
Minimal Time Dynamic Task Allocation for a

Swarm of Robots

Maha A. Alshawi
AUC/Robotics, Control and Smart System Department, Cairo, Egypt

Email: mahaelshawi@aucegypt.edu

Mohamed B. Shalan
AUC/Computer Science Department, Cairo, Egypt

Email: mshalan@aucegypt.edu

Abstract—This paper discusses a solution to one of the key

issues in the swarm robotics field which is the dynamic task

allocation problem in which a group of robots needs to be

allocated to a set of tasks scattered in the environment in an

efficient and decentralized way. The application considered

in this context is the foraging application which can be

addressed as a searching job followed by a transportation

job. The near-optimal allocation scheme is found by using

the Particle swarm optimization (PSO) technique to handle

the whole task execution in a minimal time. Two case studies

have been considered using different swarm sizes and the

implemented code has been executed for a distinctive

number of iterations. A stability proof for the PSO

technique’s parameters choices is presented. Simulation

results were verified by comparing the proposed algorithm

with the simulated annealing optimization technique in

terms of computational time, number of iterations needed

and quality of solution to demonstrate the robustness and

efficiency of the algorithm. 

Index Terms—dynamic task allocation, swarm robotics,

particle swarm optimization, simulated annealing, swarm

optimization, homogeneous robots.

I. INTRODUCTION

One of the major problems exists in robotics field is

the task planning problem. Task planning consists of two

main parts. First, there is a decomposition of a complex

task into small simple sub-tasks in which a swarm of

robots must cooperate with each other and with the

environment to perform those tasks. Second, a task

allocation (TA) is needed to distribute and schedule a set

of tasks to be accomplished by a group of robots to

optimize the performance while satisfying operational

constraints. TA is one of the main issues to be elaborated

on in multi-robot systems. Dynamic task allocation (DTA)

implies that robots have no prior knowledge about the

number of robots, the number of tasks, and the temporal

and spatial distribution of tasks in the environment.

However, they should communicate periodically with

each other to adapt online to the environment [1].

Minimal Time Dynamic Task Allocation (MTDTA)

seeks to allocate tasks dynamically to the robots while

Manuscript received March 16, 2017; revised August 25, 2017.

minimizing the total time needed to accomplish the whole

task.

Due to the advantages of stability, scalability, energy

efficiency, economist, parallelism, technical progress and

the declining cost of robotic mobility, interest in this area

of application has grown significantly in recent years.

The DTA problem is encountered in various application

domains of multi-robot systems, such as human rescuing,

geological survey, agricultural foraging, military

applications, UAV controlling, demining, warehousing,

toxic waste clean-up, collection of terrain samples,

cooperative transportation, autonomous exploration and

mapping, distributed monitoring and surveillance, etc.

As has been said before, the focus on this paper is on

the foraging problem which can be addressed as a

searching job followed by a transportation job [1]. Each

job consists of a number of tasks. Each robot in the

foraging problem has to decide whether it will explore a

new object or it is going to transport an explored object to

the nest.

The final destination of the objects is called the nest or

the objects prey. These set of objects can be one of two

types, either a single-robot object which needs only one

robot to carry it from its current location to the nest or a

multi-robot task which requires at least two robots

working simultaneously in order to retrieve the object to

its final destination. Also, if the robot chooses the

transportation job, it has also to decide which one of the

scattered objects it will select to return to the nest. The

robot choice is not random. However, each robot has to

choose the most appropriate object to maximize the

overall performance of the group [1]. The DTA problem

in a cooperative foraging scenario with shared task

execution by multiple robots is an NP-hard problem.

The proposed algorithm will be decentralized which

means that neither a global knowledge, nor messages’

broadcast nor a multi-hop communication would ever be

used. There is no central unit to take care of the task

allocation, and each individual in the swarm has to

identify the task it must perform via the communication

with only their neighbors. This decentralization is

essential to avoid the restrictions that could result from

the communication range limitations.

481

International Journal of Mechanical Engineering and Robotics Research Vol. 6, No. 6, November 2017

© 2017 Int. J. Mech. Eng. Rob. Res.
doi: 10.18178/ijmerr.6.6.481-487

The rest of the paper is structured as follows: in the

next section, related research work is outlined. Section 3

describes the minimal time dynamic task allocation

within the framework of the foraging problem with a

changing number of tasks and robots. Section 4 outlines

the proposed algorithm. Simulation results discussion and

a comparison with the simulated annealing (SA)

technique are presented in section 5. Finally, the

conclusion and future work are covered.

II. RELATED WORK

Recently, several algorithms have been proposed in the

literature for dynamic task allocation problems. One of

the most common available taxonomies has implemented

the algorithm classification according to the behavioral

approach, the market laws or the bio-inspired approach

[2]. Tasks are divided into behavioral groups in the

behavioral approach in which each group contains a set of

tasks to be executed that have relations among each other.

The most common algorithm in the behavioral approach

is ASYMTRE [3, 4]. In the market laws approach,

algorithms aim at maximizing or minimizing cost

functions, for example speed and convergence time.

Algorithms based on market laws could follow any

optimizing technique like auction and thresholds-based

methods [5], Markov chain search process along with SA

technique [6], or heuristic search-based task allocation

technique [7]. Some algorithms may specify a set of

constraints on the task allocation process, such as

determining a deadline for the task assignment

accomplishment, consider the size of each task, or specify

the robots’ performance in their assigned tasks [8]. The

most commonly used approach in terms of research and

publications is the bio-inspired technique. It is derived

from the social insect’s behavior. A series of algorithms

based on the bio-inspired technique have been proposed

in the literature, such as ant-inspired algorithms [9, 10], a

parallel PSO algorithm [11, 12], and an artificial bee

colony algorithm [13]. As mentioned by Krieger et al. [9],

it is shown that a higher level of energy could be

maintained in sets of robots which use ant-inspired

optimization techniques than in single robots. They could

also forage more expeditiously [9]. The bio-inspired

techniques exhibit some praiseworthy properties such as

self-organizing capacity and flexible behavior towards

environmental changes.

Other taxonomies have addressed the algorithm

classification base on the centralized versus the

distributed approach. In the centralized approach, there is

a leader or central unit which is responsible for the task

assignment to robots. For example, Gigliotta et al. have

evolved a dynamic task allocation rules by

communicative interactions in a group of homogeneous

robots. They focused on the development of a team of

robots in which one and only one individual robot

(the ’leader’) must differentiate its communicative

attitude from that of all the others (’non-leaders’). The

robots have evolved for their capability to distinguish

their roles by the discrimination of their signals. The

leader robot has to maximize the value of its

communicative signal, while all other robots have to

minimize their signals’ value. The leader robot tends to

send high signal’s value, while the non-leaders tend to

send a low signal’s value. The fitness of a group of robot

has been calculated in the following way. The average of

the differences between the output signal of the current

leader which has the maximum value and the output

signals of all other non-leader robots has been calculated

every iteration. A number of trials need to be

implemented. At the end, the average of the calculated

value for all iterations of all the trials can be considered

as the fitness value [14]. Formally, this is how fitness

value was calculated:

 𝐹 =
∑ ∑ 𝑀𝑎𝑥 − 𝑂𝑖

𝑁
𝑖

𝐶
𝑗

𝐶(𝑁 − 1)
 , (1)

where the number of robots in each group represented by

N, such as 10. While, the total number of iterations of

each individual called C, such as 1000 iterations * 40

trials = 40000. Also, the signal’s value of the current

leader is Max and the signal’s value of robot j is 𝑂𝑗 .

 While in the distributed approach, there is no central

unit to take care of the task allocation. Thus, each robot in

the swarm has to identify the task it must perform. A lot

of algorithms have been proposed in this approach, like

the self-organized method which neither relies on global

knowledge nor centralized components and it does not

require massive robots’ interactions [15-17]. Also, a fully

decentralized approach which needs neither a global

broadcast nor a multi-hop communication protocol has

been enhanced [13]. Zhang, Xie, Yu, and Wang have

established a hierarchical assignment architecture and

have utilized a “local blackboard” communication

mechanism for knowledge sharing to avoid using a

centralized leader [18].

Finally, other taxonomies classified the algorithms

based on a single robot-task approach against a multi-

robot task approach [19]. In a single robot-task, only a

single robot is needed to perform each task. However, in

a multi-robot task, a task has to be cooperatively carried

out by several robots. This DTA problem is a strongly

NP-hard problem and the complexity significantly

depends on the number of robots required by each multi-

robot task. Some proposed algorithms in this taxonomy

have identified an efficient multi-foraging behavior in

which each task required multiple robots to share the

task’s execution to complete the task [1, 20]. Liu and

Kroll [21] have discussed the fact that it can be more

challenging when tightly coupled multi-robot tasks are

taken into consideration due to the resulting temporal and

spatial constraints. Additionally, the complexity of the

task allocation increases exponentially with rising tasks’

varieties. They have also presented a novel mimetic

algorithm combining a genetic algorithm with two local

search schemes to solve the multi-robot task allocation

problem in inspection problems [21]. Ducatelle et al. [22]

have proposed a straightforward reactive technique in

which robots interact with each other using light signals

instead of the traditional way of communications. Also,

the Random-Choice, Extreme-Comm, Card-Dealer, and

482

International Journal of Mechanical Engineering and Robotics Research Vol. 6, No. 6, November 2017

© 2017 Int. J. Mech. Eng. Rob. Res.

Tree-Recolor algorithms have been implemented by

McLurkin and Yamins [23] on a set of 25 robots to

compare between their accuracies.

III. MINIMAL TIME DYNAMIC TASK ALLOCATION

The MTDTA problem can be broadly defined as

follows, given a set of tasks, a set of robots that can

perform the tasks, and a fitness function that measures the

completion time of different combinations of robots from

the robot set in performing the tasks, find a suitable

matching or assignment between the set of tasks and the

group of robots which minimizes the total time of the

fitness function. Thus, the MTDTA algorithm model can

be described as follows:

Let

 T = {t1, t2, ..., t
Nt

} (2)

be the set of task identifiers to be allocated to the

robots in the swarm, and let

 R = {r1, r2, ..., r
Nr

} (3)

be the set of robots’ identifiers in the robotic swarm.

So, the problem is composed of Nt valid tasks and Nr

robots. The swarm allocation is represented by:

 A = {a1, a2, ..., a
Nr

} (4)

where aj identifies the task allocated to robot rj. Hence,

the solution of the minimal time dynamic task allocation

problem is achieved by finding an allocation A*, which

represents the allocation of the group of Nr robots to the

set of Nt tasks in a minimum completion time of the

whole task.

The simulation experiment was done by using

MATLAB [24]. The arena is a square space with the area

equals to 100*100 cm
2
. Robots were scattered randomly

in the environment at positions represented in the form of

points’ pairs, for example (x,y). Robots could perceive

the objects, obstacles, and the nest by using infrared red

proximity and ground sensors. Prey were also distributed

randomly in the environment at the experiment start time.

The environment was totally dynamic. New prey could be

added any time during the experiment. Also, the number

of robots could be increased by adding extra robots, or

decreased if one of the robots has broken or needs to be

recharged.

Due to the robots’ simple mobility requirements and

the inexpensive perception sensors, this research deals

with deploying a large number of simple inexpensive

robots. Two case studies are discussed in this paper. The

first case study was implemented by introducing 7 robots

to transport 10 prey to the nest. The second case study

was represented by using 10 tasks and 20 robots. All the

robots move with the same speed of 30 m/s. Therefore,

the distance which the robots move to reach to the target

position could be calculated instead of the time robots

took to reach their tasks.

IV. THE PROPOSED ALGORITHM

The proposed algorithm is based on the PSO technique.

The advantages of the adaptation capability to the

dynamic environment and the objective function’s

continuity with low constraint make PSO one of the most

promising swarm intelligence techniques. As can be seen

from the pseudo code, the algorithm steps can be

summarized as follows:

1. First, a random allocation is chosen for each particle

in the swarm A.

2. Then, the personal best (Apbest) and the global best

(Agbest) for each particle is initialized to be equal to

its own initial allocation.

3. Then, the algorithm starts to iterate for a specific

number of iterations (maxit).

4. The fitness value of each particle allocation is

calculated according to the fitness function which is

the minimum distance from each robot to its

corresponding task (Euclidean distance).

5. After that, a comparison is made between the current

calculated fitness value for each particle and the

previous calculated best fitness. If the new allocation

fitness is smaller, it is chosen to be the particle

personal best. Then, the smallest fitness among all

the particles is chosen as the global best.

6. Then, the particle which has the global best

allocation sends its allocation to all other particles.

7. Moreover, each particle calculates the velocity which

it uses to move towards its new allocation according

to the velocity update equation of the PSO as

specified in equation (5).

v(t+1) = w * v(t) + c1 * rand * (pbest-x(t))

 + c2 * rand * (gbest-x(t)) (5)

Where, constants c1 and c2 is chosen to be 2, and

rand is a random number from 0 to 1.

8. Furthermore, the position or allocation for each

particle is updated by using equation (6).

 x(t+1) = x(t) + v(t+1) (6)

9. Finally, if the number of iterations reaches the

maximum iteration, the algorithm stops, and each

robot begins its task execution according to the

global best allocation solution found (A
*
). If not,

steps from 4 to 9 are repeated.

Through the stability analysis of the PSO’s equations

which has been proposed by Tian [22], the particles’

stability constriction condition has been deduced to be:

v(t+1) = k * [v(t) + c1 * rand * (pbest-x(t))

 + c2 * rand * (gbest-x(t))] (7)

where k = 2 / |2 - c - (c
2

- 4c)
1/2

|. Thus, It has been

realized that if the parameters in 4 and 5 match this

condition and if c=c1+c2≥4, then the particle’s trajectory

in the PSO system is stable. That’s why, in this paper, the

proposed algorithm’s parameters have been chosen to be

c1=c2=2 and the inertia weight w=1 [25].

V. SIMULATION RESULTS AND COMPARISON

Considering the two case studies in the experiment, the

algorithm in the first case study needed to find the best

allocation of the 10 tasks to the 7 robots. In such a case,

483

International Journal of Mechanical Engineering and Robotics Research Vol. 6, No. 6, November 2017

© 2017 Int. J. Mech. Eng. Rob. Res.

only 7 tasks were allocated while the remaining 3 tasks

were waiting in the waiting list. The algorithm was

executed periodically. Thus, if any robot finished its

allocated task, left for recharging or new tasks were

explored which need to be allocated, the algorithm should

calculate a new allocation for the robots in the swarm. In

the second case study, there are 10 robots and 20 tasks.

Thus, only 10 tasks were allocated at the beginning. The

allocation for each particle in the swarm is represented as

a raw with a number of elements equals to the number of

robots in the swarm and the number which is written in

each cell represents the task allocated to the

corresponding robot.

a) Main code

1: Initialization (Nt, Nr);

2: While it ≤ maxit {

3: Personal best update(A, Apbest, Agbest);

4: Global best update(Pbest);

5: Global best allocation diffusion(idgbest);

6: Calculate particle’s velocity;

7: Update particle’s position;

8: }

9: Execute;

b) Initialization

Input: Nt, Nr

Output: A, Apbest, Agbest

1: For i = 1 to Nr {

2: A[i] = random generator (1, …, Nt);

3: }

4: Apbest = A, Agbest = A;

c) Personal best update

Input: A, Apbest, Agbest

Output: Pbest

1: Calculate fitness value f (A);

2: if f (A) ≤ f (APbest) {

3: Apbest = A;

4: }

5: msg ← (id, f(APbest));

6: send fitness value to all other robots;

7: For every other robot {

8: Exchange the fitness value;

9: }

10: For i = 1 → Nr {

11: Pbest[i] = f(APbest) for robot id = i;

12: }

d) Global best update

Input: Pbest

Output: idgbest

1: idgbest = 1;

2: Pbestmin = Pbest [1];

3: for i = 2 → Nr {

4: if Pbestmin > Pbest[i] {

5: idgbest = i;

6: Pbestmin = Pbest[i];

7: }

8: }

e) Global best allocation diffusion

Input: idgbest

Output: Agbest

1: if idgbest is my id {

2: Send (Agbest);

3: }

4: Else {

5: Receive (Agbest);

6: }

For example, let the task allocation be as shown in the

second row of Table I. The first row is just an identifier

for the robot number to which the corresponding

underneath task is allocated. In this case, task 3 is

allocated to robot 1, task 5 is allocated to robot 2, task 8

is allocated to robot 3, task 2 is allocated to robot 4, task

9 is allocated to robot 5, task 4 is allocated to robot 6, and

task 1 is allocated to robot 7. This allocation is

corresponding to the first case study.

TABLE I. TASK ALLOCATION IN THE
1S

T STUDY CASE

r1 r2 r3 t4 r5 r6 r7

t3 t5 t8 t2 t9 t4 t1

Another example on the allocation corresponding to

the second case study is as shown in Table II. 20 tasks are

allocated to 10 robots.

TABLE II. TASK ALLOCATION IN THE 2ND
 STUDY CASE

r1 r2 r3 t4 r5 r6 r7 r8 r9 r10

t6 t14 t9 t11 t2 t19 t3 t17 t8 t5

In the simulation, tasks were displayed as yellow

circles, while robots were represented as red squares to be

able to differentiate between tasks and robots. Allocations

between robots and tasks were addressed as a black line

extended from each robot to its allocated task. Fig. 1 and

2 show the best solution A* resulting after 500 iterations

for both PSO and SA, respectively. Fig. 1 show that PSO

gives a better allocation as each robot was assigned to its

nearest task. However, in f Fig. 2 some robots select a far

task rather than the nearest one.

Figure 1. Simulation by PSO for the 1st study case

Figure 2. Simulation by SA for the 1st study case

Simulation results corresponding to the second case

study are shown in Fig. 3 and 4 for PSO and SA,

respectively. If the distance between the robots and their

corresponding tasks is tracked in both cases, it could be

484

International Journal of Mechanical Engineering and Robotics Research Vol. 6, No. 6, November 2017

© 2017 Int. J. Mech. Eng. Rob. Res.

easily explored that the distance traveled by robots in

Fig.3 is much smaller than the traveled distance in Fig. 4.

A comparison about the MTDTA performance has

been made between PSO and SA. Both of them have been

executed for 100, 200, 300, 400, and 500 iterations and

the corresponding algorithm run time for each case has

been also calculated.

Figure 3. Simulation by PSO for the 2nd study case

Figure 4. Simulation by SA for the 2nd study case

Table III and IV show the results from the first and

second case studies, respectively. It can be deduced from

Table III that the distance travelled using PSO is smaller

than that of the SA in almost all cases and the gap

between the PSO’s and SA’s fitness kept increasing till

reaching its maximum value after 500 iterations. For

example, the difference between the travelled distance by

the robots in PSO and SA after 100 iterations equals

(207.9 cm - 165.4 cm= 42.5 cm). However, the difference

after 500 iterations equals (199.6 cm - 128.6 cm= 71 cm).

Furthermore, it can be shown that after 150 iterations,

SA’s fitness has been trapped in a local minimum at

199.6 cm and it never changes. However, PSO’s fitness

kept changing until reaching the global minimum value at

128.6 cm.

By looking at Table IV, it can be figured out that the

PSO’s travelled distance (419.3 cm) is smaller than that

of the SA (426.7 cm) for small number of iterations.

However, when the number of iterations increases above

250, the PSO’s travelled distance which is (356.5 cm)

becomes larger than that of the SA which is (250.9 cm).

Moreover, in this case study, the PSO’s fitness value has

been trapped in a local minimum at 356.5 cm after 400

iterations, while the SA’s fitness value kept decreasing

until reaching the global minimum solution at 250.9 cm.

TABLE III. PERFORMANCE RESULTS FOR THE 1ST
 CASE STUDY

Optimization

technique

Number of

iterations

Algorithm

run time

Distance

travelled by
robots

PSO

100 4.9 sec 165.4 cm

200 5.8 sec 157.7 cm

300 9.5 sec 153.5 cm

400 9.6 sec 143.2 cm

500 14.6 sec 128.6 cm

SA

100 14.3 sec 207.9 cm

200 18.9 sec 199.6 cm

300 18.9 sec 199.6 cm

400 24.1 sec 199.6 cm

500 23.8 sec 199.6 cm

TABLE IV. PERFORMANCE RESULTS FOR THE SECOND CASE

STUDY

Optimization
technique

Number of
iterations

Algorithm
run time

Distance

travelled by

robots

PSO

100 7 sec 431.9 cm

200 6.4 sec 419.3 cm

300 14.1 sec 411.8 cm

400 12.7 sec 356.5 cm

500 20.8 sec 356.5 cm

SA

100 19.1 sec 444.3 cm

200 27.5 sec 426.7 cm

300 25.3 sec 384.2 cm

400 32 sec 319.2 cm

500 31.6 sec 250.9 cm

To sum up, it can be concluded by looking at Fig. 5

and 6 that it is always recommended to use the PSO

technique than the SA technique for a swarm with a small

number of robots and tasks (1
st
 case study). However, if

the swarm size is large (2
nd

 case study), techniques’

preference depends on the number of iterations. Thus, it

is a compromise between a global optimal solution that

takes long time to be detected, and a good, but not

optimum, solution that could be found faster.

Figure 5. PSO vs. SA after 500 iterations for 1st study case

485

International Journal of Mechanical Engineering and Robotics Research Vol. 6, No. 6, November 2017

© 2017 Int. J. Mech. Eng. Rob. Res.

Figure 6. PSO vs. SA after 500 iterations for 2nd study case

VI. CONCLUSION

In this paper, an optimization algorithm is proposed to

perform a minimal time dynamic task allocation in a

swarm of robots. MTDTA algorithm gives a promising

solution for tasks assignment among robots in the

environment. The task allocation decision process is

carried out independently by each robot using a clear and

straightforward procedure to accomplish the whole task

in a minimal time. The simulation results of the algorithm

show the execution time of the MTDTA algorithm, as

well as the number of iterations needed to achieve the

solution and the distance travelled by robots in

centimetres. The distance generated from the PSO

technique’s execution is compared with the distance

produced from other existing solution based on the SA

technique to demonstrate the robustness and efficiency of

the proposed algorithm.

This work could be extended in the future by

improving the capability of the proposed algorithm. A set

of heterogeneous robots could be used instead of

homogenous ones. Tightly coupled tasks in which tasks

depend on each other is a very challenging problem that

could be considered, and precedence among these tasks

must be taken into account. Multi-robot tasks which need

more than two robots working simultaneously to

implement a single task can also be addressed in the

future. This type of tasks adds a level of complexity to

the problem because lots of constraints could show up.

REFERENCES

[1] A. Campo and M. Dorigo, "Efficient multi-foraging in swarm

robotics," in Proc. Advances in Artificial Life, Springer, 2007, pp.

696-705.
[2] Y. Zhang and S. Liu. (2008). “Survey of multi-robot task

allocation”. CAAI Transactions on Intelligent Systems. 3 (2). pp.

115–120.Available: http://en.cnki.com.cn/Article_en/CJFDTOTA
LZ XT200802006.htm.

[3] F. Tang and L. E. Parker, "Automated synthesis of multi-robot

task solutions through software reconfiguration," in Proc. of the
2005 IEEE International Conference on Robotics and Automation,

2005, pp. 1501-1508.

[4] A. Tsalatsanis, A. Yalcin, and K. P. Valavanis. (2009). Dynamic
task allocation in cooperative robot teams. International Journal

of Advanced Robotic Systems. [Online]. 6(4). p. 35. Available:
http://journals.sagepub.com/doi/abs/10.5772/7257.

[5] J. Guerrero and G. Oliver. (2003). Multi-robot task allocation

strategies using auction-like mechanisms. Artificial Intelligence
Research and Development. [Online]. 100(12). pp. 111-122.

[6] K. Zhang, E. Collins, and D. Shi. (2012). “Centralized and

distributed task allocation in multi-robot teams via a stochastic

clustering auction. ACM Transactions on Autonomous and
Adaptive Systems. [Online]. 7(2). pp. 1-22. Available:

http://dl.acm.org/citation.cfm?id=2240171.

[7] T. Nagarajan and A. Thondiyath. (2014). An algorithm for
cooperative task allocation in scalable constrained multiple robot

systems. Intelligent Service Robotics. [Online]. 7(4). pp. 221-233.

Available:https://link.springer.com/article/10.1007/s11370-014-01
54-x.

[8] Y. Khaluf and F. Rammig, "Task allocation strategy for time-

constrained tasks in robot swarms," in ECAL, 2013, pp. 737-744.
[9] M. Krieger, J. Billeter, and L. Keller, "Ant-like task allocation and

recruitment in cooperative robots," Nature, pp. 992-995, 2000.

[10] S. Momen and A. J. C. Sharkey. (2009). An ant-like task
allocation model for a swarm of heterogeneous robots. Swarm

Intelligence Algorithms and Applications Symposium. [Online]. pp.

31-38.
Available:https://www.researchgate.net/profile/Amanda_Sharkey2

/publication/228950263_An_ant_like_task_allocation_model_for_

a_swarm_of_heterogeneous_robots/links/0046352d65c75b570a00
0000.pdf.

[11] H. Liu, P. Zhang, B. Hu, and P. Moore. (2015). A novel approach

to task assignment in a cooperative multi-agent design system.
Applied Intelligence. [Online]. 43(1). pp. 162-175. Available:

https://link.springer.com/article/10.1007/s10489-014-0640-z.

[12] N. Nedjah, R. Mendonça, and L. Mourelle. (2015). PSO-based
distributed algorithm for dynamic task allocation in a robotic

swarm. Procedia Computer Science. [Online]. 51. pp. 326-335.

Available:http://www.sciencedirect.com/science/article/pii/S1877
050915010583.

[13] L. Liu, N. Michael, and D. Shell. (2015). Communication

constrained task allocation with optimized local task
swaps. Autonomous Robots. [Online]. 39(3). pp. 429-444.

Available: https://link.springer.com/article/10.1007/s10514-015-9

481-9.
[14] O. Gigliotta, M. Mirolli, and S. Nolfi. (2014). Communication

basesd dynamic role allocation in a group of homogeneous

robots. Natural Computing. [Online]. 13(3). pp. 391-402.
Available: https://link.springer.com/article/10.1007/s11047-014-

9443-8.
[15] A. Brutschy, G. Pini, C. Pinciroli, M. Birattari, and M. Dorigo.

(2012). Self-organized task allocation to sequentially

interdependent tasks in swarm robotics. Autonomous Agents and
Multi-Agent Systems. [Online]. 28(1). pp. 101-125. Available:

https://link.springer.com/article/10.1007/s10458-012-9212-y.

[16] D. Zhang, G. Xie, J. Yu, and L. Wang. (2007). Adaptive task
assignment for multiple mobile robots via swarm intelligence

approach. Robotics and Autonomous Systems. [Online]. 55(7). pp.

572-588. Available: http://www.sciencedirect.com/science/article/
pii/S0921889007000267.

[17] B. Gerkey. (2004). A formal analysis and taxonomy of task

allocation in multi-robot systems. The International Journal of
Robotics Research. [Online]. 23(9). pp. 939-954. Available:

http://journals.sagepub.com/doi/abs/10.1177/0278364904045564.

[18] C. Liu and A. Kroll, "Mimetic algorithms for optimal task
allocation in multi-robot systems for inspection problems with

cooperative tasks," Soft Computing, pp. 567-584, 2014.

[19] R. Mathias de Mendonça, N. Nedjah, and L. de Macedo Mourelle.
(2016). Efficient distributed algorithm of dynamic task assignment

for swarm robotics. Neurocomputing. [Online]. 172. pp. 345-

355.Available:http://www.sciencedirect.com/science/article/pii/S0
925231215010516.

[20] S. Keshmiri and S. Payandeh. (2013). Multi-robot dynamic task

allocation: a case study. Intelligent Service Robotics. [Online].
6(3). pp. 137-154. Available: https://link.springer.com/article/

10.1007/s11370-013-0130-x.

[21] P. Dasgupta, "Multi-Robot task allocation for performing
cooperative foraging tasks in an initially unknown environment,"

in Innovations in Defence Support Systems -2, Springer, 2011, pp.

5-20.
[22] F. Ducatelle, A. Forster, G. A. Di Caro, and L.M. Gambardella,

"New task allocation methods for robotic swarms," in Proc. 9th

IEEE/RAS Conference on Autonomous Robot Systems and
Competitions, 2009.

[23] J. McLurkin, D. Yamins. (2005). Dynamic task assignment in

robot swarms. Robotics: Science and Systems. [Online].8.

486

International Journal of Mechanical Engineering and Robotics Research Vol. 6, No. 6, November 2017

© 2017 Int. J. Mech. Eng. Rob. Res.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10495
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10495

Available:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.435.2371&rep=rep1&type=pdf.

[24] Mathworks. [Online] Available: https://fr.mathworks.com/.

[25] D. P. Tian. (2013). A review of convergence analysis of particle
swarm optimization. International Journal of Grid and

Distributed Computing. [Online]. 6(6). pp. 117-128. Available:

http://citeseerx .ist.psu.edu/viewdoc/download?doi=10.1.1.587.10
06&rep=rep1&type=pdf.

Maha Alshawi was born in 1991 in Bahrain. In 2012, she graduated

from computer engineering school at Mansoura University in Egypt.

Currently, she is a teaching and research assistant at the American
University in Cairo, and is doing her research on robotics, control, and

smart systems field. Her main research interests include: embedded

systems, artificial intelligence, swarm robotics, automatic control
Systems, automata theory, and algorithms.

Mohamed Shalan is an Associate Professor at the Department of

Computer Science and Engineering, The American University in Cairo.

He received his Ph.D. in computer engineering from Georgia Institute of
Technology (GaTech) in 2003. He received his B.Sc. (with Honors) and

M.Sc. in Computer and Systems engineering from Ain Shams

University, Cairo, Egypt in 1993 and 1997. His research interests are in
the area of computer engineering, with focus on embedded systems,

digital design, energy-efficient, computing systems, and design

automation. Prof. Shalan has over 30 refereed conference and journal
papers. Also, he holds 2 US patents.

487

International Journal of Mechanical Engineering and Robotics Research Vol. 6, No. 6, November 2017

© 2017 Int. J. Mech. Eng. Rob. Res.

