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Abstract—Rechargeable battery systems are key 

components of applications in on-board storage for Micro-

grids and electric vehicles. One of the most important 

evaluation indexes for energy storage system is the peak 

power capability information, which is used to evaluate the 

instantaneous power capability of battery systems to release 

or absorb electrical energy. To give out an accurate peak 

power capability estimation method for series-connected 

lithium-ion battery pack, this paper first proposed an 

extended Kalman filter based state-of-charge estimation 

method. Then the estimated state-of-charges and predicted 

terminal voltages of the cells in a series-connected lithium-

ion battery pack are regarded as the constraints of peak 

power capability. Finally, the proposed method is verified 

by experiments conducted on a 6-series LiFePO4 battery 

pack.  

 

Index Terms—battery storage, peak power capability, 

modeling, state estimation 

 

I. INTRODUCTION 

The state-of-art Lithium-ion Batteries (LIBs) offer the 

best trade-off between energy/power density and costs for 

energy storage in electric vehicles and micro-grids [1], 

[2]. They are also featured by long life and environmental 

friendliness. Therefore, the LIB based energy storage 

systems have been finding applications in electric 

vehicles, smart grids and consumer electronics [3]. One 

of the most important evaluation indexes that the Battery 

Management System (BMS) must know is the peak 

power capability of batteries. Peak power capability 

information indicates the instantaneous power capability 

of battery systems to release or absorb electrical energy, 

which can be used to regulate the propelling power and to 

coordinate the regenerative braking and friction braking 

[4].  

On the other hand, under-estimates of the peak power 

capability may result in overly conservative energy 

management, over-estimates of the peak power capability 

may cause the battery over-charge, over-discharge and 

premature failure [5]. However, the peak power 

capability is impossible to directly measure while the 

battery is working. The most commonly used method is 

the Hybrid Pulse Power Characterization (HPPC) method, 

which can only be employed in laboratory environments 
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[5]. In the recent researches, the peak power capability is 

carried out with the design limits of the battery and 

powertrain. Such as [6] proposed a voltage – limited 

method for continuous peak power capability prediction 

to overcome the drawbacks of the HPPC method. 

Considering the state-of-energy (SOE) – limit or (state-

of-charge) SOC – limit, and online parameter 

identification, which can only be employed in laboratory 

environments [7] and [8] proposed online model-based 

methods. The main concerned problem in these methods 

is how to carry out accurate SOC/SOE value. 

In conclusion, to estimate peak power capability, an 

accurate battery model and an SOC/SOE estimation 

algorithm are necessary. However, as both the voltage 

and capacity of one single LIB are limited, 

hundreds/thousands cells must be connected in series 

and/or in parallel for high power applications [9]. Then, 

the estimation of peak power capability of battery pack is 

much more difficult than estimation of single cell’s peak 

power, because the design limits of the battery and 

powertrain in a battery pack is much more complicated 

than that in one single cell. 

To carry out estimation of peak power capability of 

battery pack, this paper first employs a first-order RC 

model to describe dynamics characteristics of series-

connected battery pack. Then, extended Kalman filter 

method is used to estimate SOC of each cell [10], [11]. 

Finally, the peak power capability is carried out with the 

battery model, estimated SOC and the design limits of 

battery itself. 
The outline of this paper is as following: the lumped 

parameter battery first-order RC model is given in 

Section II. The implement flowchart of the peak power 

capability estimator is given in Section III. The 

experiments, simulation results and evaluation of the 

proposed method are reported in Section IV. Finally, 

conclusions and final remarks are given in Section V. 

II. HELPFUL HINTS 

Many types of battery models are used to evaluate the 

performances of batteries and to study their interactions 

with other electrical devices. Among them, the electric 

circuit models are much simpler for computation and 

analysis than electrochemical models [12], [13]. 

A widely used circuit based model for batteries is first-

order RC model as depicted in Fig. 1 [14], [15]. 
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Figure 1.  Note how the caption is centered in the column. 

ocU  means ideal open circuit voltage. 
oR  is omhic 

resistor. 
dC  and 

dR  are polarized capacitor and resistor 

respectively. 
LI  is load current. 

tU  means the terminal 

voltage. The electrical behavior of the PNGV model can 

be expressed as (1). 
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where z is the abbreviation of SOC. 
dU  is the terminal 

voltage of the RC network. exp( )i i it R C   . t  is 

sampling time. 
NC  denotes the maximum available 

capacity of the battery. 

III. PROPOSED PEAK POWER CAPABILITY ESTIMATION 

METHOD 

A. Extended Kalman Filter Based Soc Estimator 

Extended Kalman filters have become a popular class 

of algorithms for solving the optimal estimation problems 

for non-linear state space models. A general formula for 

nonlinear dynamic system in (1) is shown in (2). 
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where 
kx  is the state vector at discrete-time index k . 

( )f   and ( )g  are state transition and measurement 

functions, respectively. The vector u
k

 is the measured 

exogenous system input at sampling k  and kw  is the 

process noise with known pdfs: ~ ( , )k wNw 0 Σ  and is 

used to account for current-sensor error and inaccuracy of 

the state equation. 
ky  represents system output at 

discrete-time index k and kv  is the measurement noise 

with known pdfs: ~ (0, )k vv N  , which is used to 

account for voltage sensor error and inaccuracy of the 

output equation. The details of extended Kalman filter 

algorithm are summarized as follows [16]: 

Step 1: Initialization: 

For 0k  , initial state and posteriori error covariance: 

 0 0
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Step 2: Computation 1,2,k  : 

(a) Time update-prior estimation 

Predicted state estimation: 

1 1 1
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(b) Measurement update: 

Error innovation: 
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Innovation covariance: 
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Optimal Kalman gain: 
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Updated state estimation: 

ˆ ˆ
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Updated estimation covariance:  
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The SOC of after completion of the algorithm is: 
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B. Estimation of Peak Power Capability 

Herein, the load current of battery is assumed as 

positive for discharge and negative for charge. Then, to 

estimate peak power capability is related to predict 

maximum discharge current or minimum charge current. 

According to [3], the formulation of peak power 

capability of one single cell can be expressed as (11). 
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where chg chg

min min( )P I  and dis dis

max max( )P I  denote the minimum 

charge power (current) and maximum discharge power 

(current) respectively. minP  and 
maxP  are the power 

design limits of the battery. 
,t k LU 

 is the predicted 

terminal voltage at index k L . Assumed that vehicular 

energy management require continuous power for 

acceleration, breaking or climbing conditions, during 

thk  sampling time and ( )thk L  sampling time, the 

input current of the battery can be assumed as a constant 

value. Considering a series-connected battery pack, (11) 

can be transformed as (12). 
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To find the minimum continuous charging current chg

minI  

and maximum continuous discharging current dis

maxI  from 

thk  sampling time to ( )thk L  sampling time for ith 

cell, there are three constraints. N is the number of cells 

in a series-connected pack. Terminal voltage constraint: 

 , ,
ˆ 0t m t k LU U    (13) 

where 
,t mU  is design limit of the upper cut-off voltage 

,maxtU  for calculation of 
chg

min,iI , and is design limit of the 

lower cut-off voltage 
,mintU  for calculation of 

dis

max,iI . 

,
ˆ

t k LU   is the prediction terminal voltage at index k L . 

According to (13) and (1), the current capability of ith 

cell can be calculated by (14). 
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1) SOC constraint 

 
, ,

ˆ 0t m t k LSOC z    (15) 

where 
,t mSOC  is design limit of the upper cut-off SOC 

maxz  for calculation of chg

minI , and is design limit of the 

lower cut-off SOC 
minz  for calculation of dis

maxI . 
,

ˆ
t k Lz 

 is 

the prediction SOC at index k L . Then, the current 

capability of ith cell can be calculated by (16). 
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2) Design limits constraint 

The maximum discharging current and minimum 

charging current can be denoted as maxI  and minI , 

respectively. 

Combine (14) to (16), continuous current capability 

estimates with all constraints are calculated as (17). 
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IV. EXPERIMENTS AND DISCUSSION 

In order to verify the proposed method, experimental 

studies were conducted on a 6-series-connected battery 

pack. Firstly, the parameters of test batteries are given out. 

The extended Kalman filter based estimator is then 

verified under different operating currents and 

temperatures. Finally, the peak power capability is 

estimated using the proposed method. 

A. Parameters of Test Batteries 

The parameters of the test batteries mainly contain 

open circuit voltage, ohmic resistance, total capacity, 

polarized capacitor and resistor. The open circuit voltages 

of 6 cells are plotted in Fig. 2. It can be seen that the open 

circuit voltages of the 6 cells are almost same in a large 

SOC range. After the HPPC (Hybrid Pulse Power 

Characteristic) tests, the ohmic inner resistances are 

shown in Fig. 3. From Fig. 3, it can be seen that the 

internal resistances during discharging are greater than 

that during charging. The numeric results of 3# cell are 

listed in Table I. 

 

Figure 2.  Open circuit voltage of six test cells.  

TABLE I.  BATTERY PARAMETERS OF 3# CELL. 

SOC (%) 

Parameters 

OCV(V) 

Resistance (mΩ) 

Discharge Charge 

100% 3.583 - - 

90% 3.339 14.000 6.237 

80% 3.337 14. 124 6.391 

70% 3.322 14.206 6.495 

60% 3.304 14.309 6.701 

50% 3.297 14.495 6.856 

40% 3.293 14.680 7.010 

30% 3.265 14.804 7.216 

20% 3.224 15.052 7.526 

10% 3.14 15.650 8.041 

 

 

Figure 3.  Inner resistance of six test cells. 
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Figure 4.  Dynamic current profile.  

According to [15], The OCV function is expressed as 

follows:  

   0 1 2 3 4( ) ln ln 1ocU z K K z K z K z K z        (17) 

where z is the abbreviation of the SOC. Ki are five 

polynomial coefficients of the model. They are identified 

by apply the least squares method. The numerical results 

are show in Table II. 

TABLE II.  PARAMTERS OF THE OCV FUNCTION. 

Parameters Values (mV) 

K0 3526 

K1 –0.3744 

K2 315.9 

K3 151.6 

K4 –53.90 

B. Verification of EKF Based Soc Estimator 

Assumed the errors in modeling for parametric 

estimation are  and c Rf f  , which represent capacity 

error and resistance error respectively. Thus, define: 
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o o R

N N c
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 (19) 

 

Figure 5.  SOC estimation results.  

In order to verify the EKF based SOC estimator. The 

test batteries are discharged with a dynamic current 

profile, as shown in Fig. 4. The six cells’ SOC estimation 

results of the EKF method are plotted in Fig. 5, while the 

absolute errors are plotted in Fig. 6. The corresponding 

voltages are plotted in Fig. 7. The numeric results are 

listed in Table III. These results show that the proposed 

method provides high accuracy for estimating SOC under 

dynamic current conditions, even with an erroneous 

initial SOC. 

 

Figure 6.  Absolute errors of SOC estimation. 

 

Figure 7.  The six cells’ terminal voltage. 

TABLE III.  NUMERICAL RESULTS OF SOC ESTIMATION. 

Battery Number RMSEa 

1 5.48 

2 6.86 

3 6.80 

4 5.08 

5 6.21 

6 6.62 

a. RMSE = Root Mean Square Error. 

C. Verfication and Discussion on Peak Power Prediction 

Through the estimated battery SOC and predicted 

battery terminal voltage, the peak power capability can be 

calculated. Before the calculation for battery peak power, 

the design limits for battery current, power and SOC 

firstly, as shown in Table IV. 

The maximum discharge current calculated from 

Terminal voltage constraint and SOC constraint are 

plotted in Fig. 8 and Fig. 9 respectively, while the 

minimum charge current from the two constraints are 

plotted in Fig. 10 and Fig. 11 respectively.  

Firstly, it can be seen from Fig. 8-Fig. 11 that Terminal 

voltage constraint-based current capability is much 

smaller than SOC constraint-based. It is mainly because 

that SOC changes gently along with battery current. 

However, because of the existence of internal resistance, 

terminal voltage changes immediately once battery 

current changes.  
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Figure 8.  Max. discharge current from Terminal voltage constraint. 

 

Figure 9.  Max. discharge current from SOC constraint. 

TABLE IV.  DESIGN LIMITS FOR THE LIFEPO4 BATTERY CELL. 

Current type Power (W) Current(A) SOC(%) 

Pulse(Dis/Chg) 130/-90 60/-40 5 

Continuous(Dis/Chg) 50/-30 20/-10 95 

 

 

Figure 10.  Min. charge current from Terminal voltage constraint. 

 

Figure 11.  Min. charge current from SOC constraint. 

Secondly, it can also be concluded that maximum 

discharge current of a battery pack is determined by the 

cell with minimum discharge current capability (4#), 

because of the buckets effect. Correspondingly, the 

minimum charge current of a battery pack is determined 

by the cell with maximum discharge current capability 

(2#).  

Thirdly, it can also be concluded that there is a 

negative correlation between continuous current 

capability and sampling interval L. The current capability 

under 10s pulse current profiles are larger than 1min 

continuous current profiles. 

Finally, the current capability calculated from bot 

Terminal voltage constraint and SOC constraint are much 

larger than battery design limits. 

V. CONCLUSION 

One of the most important evaluation indexes for 

energy storage system is the peak power capability which 

is used to evaluate the instantaneous power capability of 

battery systems to release or absorb electrical energy. 

Considering the series-connected lithium-ion battery pack, 

this paper provided a peak power prediction approach. 

Firstly, SOC information of in-pack cells is very 

important for battery peak capability prediction. 

Therefore, an EKF based method is employed to estimate 

SOC values of individual cells. Then, peak power of a 

battery pack is analyzed according to individual cells’ 

design limits. Finally, verification and some discussions 

about the proposed method are given out. The 

experimental results show that the proposed method can 

accurately estimate battery SOC and peak power 

information. 
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