraints. TA is one of the main issues to be elaborated 

on in multi-robot systems. Dynamic task allocation (DTA) 

implies that robots have no prior knowledge about the 

number of robots, the number of tasks, and the temporal 

and spatial distribution of tasks in the environment. 

However, they should communicate periodically with 

each other to adapt online to the environment [1]. 

Minimal Time Dynamic Task Allocation (MTDTA) 

seeks to allocate tasks dynamically to the robots while 
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minimizing the total time needed to accomplish the whole 

task.  

Due to the advantages of stability, scalability, energy 

efficiency, economist, parallelism, technical progress and 

the declining cost of robotic mobility, interest in this area 

of application has grown significantly in recent years. 

The DTA problem is encountered in various application 

domains of multi-robot systems, such as human rescuing, 

geological survey, agricultural foraging, military 

applications, UAV controlling, demining, warehousing, 

toxic waste clean-up, collection of terrain samples, 

cooperative transportation, autonomous exploration and 

mapping, distributed monitoring and surveillance, etc.  

As has been said before, the focus on this paper is on 

the foraging problem which can be addressed as a 

searching job followed by a transportation job [1]. Each 

job consists of a number of tasks. Each robot in the 

foraging problem has to decide whether it will explore a 

new object or it is going to transport an explored object to 

the nest.  

The final destination of the objects is called the nest or 

the objects prey. These set of objects can be one of two 

types, either a single-robot object which needs only one 

robot to carry it from its current location to the nest or a 

multi-robot task which requires at least two robots 

working simultaneously in order to retrieve the object to 

its final destination. Also, if the robot chooses the 

transportation job, it has also to decide which one of the 

scattered objects it will select to return to the nest. The 

robot choice is not random. However, each robot has to 

choose the most appropriate object to maximize the 

overall performance of the group [1]. The DTA problem 

in a cooperative foraging scenario with shared task 

execution by multiple robots is an NP-hard problem. 

The proposed algorithm will be decentralized which 

means that neither a global knowledge, nor messages’ 

broadcast nor a multi-hop communication would ever be 

used. There is no central unit to take care of the task 

allocation, and each individual in the swarm has to 

identify the task it must perform via the communication 

with only their neighbors. This decentralization is 

essential to avoid the restrictions that could result from 

the communication range limitations.    
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The rest of the paper is structured as follows: in the 

next section, related research work is outlined. Section 3 

describes the minimal time dynamic task allocation 

within the framework of the foraging problem with a 

changing number of tasks and robots. Section 4 outlines 

the proposed algorithm. Simulation results discussion and 

a comparison with the simulated annealing (SA) 

technique are presented in section 5. Finally, the 

conclusion and future work are covered.  

II. RELATED WORK 

Recently, several algorithms have been proposed in the 

literature for dynamic task allocation problems. One of 

the most common available taxonomies has implemented 

the algorithm classification according to the behavioral 

approach, the market laws or the bio-inspired approach 

[2]. Tasks are divided into behavioral groups in the 

behavioral approach in which each group contains a set of 

tasks to be executed that have relations among each other. 

The most common algorithm in the behavioral approach 

is ASYMTRE [3, 4]. In the market laws approach, 

algorithms aim at maximizing or minimizing cost 

functions, for example speed and convergence time. 

Algorithms based on market laws could follow any 

optimizing technique like auction and thresholds-based 

methods [5], Markov chain search process along with SA 

technique [6], or heuristic search-based task allocation 

technique [7]. Some algorithms may specify a set of 

constraints on the task allocation process, such as 

determining a deadline for the task assignment 

accomplishment, consider the size of each task, or specify 

the robots’ performance in their assigned tasks [8]. The 

most commonly used approach in terms of research and 

publications is the bio-inspired technique. It is derived 

from the social insect’s behavior. A series of algorithms 

based on the bio-inspired technique have been proposed 

in the literature, such as ant-inspired algorithms [9, 10], a 

parallel PSO algorithm [11, 12], and an artificial bee 

colony algorithm [13]. As mentioned by Krieger et al. [9], 

it is shown that a higher level of energy could be 

maintained in sets of robots which use ant-inspired 

optimization techniques than in single robots. They could 

also forage more expeditiously [9]. The bio-inspired 

techniques exhibit some praiseworthy properties such as 

self-organizing capacity and flexible behavior towards 

environmental changes. 

Other taxonomies have addressed the algorithm 

classification base on the centralized versus the 

distributed approach. In the centralized approach, there is 

a leader or central unit which is responsible for the task 

assignment to robots. For example, Gigliotta et al. have 

evolved a dynamic task allocation rules by 

communicative interactions in a group of homogeneous 

robots. They focused on the development of a team of 

robots in which one and only one individual robot 

(the ’leader’) must differentiate its communicative 

attitude from that of all the others (’non-leaders’). The 

robots have evolved for their capability to distinguish 

their roles by the discrimination of their signals. The 

leader robot has to maximize the value of its 

communicative signal, while all other robots have to 

minimize their signals’ value. The leader robot tends to 

send high signal’s value, while the non-leaders tend to 

send a low signal’s value. The fitness of a group of robot 

has been calculated in the following way. The average of 

the differences between the output signal of the current 

leader which has the maximum value and the output 

signals of all other non-leader robots has been calculated 

every iteration. A number of trials need to be 

implemented. At the end, the average of the calculated 

value for all iterations of all the trials can be considered 

as the fitness value [14]. Formally, this is how fitness 

value was calculated: 

                               𝐹 =
∑ ∑ 𝑀𝑎𝑥 − 𝑂𝑖

𝑁
𝑖

𝐶
𝑗

𝐶(𝑁 − 1)
 ,                         (1) 

where the number of robots in each group represented by 

N, such as 10. While, the total number of iterations of 

each individual called C, such as 1000 iterations * 40 

trials = 40000. Also, the signal’s value of the current 

leader is Max and the signal’s value of robot j is 𝑂𝑗 . 

 While in the distributed approach, there is no central 

unit to take care of the task allocation. Thus, each robot in 

the swarm has to identify the task it must perform. A lot 

of algorithms have been proposed in this approach, like 

the self-organized method which neither relies on global 

knowledge nor centralized components and it does not 

require massive robots’ interactions [15-17]. Also, a fully 

decentralized approach which needs neither a global 

broadcast nor a multi-hop communication protocol has 

been enhanced [13]. Zhang, Xie, Yu, and Wang have 

established a hierarchical assignment architecture and 

have utilized a “local blackboard” communication 

mechanism for knowledge sharing to avoid using a 

centralized leader [18]. 

Finally, other taxonomies classified the algorithms 

based on a single robot-task approach against a multi-

robot task approach [19]. In a single robot-task, only a 

single robot is needed to perform each task. However, in 

a multi-robot task, a task has to be cooperatively carried 

out by several robots. This DTA problem is a strongly 

NP-hard problem and the complexity significantly 

depends on the number of robots required by each multi-

robot task. Some proposed algorithms in this taxonomy 

have identified an efficient multi-foraging behavior in 

which each task required multiple robots to share the 

task’s execution to complete the task [1, 20]. Liu and 

Kroll [21] have discussed the fact that it can be more 

challenging when tightly coupled multi-robot tasks are 

taken into consideration due to the resulting temporal and 

spatial constraints. Additionally, the complexity of the 

task allocation increases exponentially with rising tasks’ 

varieties. They have also presented a novel mimetic 

algorithm combining a genetic algorithm with two local 

search schemes to solve the multi-robot task allocation 

problem in inspection problems [21]. Ducatelle et al. [22] 

have proposed a straightforward reactive technique in 

which robots interact with each other using light signals 

instead of the traditional way of communications. Also, 

the Random-Choice, Extreme-Comm, Card-Dealer, and 
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Tree-Recolor algorithms have been implemented by 

McLurkin and Yamins [23] on a set of 25 robots to 

compare between their accuracies.  

III. MINIMAL TIME DYNAMIC TASK ALLOCATION 

The MTDTA problem can be broadly defined as 

follows, given a set of tasks, a set of robots that can 

perform the tasks, and a fitness function that measures the 

completion time of different combinations of robots from 

the robot set in performing the tasks, find a suitable 

matching or assignment between the set of tasks and the 

group of robots which minimizes the total time of the 

fitness function. Thus, the MTDTA algorithm model can 

be described as follows:  

Let  

     T = {t1, t2, ..., t
Nt

}                          (2) 

be the set of task identifiers to be allocated to the 

robots in the swarm, and let 

     R = {r1, r2, ..., r
Nr

}                          (3) 

be the set of robots’ identifiers in the robotic swarm. 

So, the problem is composed of Nt valid tasks and Nr 

robots. The swarm allocation is represented by: 

        A = {a1, a2, ..., a
Nr

}                        (4) 

where aj identifies the task allocated to robot rj. Hence, 

the solution of the minimal time dynamic task allocation 

problem is achieved by finding an allocation A*, which 

represents the allocation of the group of Nr robots to the 

set of Nt tasks in a minimum completion time of the 

whole task.  

The simulation experiment was done by using 

MATLAB [24]. The arena is a square space with the area 

equals to 100*100 cm
2
. Robots were scattered randomly 

in the environment at positions represented in the form of 

points’ pairs, for example (x,y). Robots could perceive 

the objects, obstacles, and the nest by using infrared red 

proximity and ground sensors. Prey were also distributed 

randomly in the environment at the experiment start time. 

The environment was totally dynamic. New prey could be 

added any time during the experiment. Also, the number 

of robots could be increased by adding extra robots, or 

decreased if one of the robots has broken or needs to be 

recharged. 

Due to the robots’ simple mobility requirements and 

the inexpensive perception sensors, this research deals 

with deploying a large number of simple inexpensive 

robots. Two case studies are discussed in this paper. The 

first case study was implemented by introducing 7 robots 

to transport 10 prey to the nest. The second case study 

was represented by using 10 tasks and 20 robots. All the 

robots move with the same speed of 30 m/s. Therefore, 

the distance which the robots move to reach to the target 

position could be calculated instead of the time robots 

took to reach their tasks. 

IV. THE PROPOSED ALGORITHM 

The proposed algorithm is based on the PSO technique. 

The advantages of the adaptation capability to the 

dynamic environment and the objective function’s 

continuity with low constraint make PSO one of the most 

promising swarm intelligence techniques. As can be seen 

from the pseudo code, the algorithm steps can be 

summarized as follows: 

1. First, a random allocation is chosen for each particle 

in the swarm A. 

2. Then, the personal best (Apbest) and the global best 

(Agbest) for each particle is initialized to be equal to 

its own initial allocation. 

3. Then, the algorithm starts to iterate for a specific 

number of iterations (maxit). 

4. The fitness value of each particle allocation is 

calculated according to the fitness function which is 

the minimum distance from each robot to its 

corresponding task (Euclidean distance).  

5. After that, a comparison is made between the current 

calculated fitness value for each particle and the 

previous calculated best fitness. If the new allocation 

fitness is smaller, it is chosen to be the particle 

personal best. Then, the smallest fitness among all 

the particles is chosen as the global best. 

6. Then, the particle which has the global best 

allocation sends its allocation to all other particles. 

7. Moreover, each particle calculates the velocity which 

it uses to move towards its new allocation according 

to the velocity update equation of the PSO as 

specified in equation (5). 

v(t+1) = w * v(t) + c1 * rand * (pbest-x(t))  

                           + c2 * rand * (gbest-x(t))            (5) 

Where, constants c1 and c2 is chosen to be 2, and 

rand is a random number from 0 to 1. 

8. Furthermore, the position or allocation for each 

particle is updated by using equation (6). 

                                  x(t+1) = x(t) + v(t+1)                   (6) 

9. Finally, if the number of iterations reaches the 

maximum iteration, the algorithm stops, and each 

robot begins its task execution according to the 

global best allocation solution found (A
*
). If not, 

steps from 4 to 9 are repeated. 

 

Through the stability analysis of the PSO’s equations 

which has been proposed by Tian [22], the particles’ 

stability constriction condition has been deduced to be:  

v(t+1) = k * [v(t) + c1 * rand * (pbest-x(t))  

                           + c2 * rand * (gbest-x(t))]            (7) 

where k = 2 / |2 - c - (c
2 

- 4c) 
1/2

|. Thus, It has been 

realized that if the parameters in 4 and 5 match this 

condition and if c=c1+c2≥4, then the particle’s trajectory 

in the PSO system is stable. That’s why, in this paper, the 

proposed algorithm’s parameters have been chosen to be 

c1=c2=2 and the inertia weight w=1 [25]. 

V. SIMULATION RESULTS AND COMPARISON 

Considering the two case studies in the experiment, the 

algorithm in the first case study needed to find the best 

allocation of the 10 tasks to the 7 robots. In such a case, 
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only 7 tasks were allocated while the remaining 3 tasks 

were waiting in the waiting list. The algorithm was 

executed periodically. Thus, if any robot finished its 

allocated task, left for recharging or new tasks were 

explored which need to be allocated, the algorithm should 

calculate a new allocation for the robots in the swarm. In 

the second case study, there are 10 robots and 20 tasks. 

Thus, only 10 tasks were allocated at the beginning. The 

allocation for each particle in the swarm is represented as 

a raw with a number of elements equals to the number of 

robots in the swarm and the number which is written in 

each cell represents the task allocated to the 

corresponding robot.   

 

a) Main code 

1: Initialization (Nt, Nr); 

2: While it ≤ maxit { 

3: Personal best update(A, Apbest, Agbest); 

4: Global best update(Pbest); 

5: Global best allocation diffusion(idgbest); 

6: Calculate particle’s velocity; 

7: Update particle’s position; 

8: } 

9: Execute; 

 

b) Initialization 

Input: Nt, Nr 

Output: A, Apbest, Agbest 

1: For i = 1 to Nr { 

2: A[i] = random generator (1, …, Nt); 

3: } 

4: Apbest = A, Agbest = A; 

 

c) Personal best update 

Input: A, Apbest, Agbest 

Output: Pbest 

1: Calculate fitness value f (A); 

2: if f (A) ≤ f (APbest) { 

3: Apbest = A; 

4: } 

5: msg ← (id, f(APbest));  

6: send fitness value to all other robots; 

7: For every other robot { 

8: Exchange the fitness value; 

9: } 

10: For i = 1 → Nr { 

11: Pbest[i] = f(APbest) for robot id = i; 

12: } 

 

d) Global best update 

Input: Pbest 

Output: idgbest 

1: idgbest = 1;  

2: Pbestmin = Pbest [1]; 

3: for i = 2 → Nr { 

4:  if Pbestmin > Pbest[i] { 

5:   idgbest = i; 

6:   Pbestmin = Pbest[i]; 

7: } 

8: } 

e) Global best allocation diffusion 

Input: idgbest 

Output: Agbest 

1: if idgbest is my id { 

2: Send (Agbest); 

3: } 

4: Else { 

5:  Receive (Agbest); 

6: } 

For example, let the task allocation be as shown in the 

second row of Table I. The first row is just an identifier 

for the robot number to which the corresponding 

underneath task is allocated. In this case, task 3 is 

allocated to robot 1, task 5 is allocated to robot 2, task 8 

is allocated to robot 3, task 2 is allocated to robot 4, task 

9 is allocated to robot 5, task 4 is allocated to robot 6, and 

task 1 is allocated to robot 7. This allocation is 

corresponding to the first case study. 

TABLE I.  TASK ALLOCATION IN THE 
1S

T STUDY CASE 

r1 r2 r3 t4 r5 r6 r7 

t3 t5 t8 t2 t9 t4 t1 

 

Another example on the allocation corresponding to 

the second case study is as shown in Table II. 20 tasks are 

allocated to 10 robots.  

TABLE II.  TASK ALLOCATION IN THE 2ND
 STUDY CASE 

r1 r2 r3 t4 r5 r6 r7 r8 r9 r10 

t6 t14 t9 t11 t2 t19 t3 t17 t8 t5 

 

In the simulation, tasks were displayed as yellow 

circles, while robots were represented as red squares to be 

able to differentiate between tasks and robots. Allocations 

between robots and tasks were addressed as a black line 

extended from each robot to its allocated task. Fig. 1 and 

2 show the best solution A* resulting after 500 iterations 

for both PSO and SA, respectively. Fig. 1 show that PSO 

gives a better allocation as each robot was assigned to its 

nearest task. However, in f Fig. 2 some robots select a far 

task rather than the nearest one. 

 

Figure 1.  Simulation by PSO for the 1st study case 

 

Figure 2.  Simulation by SA for the 1st study case 

Simulation results corresponding to the second case 

study are shown in Fig. 3 and 4 for PSO and SA, 

respectively. If the distance between the robots and their 

corresponding tasks is tracked in both cases, it could be 
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easily explored that the distance traveled by robots in 

Fig.3 is much smaller than the traveled distance in Fig. 4.  

A comparison about the MTDTA performance has 

been made between PSO and SA. Both of them have been 

executed for 100, 200, 300, 400, and 500 iterations and 

the corresponding algorithm run time for each case has 

been also calculated. 

 

Figure 3.  Simulation by PSO for the 2nd study case 

 

Figure 4.  Simulation by SA for the 2nd study case 

Table III and IV show the results from the first and 

second case studies, respectively. It can be deduced from 

Table III that the distance travelled using PSO is smaller 

than that of the SA in almost all cases and the gap 

between the PSO’s and SA’s fitness kept increasing till 

reaching its maximum value after 500 iterations. For 

example, the difference between the travelled distance by 

the robots in PSO and SA after 100 iterations equals 

(207.9 cm - 165.4 cm= 42.5 cm). However, the difference 

after 500 iterations equals (199.6 cm - 128.6 cm= 71 cm).  

Furthermore, it can be shown that after 150 iterations, 

SA’s fitness has been trapped in a local minimum at 

199.6 cm and it never changes. However, PSO’s fitness 

kept changing until reaching the global minimum value at 

128.6 cm.  

By looking at Table IV, it can be figured out that the 

PSO’s travelled distance (419.3 cm) is smaller than that 

of the SA (426.7 cm) for small number of iterations. 

However, when the number of iterations increases above 

250, the PSO’s travelled distance which is (356.5 cm) 

becomes larger than that of the SA which is (250.9 cm). 

Moreover, in this case study, the PSO’s fitness value has 

been trapped in a local minimum at 356.5 cm after 400 

iterations, while the SA’s fitness value kept decreasing 

until reaching the global minimum solution at 250.9 cm. 

TABLE III.  PERFORMANCE RESULTS FOR THE 1ST
 CASE STUDY 

Optimization 

technique 

Number of 

iterations 

Algorithm 

run time 

Distance 

travelled by 
robots 

PSO 

100 4.9 sec 165.4 cm 

200 5.8 sec 157.7 cm 

300 9.5 sec 153.5 cm 

400 9.6 sec 143.2 cm 

500 14.6 sec 128.6 cm 

SA 

100 14.3 sec 207.9 cm 

200 18.9 sec 199.6 cm 

300 18.9 sec 199.6 cm 

400 24.1 sec 199.6 cm 

500 23.8 sec 199.6 cm 

TABLE IV.  PERFORMANCE RESULTS FOR THE SECOND CASE 

STUDY 

Optimization 
technique 

Number of 
iterations 

Algorithm 
run time 

Distance 

travelled by 

robots 

PSO 

100 7 sec 431.9 cm 

200 6.4 sec 419.3 cm 

300 14.1 sec 411.8 cm 

400 12.7 sec 356.5 cm 

500 20.8 sec 356.5 cm 

SA 

100 19.1 sec 444.3 cm 

200 27.5 sec 426.7 cm 

300 25.3 sec 384.2 cm 

400 32 sec 319.2 cm 

500 31.6 sec 250.9 cm 

To sum up, it can be concluded by looking at Fig. 5 

and 6 that it is always recommended to use the PSO 

technique than the SA technique for a swarm with a small 

number of robots and tasks (1
st
 case study). However, if 

the swarm size is large (2
nd

 case study), techniques’ 

preference depends on the number of iterations. Thus, it 

is a compromise between a global optimal solution that 

takes long time to be detected, and a good, but not 

optimum, solution that could be found faster.  

 

Figure 5.  PSO vs. SA after 500 iterations for 1st study case 
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Figure 6.  PSO vs. SA after 500 iterations for 2nd study case 

VI. CONCLUSION 

In this paper, an optimization algorithm is proposed to 

perform a minimal time dynamic task allocation in a 

swarm of robots. MTDTA algorithm gives a promising 

solution for tasks assignment among robots in the 

environment. The task allocation decision process is 

carried out independently by each robot using a clear and 

straightforward procedure to accomplish the whole task 

in a minimal time. The simulation results of the algorithm 

show the execution time of the MTDTA algorithm, as 

well as the number of iterations needed to achieve the 

solution and the distance travelled by robots in 

centimetres. The distance generated from the PSO 

technique’s execution is compared with the distance 

produced from other existing solution based on the SA 

technique to demonstrate the robustness and efficiency of 

the proposed algorithm.  

This work could be extended in the future by 

improving the capability of the proposed algorithm. A set 

of heterogeneous robots could be used instead of 

homogenous ones. Tightly coupled tasks in which tasks 

depend on each other is a very challenging problem that 

could be considered, and precedence among these tasks 

must be taken into account. Multi-robot tasks which need 

more than two robots working simultaneously to 

implement a single task can also be addressed in the 

future. This type of tasks adds a level of complexity to 

the problem because lots of constraints could show up. 
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