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Abstract—A pseudo three dimensional numerical analysis is 

presented for simulation of cylindrical heat pipe using the 

Lattice Boltzmann method. The analysis includes the heat 

conduction in the wall and liquid-wick regions as well as the 

vapor region. Comparisons between the present model and 

previous numerical results showed very good agreement. 

The estimations of the liquid and vapor velocity profiles and 

temperature distributions are also presented and discussed. 

It is shown that the vapor flow field remains nearly 

symmetrical about the heat pipe centerline. Numerical 

results under different working conditions are presented, 

which provide guidance for the heat pipe design. 

 

Index Terms—heat pipe, heat flux, lattice Boltzmann 

method, heat transfer 

 

I. INTRODUCTION 

Over the last several decades, the advancing 

technology of devices requires a higher level of heat 

rejection efficiency in order to overcome its thermal 

management constraints and challenges. As reliable and 

efficient passive heat recovery devices, Heat Pipe (HP) is 

a promising candidate to meet those constraints for many 

years with the development of new types such as loop 

heat pipes, micro and miniature heat pipes, and pulsating 

Heat Pipes (HPs) [1]. It provides high transfer rates over 

large distances, with minimal temperature drops, 

excellent flexibility, simple construction, less 

maintenance and easy control, all without a need for 

external pumping power.  

Due to its several advantages, HPs are currently used 

as standard tools in a wide variety of heat transfer related 

applications such as electronics cooling [1], heat 

exchangers [2], heat recovery in renewable energy [3], 

space applications [4] and so on. As a result of the strong 

interest in HP technology and its applications, several 

analytical [5], experimental [6] and numerical [7] 

analyses have been carried out by many investigators to 

facilitate the understanding of HP operation with a 

significantly progress. For the simplicity of presentation, 

only the very recent works are reviewed here. By 

highlighting the contribution of HP in reducing the 

carbon emissions to the environment, a detailed review of 
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HP application ranging from computer electronics to 

renewable energy was presented by Mochizuki et al. [1]. 

Later, Faghri [8] reported the progress of HP from its 

invention to now days by describing its recent 

advancement in manufacturing, simulation and its 

applications. Chaudhry et al. [3] evaluated the current HP 

systems for heat recovery and renewable applications 

utility. Basic features and limitations are outlined and 

theoretical comparisons are drawn with respect to the 

operating temperature profiles for the reviewed industrial 

systems. More recently, Shabgard et al. [2] reviewed the 

different type, the opportunities and challenges related to 

current HP heat exchangers applications. 

From the above literature, the Lattice Boltzmann 

Method (LBM) has not been used to predict the 

performance of a wicked heat pipe, although this method 

is used to deal with a complicated problem and provides 

efficient and accurate results [9], [10]. Deriving 

motivation from this, the present study aims to model the 

two dimensional heat transfers and fluid flow in a 

cylindrical HP using the LBM.  

II. PROBLEM DEFINITION  

    The operation of a conventional HP involves the 

evaporation of a working fluid at the evaporator section. 

Due to the pressure difference, the resulting vapor 

migrates along the length of the central vapor core 

through the adiabatic section to the condenser section, 

where it condenses by releasing its latent heat of 

vaporization to the provided heat sink. Then, the 

condensed fluid flows back to the evaporator section end 

by the capillary pressure created by the menisci in the 

wick pumps. This process will continue as long as there is 

a sufficient heat input to the heated section. The physical 

configuration of a HP is illustrated in Fig. 1.  

 

Figure 1.  Schematic of conventional cylindrical heat pipe. 
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The analysis is carried out for an incompressible, 

laminar and two-dimensional axisymmetric flow without 

any external effects. The porous structure is saturated 

with a single phase Newtonian fluid and considered 

homogenous and isotropic with a uniform porosity and 

uniform permeability magnitude. Furthermore, the 

thermos-physical properties of the working fluid and 

solid matrix are supposed to be constant. The liquid and 

vapor phases are coupled at the liquid-vapor interface.  

III. GOVERNING EQUATIONS 

A. The Governing Equations  

Under the above assumptions, the final form of the 

governing equations based on the Representative 

Elementary Volume (REV) is given by Eqs. (1)–(4): 

- Continuity equation: 
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- Energy equation: 
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where 
ru , 

zu , p and T are the volume averaged radial 

velocity, axial velocity, pressure and temperature of the 

fluid, respectively. 
e is the effective kinetic viscosity, 

    1f pf s ps f pfc c c       ,
e is the effective thermal 

diffusivity coefficient which is equal to: 
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where
e is the effective thermal conductivity:  
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             (6) 

 p ,F pz prF F  in (2) and (3) represents the total body force 

due to the presence of porous media which is given by: 
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where  is the porosity of the porous medium;  is the 

fluid viscosity which is not necessarily the same as the 

effective viscosity 
e ; 2 2

r zu u u  and G is the body force 

induced by an external force. The Fε geometric function 

and the porous medium permeability K are related to the 

porosity based on Ergun's experimental investigations 

[11], as: 
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where dp is the diameter of the solid particle. 

In the vapor region, the porosity  gets very close to 1 

with infinite permeability. Thus, the generalized 

momentum reduces to the Navier-Stokes equation.  

For the wall region, the heat transfer is transferred 

purely by conduction as follows: 
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where subscripts “s” refers to solid wall. 

B. Boundary Conditions 

- In the vapor region: 
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At the vapor–wick interface, the temperature is 

assumed to be the saturation temperature corresponding 

to the interface pressure. By applying Clausius–

Clapeyron equation, the saturation temperature can be 

determined by: 

     

0 0

1
lnv i

sat

fg

R P
T

T h P

 
   
 

                   (11) 

where Rv is the gas constant for the vapor, T0 and P0 are 

the temperature and pressure reference, respectively.  

By using the energy balance at the interface liquid–

vapor, the boundary condition for the injection blowing 

and suction velocities vi (z) which couples the vapor and 

the porous region of this interface is defined as: 

                           
,

l

e v fg r i

T
Q h u

r
 


 


                     (12) 

In the porous region: 
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In the wall region: 
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C. Dimensionless form of the Governing Equations 

By introducing the following dimensionless parameters: 
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The fluid flows governed by equation (1-4) have the 

following dimensionless form: 

- Continuity equation: 
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- Momentum equation: 

*

2 2

2 2

1

1 1

Re Re

z z z
r z

z z z
z z

U U U P
U U

t R Z Z

FU U U
U U U G

R R R Z Da Da





 




    
    

    

   
      

   

 (14) 

*

2 2

2 2 2

1

1 1

Re Re

r r r
r z

r r r r
r r

U U U P
U u

t R Z R

FU U U U
U U U G

R R R R z Da Da





 




    
    

    

   
       

   

 (15) 

- Energy equation: 
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where the non-dimensional parameters are: the Darcy 

number Da, the Prandtl number Pr and the Reynolds 

number Re, respectively, defined as: 
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IV. NUMERICAL METHOD 

The LBM has been proved to be an efficient numerical 

method for modeling the fluid flows in various fields [9, 

10]. In this section, the LBGK model based on the REV 

approach for axisymmetric thermal flows through porous 

media will be introduced. 

A. Axisymmetric Formulation of the Lbm for 

Incompressible Fluid Flows Though Porous Media  

In this study, the LBM with Double Distribution 

Function (DDF LBM) approach is used in this work [10]. 

The model is based on the BGK collision operator, and is 

constructed with the idea of pseudo-Cartesian translation.  

1) Lattice boltzmann for the velocity field  

In order to simulate the axisymmetric flows through 

porous media, we propose the following LB model with 

source and force terms: 
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where 
kf (x,t) is the density distribution function (DF) of 

particles; eq

kf (x,t) is the local equilibrium distribution 

function (EDF) of particles; t is the time step; x is the 

space vector, i.e, x=(z, r), c= x / t ; 
kic is the component 

of 
kc which is the velocity vector of a particle in the k link; 

kw  is the weight, F1 is the source term defined as: 
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2iF is the force term given by: 
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The last term on the right-hand side of equation (18), is 

accounted for by the total force due to the presence of the 

porous medium and other external force fields and is 

given by [10]: 
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and 
f is an effective relaxation time related to the single 

relation time  as: 
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To include the effect of the porous medium, the 

equilibrium distribution function (EDF) of the DnQb 

models is defined as follows [10]: 
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We used the nine-velocity square lattice (D2Q9), 

where 
kw is defined as: 
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and  
kc is as follows: 
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with 
k is defined as: 
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Accordingly, the fluid density ρ and fluid velocity u 

can be defined by: 

kf                             (27) 
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It is noted that the force term F of Equation (5) also 

contains the velocity u. However, the velocity u could be 

obtained explicitly due to its quadratic nature of the 

equation (28) itself as: 
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where v is an auxiliary velocity defined as: 
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The two parameters in (29) can be obtained by: 
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Through the Chapman-Enskog procedure, the effective 

viscosity is defined as: 
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2) Lattice boltzmann for the temperature field 

The following LBE is used to describe the evolution of 

the temperature field: 
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where 
kg is the temperature distribution function, 

g is the 

dimensionless relaxation time which is related to the 

thermal diffusivity through the Chapman-Enskog 

expansion by: 
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kg is the equilibrium temperature distribution 

function which is defined as: 
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The last term in (34) represents the source term due to 

the axisymmetric configuration. This term can be easily 

solved by using Finite Difference method: 
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Through the TDF, the temperature T of the system is 

defined as: 

            kg
T


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where  is the heat capacity ratio which reflects the 

influence of porous media on the temperature field. 

V. RESULTS AND DISCUSSION  

The numerical simulations are performed for copper-

water wicked heat pipes with its dimension and water as 

working fluid shown in Table I. The results in Fig. 2 are 

compared with the numerical results given by [12] where 

a heat load of 5000 W/m
2
 was applied to the pipe wall 

along the evaporator. Good agreement is observed. 

 
(a) 

 
(b) 

Figure 2.  Vapor velocity profile: (a) axial velocity, (b) radial velocity  

TABLE I.  THE DIFFERENT PARAMETERS OF THE HEAT PIPE 

Heat pipe wall Wick structure  Vapor region  

R=0.022 m 

Levap=0.4 m 

Lad=0.2 m 

Lcond=0.6 m 

Ltot=1.0 m 

λw=387.6 W/mK 

ρw=8978 kg/m3 

Ta=25°C 

Cpw=381 J/kg K 

hconv=800 W/m2 K 

Material : copper 

re=0.02 m 

ε=0.46 

K=0.267*10-10 m2 

ρl=960.63 kg/m3 

λl=0.680 W/mK 

μl=2.8243 kg/ms 

Cpl=4216 J/kg K 

λeff=3.0476 W/mK 

Cpeff=3.8*106 J/kg K 

Material: sintered copper  

re=0.0127 m 

ρv=0.599 kg/m3 

λv=0.0251 W/mK 

μv=0.129*10-4 kg/ms 

Cpv=1888 J/kg K 

hfg=225.6267*104 J/Kg 

Rv=488 J/kg K 

Tsat=373.15 K 

 

      

In the numerical calculations, the thermal properties of 

water are calculated at the reference temperature and they 

are assumed constant at this temperature except for the 

vapor density. A 5000 W/m
2
 heat input was specified in 

the evaporator of the circumferentially-heated copper-

water heat pipe model. Attention will first focus on the 

simulated heat pipe vapor flow. 

Fig. 3 and Fig. 4 presents the distribution of velocity 

by varying different parameters. As it can be seen, the 

axial velocity along the pipe is divided into three equal 

parts. The location of the maximum axial velocity quickly 

migrates into the heat pipe centerline. The velocity 

distribution gradually approaches a parabolic profile 

towards the end of the heated region. The velocity 

distribution is practically symmetric about the heat pipe 
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centerline. This can be explained by the fact that the 

effective thermal conductivity of the wick is much 

smaller in comparison to the thermal conductivity of the 

heat pipe wall. Based on our numerical results, we 

conclude that the Reynolds number as well as the 

porosity affects the heat pipe operation. Indeed, as the 

Reynolds increases the velocity increases too.  In the 

other hand, the augmentation of the porosity leads to the 

increase of the vapor velocity. This is can be explained by 

the fact that when the pores are too small the vapor 

diffuse more slowly which leads to the decrease in its 

velocity. 

 

Figure 3.  Radial vapor velocity for different reynolds number 

 

Figure 4.  Radial vapor velocity for different porosity  

 

Figure 5.  The axial vapor streamlines 

 

Figure 6.  Liquid isotherms  

The axial vapor streamlines velocity for the studied 

configurations are given in Fig. 5. As it can be seen, the 

axial vapor streamlines along the heat pipe are divided 

into three parts. At the evaporator region, the resulting 

vapor moves toward the condenser region via the 

adiabatic. One can see that the magnitude of the axial 

velocity increases as the evaporated working fluid mass is 

added to the vapor core from the evaporator end cap 

towards the adiabatic section. 

Fig. 6 shows the temperature profile in the porous 

media for heat input condition of Q=5000W/m2. It can be 

observed that in the porous region, the heat transfer 

process occurs mainly by heat conduction. As it can be 

seen, three regions are observed: evaporator (heat in), 

adiabatic and condenser (heat out). 

VI. CONCLUSION 

A pseudo-three-dimensional numerical model has been 

developed for different part of cylindrical heat pipe, 

which includes vapor flow, liquid flow, and heat transfer 

in the porous wick structure and in the wall.  The Lattice 

Boltzmann Method has been used for the first time to 

predict the performance of a wicked heat pipe. A new 

model was developed to solve the governing equations. 

The numerical results of the vapor were compared with 

the numerical data obtained previously which was in 

good agreement. The pertinence and the effects of various 

physical parameters were studied. It was found that the 

wall temperature distributions. Finally, a guideline and 

knowledge were obtained for designing a heat pipe. 
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