
Optimization Maze Robot Using A* and Flood 

Fill Algorithm 
 

Semuil Tjiharjadi, Marvin Chandra Wijaya, and Erwin Setiawan 
Maranatha Christian University, Bandung, Indonesia 

Email: semuiltj@gmail.com 

 
 

 

 

 
 
Index Terms— artificial intelligence, maze robot, A* 

Algorithm, Flood Fill Algorithm 

 

I. INTRODUCTION  

Along with the development of technology, the 

function of the robots is also growing. The robots are now 

programmed to be more intelligent and capable decided 

to take certain measures in accordance with existing 

conditions. Even through the applied artificial 

intelligence, robots can take a new decision based on 

consideration of the growing conditions. That's why the 

science of artificial intelligence is also growing and 

complex. 

There are several general categories in artificial 

intelligence, namely Breadth First Search is developing a 

search based on thorough testing of all the possibilities. 

Depth First Search is trying to search in depth the 

possibility of an option available, before trying other 

options. Or a combination of both, known as the Best 

First Search. The third major category is spawned a wide 

range of algorithms that develop and increase the speed 

of the robot in finding the solution of a problem. 

The use of artificial intelligence methods on a problem 

finding the location of the maze, currently growing. 

Various algorithm was developed to solve the problem of 

                                                           
Manuscript received December 28, 2016; revised April 28, 2017.  

robot searches the existing maze. This is the forerunner to 

the manufacture of automated robots capable of searching 

the nearest road by a particular location.  

Autonomous navigation is an important feature of 

automated robotics. It allows the robot to independently 

move from a place to target location without a tele-

operator. The robot is using a structured technique and 

controlled implementation of autonomous navigation 

which is sometimes preferable in studying specific aspect 

of the problem [1]. This paper discusses two methods of a 

small size mobile robot designed to solve a maze based 

on A* and flood-fill algorithm [2]. 

This maze robot tries to solve a maze in the least time 

possible and using the most efficient way. Robot must 

navigate from a corner of a maze to the center as quickly 

as possible [3]. It knows where the starting location is and 

where the target location is, but it does not have any 

information about the obstacles between the two. The 

maze is normally composed of 256 square cells, where 

the size each cell is about 18 cm × 18cm. The cells are 

arranged to form a 16 row × 16 column maze. The 

starting location of the maze is on one of the cells at its 

corners, and the target location is formed by four cells at 

the center of the maze. Only one cell is opened for 

entrance. The requirements of maze walls and support 

platform are provided in the IEEE standard. 

II. LITERATURE REVIEW 

A. A* Algorithm 

A* combines feature of uniform-cost search and 
heuristic search. It is BFS in which cost associated with 
each node is calculated using admissible heuristic. For 
graph traversal, it follows path with lowest known 
heuristic cost. The time complexity of this algorithm 
depends on heuristic used. Since it is Breadth First 
Search drawback of A* is large memory requirement 
because entire open-list is to be saved. 

B. Flood Fill Algorithm 

Robot maze problems are an important field of robotics 
and it is based on decision making algorithm [4]. It 
requires complete analysis of workspace or maze and 
proper planning [5]. Flood fill algorithm and modified 
flood fill are used widely for robot maze problem [6]. 
Flood fill algorithm assigns the value to each node which 
is represents the distance of that node from center. The 

International Journal of Mechanical Engineering and Robotics Research Vol. 6, No. 5, September 2017

366© 2017 Int. J. Mech. Eng. Rob. Res.
doi: 10.18178/ijmerr.6.5.366-372

Abstract— As the development of Robotics technology is 

expanding rapidly, the developments in the world of 

artificial intelligence is also growing very fast. The challenge 

is how to make a robot to become cleverer in deciding 

actions based on the circumstances that exist. It has become 

a distinct branch of science that offers many things that 

need to be investigated further. This research will be 

developed an intelligent robot that is able to solve the 

shortest possible distance to reach the destination in a maze 

arena. The robot will be "smart" in finding the nearest road 

to re-discover the goal. It is applying artificial intelligence 

method uses 2 algorithms to be compared and optimized at 

the same time to be together, so it is hoped to produce 

optimal results. Obviously, the two algorithms used are 

algorithms that will be the starting point for the next 

development of further research in artificial intelligence 

research of smart robot. The algorithm is applied to these 

smart robot is A * Algorithm and Flood Fill Algorithm.



flood fill algorithm floods the maze when mouse reaches 
new cell or node. Thus it requires high cost updates. 
These flooding are avoided in modified flood fill. 

Flood fill algorithm is an algorithm that determines 

the areas that are connected to a node in a 

multidimensional array. Flood fill algorithm is widely 

used in the bitmap image editor program for coloring a 

limited area with a specific color (boundary fill). Flood 

fill algorithm can be adapted to solve the problems maze 

solving. 

Flood fill algorithm itself is analogous flooded with 

water maze. Water shedding process be centralized in 

only one cell is a cell of interest. Water continues to flow 

to flood the whole maze. Path traversed by the first water 

drops until it reaches the start location is the shortest path 

to reach that goal 

How it works flood fill algorithm is to start giving 

value to each cell in the maze. The process of scoring was 

done by observing the position of the existing walls of the 

maze. The first water-filled cells are the cells of interest 

and these cells are given a value of 0. The water then 

flows into the surrounding area which is not blocked by 

the wall. The next cell that has been filled with water will 

be assigned a value of 1, then this value will continue to 

grow to the next cell to the entire cell occupied by water 

maze. The robot cannot move diagonally and the robots 

have learned some of the positions of the existing wall. 

The values of these cells represents the distance of 

each cell to the destination cell. If the robot is in a cell 

that is worth 2, the robot is located as far as 2 cells from 

the cells of interest. Assume cells that are at the bottom 

left of the initial cell, then searched the cell, which has a 

smaller value than the value of the cell that is being 

occupied. The path is the shortest path is formed which 

can be reached from the initial cell leading to the 

destination cell 

With the flood fill algorithm, each time the robot 

reaches a new cell, the robot needs to update the mapping 

of the walls, refill each cell with the new values, 

determine neighboring cells which have the smallest 

value, and continue moving towards neighboring cells 

which have the smallest value. 

III. HARDWARE DESIGN  

Mobile robot base construction was made using miniQ 

2WD robot chassis as shown in Fig. 1. It has a robot 

chassis with a diameter of 122mm. It has 2 wheels with a 

diameter of 42mm, 1 piece ball caster and 2 DC motors 

which have been furnished by the gearbox as well as two 

pieces of the DC motor bracket to pair on the chassis. The 

robot also had 2 pieces’ rotary encoder. They attached to 

the DC motor to calculate the rotation of the wheel as 

shown in Fig. 1. [7] 

The hardware system of this maze mobile robot can be 

seen in the block diagram at Fig. 2 . Fig. 3 shows the 

main program. This maze mobile robot used three 

infrared sensors to detect maze wall at right, left and front 

position. Driver L293D controled the direction of rotation 

and also speed of a DC motor [8]. Rotary encoder 

calculated the rotation of the right and left wheels. Push 

button was used to instruct the robot to start, then the 

system output would drive two DC motors that served as 

actuators to move both wheels to move forward, turn, and 

rotates reverse [9]. ATmega324 microcontroller process 

the input signal, process the algorithms, and generates 

output signals to control the robot [10]. Fig. 3 is shown 

that LCD will display the information about all actions 

that had been taken by the robot. 

 

Figure 1. 
 

Mobile Robot
 
from side view.

 

 

Figure 2. 

 

Block Diagram of Mobile Robot.

 

 

Figure 3. 

 

Mobile Robot from above view.

 

International Journal of Mechanical Engineering and Robotics Research Vol. 6, No. 5, September 2017

367© 2017 Int. J. Mech. Eng. Rob. Res.



 

Figure 4.  Flowchart of the main program. 

The maze designed for the robot to solve is of the size 

of 5×5 cells.  

 

Figure 5.  The maze. 

IV. TESTING  

The test of artificial intelligence carried out on a maze 

which has a size of 5x5 cells as shown in Fig. 6. The 

robot will conduct a search to find the shortest path from 

the starting cell (line 4, column 0) to the destination cell 

(line 2, column -2) and then back again to the initial cell. 

The initial orientation of the robot facing the North. 

 

Figure 6.  5x5 cell Maze 

A. Flood Fill Testing 

Robot will perform a search of the initial cell lines (4, 

0) to the destination cell (2, 2). The results of the search 

process of cell lines (4, 0) to the cell (2, 2) are shown in 

Fig. 7-15. 

 

Figure 7.  Simulation search path to cell (2,2) 

Seen in Fig. 7, the robot is in the cell (4, 0). The robot 

finds a new wall on the east side. Then the robot will 

update the value of a cell by placing cells (2, 2) as the 

destination cell, so the search is done on cell lines (4, 0) 

to the cell (2, 2). Then the robot will move to a 

neighboring cell that has the smallest value that the cells 

(3, 0). 

 

Figure 8.  Simulation search path to cell (2,2) 

International Journal of Mechanical Engineering and Robotics Research Vol. 6, No. 5, September 2017

368© 2017 Int. J. Mech. Eng. Rob. Res.



In Fig. 8, the robot is now in the cells (3, 0). In these 

cells, the robot does not find a new wall. So the update 

cell values do not cause any changes in the value of the 

cell. Then the robot doing the movement to neighboring 

cells that have the smallest value, is the value of the 

selected neighboring cells are cells (2, 0). 

 

Figure 9.  Simulation search path to cell (2,2) 

In Fig. 9, the robot is now in a cell (2, 0). In this 

position, the robot finds a new wall on the east side. After 

the robot to update the value of the cell, then the cell (2, 0) 

will change the value. So that the robot will move to a 

neighboring cell that has the smallest value, is cell (1, 0). 

 

Figure 10.  Simulation search path to cell (2,2) 

In Fig. 10, the robot is now in a cell (1, 0). In this cell 

position, the robot finds a new wall on the north side. 

Update the value of the cells did not cause any changes in 

the value of the cell. So that the robot will move to a 

neighboring cell that has the smallest value that the cell 

(1, 1). 

 

Figure 11.  Simulation search path to cell (2,2) 

In Fig. 11, the robot is now in a cell (1, 1). In this 

position, the robot finds a new wall on the north side. So 

the update cell values do not cause any changes in the 

value of the cell. Then the robot will move to a 

neighboring cell that has the smallest value. Neighboring 

cells are selected that the cell (1, 2). 

 

Figure 12.  Simulation search path to cell (2,2) 

In Fig. 12, the robot is now in a cell (1, 2). In this 

position, the robot finds a new wall on the south side. 

After the robot updating the value of the cell, then the cell 

(0, 0), (0, 1), (0, 2), and (1, 2) to change the value. Then 

the robot will move to a neighboring cell that has the 

smallest value. Neighboring cells are selected that the cell 

(1, 3). 

 

Figure 13.  Simulation search path to cell (2,2) 

In Fig. 13, the robot is in the position of the cell (1, 3). 

In this position, the robot finds a new wall on the north 

side. After the robot to update the value of the cell, then 

the cell (0, 3) will change the value. Then the robot will 

move to a neighboring cell that has the smallest value that 

the cells (2, 3). 

 

Figure 14.  Simulation search path to cell (2,2) 

In Fig. 14, the robot has been in the position of the cell 

(2, 3). In this cell position, the robot finds a new wall on 

the side of the South and East. After the robot to update 

the value of the cell, then the cell (2, 4) will change the 

International Journal of Mechanical Engineering and Robotics Research Vol. 6, No. 5, September 2017

369© 2017 Int. J. Mech. Eng. Rob. Res.



value. Furthermore, the robot will move to a neighboring 

cell that has the smallest value that the cells (2, 2). In Fig. 

4.11, the robot has arrived at the location of the 

destination cell (2, 2). 

 

Figure 15.  Simulation search path to cell (2,2) 

After the robot to position the cells (2, 2), the robot 

will search the path back to the cell (4, 0). The results of 

the trip artificial intelligence program at the time of the 

search of the cell lines (2, 2) return to the cell (4, 0) is 

shown in next Figures. 

 

Figure 16.  Simulation search path to cell (2,2) 

 

Figure 17.  Simulation search path to cell (2,2) 

 

Figure 18.  Simulation search path to cell (2,2) 

 

Figure 19.  Simulation search path to cell (2,2) 

 

Figure 20.  Simulation search path to cell (2,2) 

 

Figure 21.  Simulation search path to cell (2,2) 

 

Figure 22.  Simulation search path to cell (2,2) 

After the robot movement by choosing neighboring 

cells which have the smallest value, then the robot is now 

in the destination cell (2, 2) and the path is a shortest path 

from the starting cell to get to the destination cell. 

In Table 1, the first departing requires the movement of 

as much as 8 cells to reach the destination cell. While in 

the second process in table 2, the robot requires just as 

much as 6 cell movement. This happens because the 

robot has mapped the location of the position of the wall, 

so the robots can map where a shorter path to get to the 

destination cell. So that the path through the process of 

setting off the second is the shortest path. 

 

 

International Journal of Mechanical Engineering and Robotics Research Vol. 6, No. 5, September 2017

370© 2017 Int. J. Mech. Eng. Rob. Res.



TABLE I. FIRST AND SECOND ROUTES OF ROBOT EXPERIMENT 

Testing Routes Number of 

steps 

First 

Run 

(4,0)  (3,0)  (2,0)  (1,0)  (1,1) 

 (1,2)  (1,3)  (2,3)  (2,2) 

8 

Return 

home 

(2,2)  (3,2)  (3,1)  (4,1)  (3,1) 

 (3,0)  (4,0) 

6 

Second 

Run 

(4,0)  (3,0)  (3,1)  (4,1)  (4,2) 

 (3,2)  (2,2) 

6 

B. A* Algorithm Testing 

On the use of robot movements using the A * 

algorithm obtained the situation that the robot must know 

the position of the wall in advance so that the new can be 

calculated using the A * algorithm. So that when mapped 

and then use the maze on a trial run, Robot obtained 

using the path as follows: 

TABLE II． A * ALGORITHM ON THE CONDITION OF THE KNOWN 

WALL LOCATION  

Routes Number of 

steps 

(4,0)  (3,0)  (3,1)  (4,1)  (4,2)  (3,2) 

 (2,2) 

6 

Meanwhile, when the robot tested without knowing the 

position of the wall first, obtains the same results with 

experiments in Table 3. 

TABLE III: A * ALGORITHM OF THE UNKNOWN WALL LOCATION  

Routes 

Number of 

steps 

(4,0)  (3,0)  (2,0)  (1,0)  (1,1)  (1,2) 
 (1,3)  (2,3)  (2,2) 

8 

 

C. Testing Results on A* and the Flood Fill algorithm 

comparison program  

On the use of robot movements in table 4, that try to 

optimize the use of the A * algorithm and the Flood Fill, 

obtained similar results with each experiment. 

TABLE IV: THE MOVEMENT OF THE ROBOT IN THE MAZE USING THE A 

* ALGORITHM TO OPTIMIZE EXPERIMENT WITH THE FLOOD FILL 

Testing Routes Number of steps 

First 

Run 

(4,0)  (3,0)  (2,0)  (1,0)  (1,1) 

 (1,2)  (1,3)  (2,3)  (2,2) 

8 

Return 

home 

(2,2)  (3,2)  (3,1)  (4,1)  (3,1) 

 (3,0)  (4,0) 

6 

Second 

Run 

(4,0)  (3,0)  (3,1)  (4,1)  (4,2) 

 (3,2)  (2,2) 

6 

D. Additional Testing with Different Layout 

Other experiments with different pattern of board, to 

make a better comparison for both methods. Fig. 23 

describes the second layout of board to test the both 

methods.  

 

Figure 23.  Simulation search path to cell (2,2) 

Robot will perform a search of the initial cell lines (4.0) 

to the destination cell (2, 2). Flood fill algorithm 

simulation results when a search of the cell lines (4, 0) to 

the cell (2, 2) are shown in Table V. 

TABLE V. THE MOVEMENT OF THE ROBOT IN THE MAZE USING  FLOOD 

FILL ALGORITHM 

Testing Routes Number of steps 

First 

Run 

(4,0) (3,0)  (2,0)  (1,0)  (2,0) 

 (3,0)  (3,1)  (3,2)  (3,3)  

(2,3)  (2,2) 

10 

Return 

home 

(2,2)  (2,3)  (3,3)  (3,2)  (3,1) 

 (3,0)  (4,0) 

6 

Second 

Run 

(4,0) (3,0)  (3,1)  (3,2)  (3,3) 

 (2,3)  (2,2) 

6 

 

Robot will perform other experiments using A* 

algorithm in table VI for known wll location and table 

VII for unknown wall location. 

TABLE VI. A * ALGORITHM ON THE CONDITION OF THE KNOWN WALL 

LOCATION  

Routes Number of steps 

(4,0) (3,0)  (3,1)  (3,2)  (3,3)  (2,3) 

 (2,2) 

6 

 

Meanwhile, when the robot tested without knowing the 

position of the wall first, obtains the same results with 

experiments in Table 3. 

International Journal of Mechanical Engineering and Robotics Research Vol. 6, No. 5, September 2017

371© 2017 Int. J. Mech. Eng. Rob. Res.



TABLE VII. A * ALGORITHM OF THE UNKNOWN WALL LOCATION  

Routes Number of 

steps 

(4,0) (3,0)  (2,0)  (1,0)  (2,0)  (3,0) 

 (3,1)  (3,2)  (3,3)  (2,3)  (2,2) 

8 

 

Table Vto VII describe the same results using Flood 

Fill Algorithm and A* Algorithm. 

V. CONCLUSION  

From the results of experiments that have been 

conducted in this study, some conclusions as follows: 

1. The robot can find the shortest travel path after 

successfully mapping the maze arena. 

2. Use of arena size of 5 x 5 have not been able to 

compare differences in the A * algorithm and Flood 

Fill. They need wider arena size to get more detail 

comparison for both of them. 

3. The test optimization program, still lead to 

improvements in the search results, it can be caused 

both methods own the shortest path. 

ACKNOWLEDGEMENT 

This work was supported  by Maranatha Christian 

University, Indonesia 

REFERENCES 

[1] Elshamarka, Ibrahim and Abu Bakar Sayuti Saman. “Design and 
Implementation of a Robot for Maze-Solving using Flood-Fill 

Algorithm”, Universiti Teknologi Petronas, 2012.  
[2] Elshamarka, I. and A.B.S. Saman, “Design and Implementation of 

a Robot for Maze-Solving Using Flood-Fill Algorithm”, in 

International Journal of Computer Applications, Volume 56-No.5, 
pp.8-13, October 2012. 

[3] Tjiharjadi, Semuil and Erwin Setiawan, “Design and 

Implementation of Path Finding Robot Using Flood Fill 
Algorithm”, International Journal of Mechanical Engineering and 

Robotics Research, Volume 5, No. 3, July 2016, pp 180-185. 
[4] Ansari, A., M.A. Sayyed, K. Ratlamwala and P. Shaikh, “An 

Optimized Hybrid Approach For Path Finding”, in International 

Journal in Foundations of Computer Science & Technology 
(IJFCST), Vol. 5 No. 2, pp. 47-58, March 2015. 

[5] Sharma, K. and C. Munshi, “A Comprehensive and Comparative 
Study of Maze-Solving Techniques by Implementing Graph 

Theory”, in IOSR Journal of Computer Engineering, Vol. 17, 

Issue 1, Ver. IV, pp. 24-29, 2015. 
[6] Sreekanth, R.K., “Artificial Intelligence Algorithms”, IOSR 

Journal of Computer Engineering (IOSRJCE), volume 6, issue 3 
September-October, 2012. 

[7] Cook, David, “Intermediate Robot Building”, New York: Apress, 

2010. 
[8] Scherz, Paul, “Practical Electronics for Inventors”, New York: 

McGraw-Hill, 2000. 
[9] Braunl, Thomas, “Embedded Robotics”, Berlin: Springer, 2006. 

[10] Mazidi, Muhammad Ali, Sarmad Niami, and Sepehr Niami, “The 

AVR Microcontroller and Embedded  System”, New Jersey: 
Prentice Hall, 2011. 

 

Semuil Tjiharjadi is currently serves as vice 

rector of capital human management, assets and 

development. He is also Assistant Professor in 

Computer Engineering Department. His major 

research on Robotics, Computer automation, 

control and security. He has written several 

books, To Be a Great Effective Leader 

(Jogjakarta, Indonesia: Andi Offset, 2012), 

Multimedia Programming by SMIL (Jogjakarta, 

Indonesia: Andi Offset, 2008), Computer Business Application 

(Bandung, Indonesia: Informatics, 2006) and so on.  The various 

academic bodies on which he contributed as: Head of Computer 

Engineering Department, Member: Senate of University, Senate of 

Engineering Faculty, Member: APTIKOM, Member: MSDN 

Connection, Member: AAJI. 

 

 

International Journal of Mechanical Engineering and Robotics Research Vol. 6, No. 5, September 2017

372© 2017 Int. J. Mech. Eng. Rob. Res.




