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Abstract—A conjugated problem statement for 

aerogasdynamics, internal heat and mass transfer and 

thermal strength of heat shield structures of hypersonic 

vehicles is formulated. A method for numerical solving of 

the problem is suggested. It is based on the iterative solution 

of the three types of detached problems: a gasdynamics 

problem for viscous heat-conducting flows, internal heat 

and mass transfer and thermoelasticity of shell 

constructions. An example of the numerical solution of the 

conjugated problem is given. It is shown that due to the high 

temperatures of the aerodynamic heating of the structure 

made of a polymer composite material there can appear a 

polymer phase thermodecomposition and intensive internal 

gas generation into the structure of the material. 

 

Index Terms—conjugated problem, computational fluid 

dynamics, aerothermodynamics, hypersonic flows, heat and 
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thermodecomposition structures, heat shield 

 

I. INTRODUCTION 

The learning of hypersonic speeds is one of the most 

promising complex problems of the high-tech 

development. This problem can be identified such 

components as: the study of hypersonic aerodynamics of 

flights, study of the heat transfer on surfaces of aircraft 

constructions, thermophysics research of constructional 

materials, thermal strength study, analysis and 

development of constructional materials for hypersonic 

aircrafts, and the problems of hypersonic aeroelasticity, 

control and others. Significant amount of work (e.g. [1]) 

described researches of hypersonic aerodynamics 

conditions, less studied problems of heat transfer [2] 

under hypersonic speeds. The more difficult problem is 

the high-temperature behavior of composite materials 

based on heat-resistant filaments and masters [3]. The 

complex conjugated problem of aerothermodynamics, 

heat transfer, thermal physics and thermal strength of 

hypersonic constructions is still practically uninvestigated, 

and there are relatively recent work [4]-[5] that studied 

aeroelasticity of constructions under hypersonic speeds. 
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However under the actual operating conditions of 

hypersonic vehicles the problems of aerothermodynamics, 

heat transfer and thermophysics of the constructions are 

conjugated through the boundary conditions on the 

surface of the constructions, so the parameters of the heat 

flux acting on the materials depend on the properties of 

these materials. By turn, thermal properties of the 

materials at high temperatures may depend on the mode 

of deformation of the constructions. So the significant 

level of thermal stresses in composite materials leads to 

the filament microcracking long before the full 

macrodestruction of constructions, thereby the gas 

permeability and thermal conductivity materials and 

temperature fields in the constructions are changed. Thus 

the development of the methods for solving the 

conjugated problem for the study of the real processes 

taking place in the constructions of hypersonic vehicles is 

necessary. 

The general formulation of the conjugated problem of 

aerothermodynamics and thermomechanics consists of 

the three systems of equations 

 The Navier-Stokes equations of an external gas 

flow, 

 The internal heat and mass transfer equations, 

 The equations of thermoelasticity of a shell. 

II. MATHEMATICAL FORMULATION 

A. System of Gasdynamics Equations 

Consider the system of equations of a viscous heat-

conducting gas (the Navier-Stokes equations) 
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where ρ is the gas density, t is the time, v is the velocity 

vector, p is the pressure, E is the identity tensor, ε is the 

total energy per unit volume. 
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This system adds relations for the perfect gas, viscous 

stress tensor and heat flux vector 
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where R is the universal gas constant, M is the molecular 

weight of gas, θ is the gas temperature, cv is the specific 

heat at constant volume, μ1 and μ2 are the coefficients of 

viscosity, λ is the thermal conductivity of gas. The 

coefficients of viscosity and thermal conductivity are 

functions of temperature. 

The boundary conditions on the solid surface, which is 

the interface of the gas and solid domains, are as follows 
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where θw is the temperature of the solid surface, θmax is 

the maximum temperature into the boundary layer, 

s  is the temperature gradient on the solid wall from 

the construction, εg and εs are the emissivity of the heated 

gas and solid surface respectively and σ is the Stefan-

Boltzmann constant. 

B. System of Equations of Internal Heat and Mass 

Transfer 

We consider a typical element which is made of a heat-

resistant composite material consisting of a polymer 

master with heat-resistant filaments. There are physical 

and chemical processes of thermodecomposition in such 

composite master under high temperatures of 

aerodynamic heating. In these processes the gaseous 

products of thermal decomposition are generated, then 

they are accumulated in the pores of the material and 

filtered into the outer gas flow, as well as a new solid 

phase is formed. It is the phase of pyrolytic master which 

has significantly lower elastic-strength properties than the 

original polymer phase. The four-phase model to describe 

the internal heat and mass transfer and deformations of 

such composite is proposed in [3]. This model consists of 

 The equation of change of mass of polymer master 

phase 

b
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 The equation of filtration of gaseous products of 

thermodestruction in pores of the composite 

material 
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 The heat transfer equation in the 

thermodestruction composite 
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where φb, φg are the volume concentrations of the phase 

of the initial polymer master and gas phase; ρb is the 

density of the phase of the initial polymer master which is 

assumed to be constant; ρg is the average pore density of 

the gas phase (variable); cg is the specific heat of the gas 

phase at constant volume, ρ and c are the density and 

specific heat of the composite as a whole, q is the heat 

flux vector, θ is the composite temperature for all phases 

in common; vg is the velocity vector of the gas phase; 

Δe
0
 is the specific heat of the master 

thermodecomposition; J is the mass velocity of the 

master thermodecomposition and Γ is the gas-producing 

factor of the master. 

The equations (4)-(6) are added the relations between 

the heat flux vector q, the velocity vector of the gas in 

pore vg with the temperature gradient   and the 

pressure gradient p  using the Fourier and Darcy laws, 

as well as the Arrhenius relation for the mass velocity of 

the master thermodecomposition J and Mendeleev-

Clapeyron equation for the pore pressure of the gas phase 
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where J0 is the pre-exponential factor, EA is the activation 

energy of the thermodecomposition process, Mg is the 

molecular weight of the gas phase, Λ is the thermal 

conductivity tensor, K is the permeability tensor of the 

composite. They depend on the phase concentration. 

The relations for the density and specific heat of the 

composite are 
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where φf, φp are the volume concentrations of 

reinforcement filaments and pyrolytic phase of master, ρf, 

ρp are the densities of reinforcement filaments and 

pyrolytic phase of master (assumed to be constant); cf, cb, 

cp are the specific heats of the solid phases (reinforcement 

filaments, phase of initial polymer master, pyrolytic 

phase of master) at constant deformation. The specific 

heats of the solid phases are assumed to be constant and 

temperature independent. 

We also introduce the notation for the density and 

specific heats of the cage of composite (the set of all solid 

phases) 
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The volume concentration of pyrolytic phase of master 

φp can be expressed analytically 
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The boundary conditions for the equations (4)-(6) on 

the heated surface of the construction are as follows 

 p = pe, θ = θe (11) 

where pe, θe are the pressure and temperature of the flow 

on the surface. 

The boundary conditions of tightness and thermal 

insulation are specified on the rest of the composite 

surface 

 0,p n 0   n Λ  (12) 

C. System of Equations of Thermoelasticity 

In curvilinear coordinates Oq1q2q3 associated with the 

middle surface of a thermoelastic shell composite 

structure the system of equations consists of [3] 

 The equilibrium equations of the shell 
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 The kinematic relations 
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 The defining relationships of the thermoelastic 

shell 
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where Tαα, Tαβ, Mαα, Mαβ are the forces and moments in 

the shell; Qα are the shear forces; eαα, eα3, e12 are the 

deformations of the middle surface; καα, κα3, κ12 are the 

curvatures of the middle surface; Uα , γα , W are the 

displacement, angles of curvature and deflection of the 

middle surface; Aα, kα are the parameters of the first 

quadratic form and principal curvatures of the middle 

surface, α,β = 1,2; and Pg, Mg are the forces and moments 

of the pore pressure in the shell 
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The forces and moments of the thermal stresses T̂ , 

M̂  depending on the thermal deformations ̂  for the 

shell are introduced as follows 
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where αf, αb, αp are the coefficients of the thermal 

expansion of the filament, polymer and pyrolysis phases, 

βp is the shrinkage ratio, Bγ, Ωγ are the coefficients 

depending on the location of the filaments in the 

composite [3], γ = 1,2,3. 

The forces and moments of the interphase interaction 

Pgα, Mgα are 
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where αf  are the coefficients of interphase interaction. 

The membrane, bending and mixed stiffnesses of the 

shell αβC , Nαβ, Dαβ from the relations (15) are 

0 (0) 0 (1) 0 (2)

1 1 1

0 (0) 0 (1) 0 (2)

66 66 1 66 66 1 66 66 1

0 (0)

3, 3 3, 3 2

2
( )

3 3

2

, , ,

, , ,

  1, 2;

 1,2;  0,1 2.

,

, ,

h

j j

k k

h

C C a N C a D C a

C C a N C a D C a

C C a

a kdq ja q

        

  

    

 



 

 

  

  



 

   (19) 

Due to the softening of the polymer master and its 

thermodecomposition, stiffnesses of the shell are 

changing when heated. This change for orthotropic 

composite shells is taken into account by 2 functions aθ1, 

aθ2 [3]. 

Substituting the defining relationships (15) and 

kinematic relations (14), we have the 5 equilibrium 
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equations (13) which form a closed system for the 5 

unknown functions Uα, γα, W. 

The five given values from each pair (T11−φgPg, uα), 

(T22, uβ), (Qα, W), (M11−φgMg, γα), (M22, γβ) are used for 

the boundary conditions at a line qα = const. 

Deformations εαβ and stresses σαβ in the shell 
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The tangential stresses σ13, σ23 and transverse normal 

stress σ33 have the following formulas 
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where p1, p2 are the pressures on the external surfaces of 

the shell. The maximum values of the tangential stresses 

are reached on the middle surface, where η (0) = 0.25 and 
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III. COMPUTATIONAL METHOD 

A step-by-step method with two time scales Δt1 and 

Δt2 is used for the numerical solution of the conjugated 

problem. The time step Δt1 is used for changing the 

boundary conditions for the Navier-Stokes equations and 

the equations of internal heat and mass transfer. The 

solution is carried out in 4 stages for each step Δt1. 

Stage 1. The solution of the equations of internal heat 

and mass transfer (4)-(6) is carried out by the numerical 

finite-difference method using the method of linearization 

and the implicit difference scheme which are described in 

[6]. The temperature of the solid surface θw interacting 

with the incoming flow is taken from the previous time 

step Δt1. 

Stage 2. The numerical integration of the Navier-

Stokes equations (1) is carried out over the time steps Δt2 

to establish flow. We use the finite volume method based 

on elements centered on the grid point (vertex-centered 

volume) [7]. 

In the boundary condition (3) the heat flux through the 

wall s s sq    n  is calculated according to the 

formula: qs = α (θ0 − θw), where 
(Fo)s g

h


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transfer coefficient, h is the shell thickness, λs is the 

thermal conductivity of the shell in the transverse 

direction, g(Fo) is the dimensionless heat transfer 

coefficient depending on the Fourier number of material 

construction 1Fo s

s s

t

c h


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 and t1 is the characteristic time 

of the construction heating. The function g(Fo) is 

calculated in advance by the preliminary numerical 

solution of the one-dimensional heat conduction problem 

for a plate with different values of the parameter Fo. 

Stage 3. The solution of the equations of 

thermoelasticity for a shell (13)-(15) is carried out by 

means of the finite-element method which is described in 

[6]. The input data for this task are pressures on the outer 

p1 and inner p2 surface of the shell, which are calculated 

after the solution of the Navier-Stokes equations (1), as 

well as the distributions of the temperature θ, volume 

concentrations of the phases φf, φb, φp, φg and the pore 

pressure p which are calculated by the solving of the 

equations of internal heat and mass transfer (4)-(6) for the 

current time step. 

Stage 4. The calculation of thermal stresses in the shell 

is carried out by means of formulas (20)-(21). 

IV. RESULTS AND DISCUSSION 

A numerical solution of the conjugated problem was 

calculated for a hypersonic flow (M = 6) around the nose 

of a vehicle model flying at the altitude of 15 km. 

Fig. 1 shows the distribution of the temperature of the 

flow near the body. The temperature reaches 1.600°K at 

the stagnation point on the nose of the vehicle and 

decreases monotonically as the distance from the 

stagnation point, but it remains rather high value. At the 

maximum distance the temperature is about 800°K for the 

edge and lower generatrix and 1.000°K for the upper 

generatrix of the vehicle which has a large value of the 

cone angle. 

The results of numerical calculations of the fields of 

internal heat and mass transfer in the shell element of the 

hypersonic aircraft are shown in Fig. 2-Fig.7. The curves 

show the distributions along the shell thickness (the 

dimensionless coordinate x = 0.5 + q3/h is introduced) at 

a control point on the bottom surface at the distance of 

30r from the stagnation point, where r is the blunted body 

radius at the stagnation point. Different colors correspond 

to the 7 different time points t1,…,t7 of aircraft flight. 

Fig. 5-Fig. 6 show the distribution of temperature on 

the outer surface and the thickness maximum pore 

pressure of the construction at the time of maximum 

construction heating t7. 

Thermodecomposition of the polymer phase of the 

composite shell leads to the formation of a large amount 

of gaseous products in the pores of the material. The 

produced gases do not have time to percolate into the 

outer gas flow and create the internal pore pressure due to 

the low permeability of the composite. 

Fig. 8-Fig. 10 show the distribution of the coefficient 

of changes of elastic properties of the composite aθ1, the 

thermal longitudinal deformation 1̂  and the thermal 
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transversal deformation 
3̂  along the shell thickness at 

the control point for the different time points. A 

characteristic feature of these functions is their 

nonmonotonic. The thermal deformations increase in the 

domain of high temperature and decrease after passing 

through the conventional point of the beginning of the 

intensive thermal decomposition due to the formation of 

pyrolytic residue. This decrease affects the values σ11, σ22 

of the thermal stresses in the shell. The thermal 

transversal deformation 
3̂  becomes negative at a certain 

moment in contrast to the thermal longitudinal 

deformation 
1̂ , because there is the shrinkage of the 

matrix (Fig. 10). The emergence of shrinkage causes the 

formation of shrinkage stresses σ33 in the heated 

subsurface shell layer. 

The circumferential compressive stress σ22 (h/2) 

gradually increases during the heating together with the 

values of the maximum circumferential tensile stresses at 

the periphery of the shell closer to the edges of the shell. 

The positive peak of the tensile stresses σ22 occurs due to 

thermodestruction of the composite at the time of the 

maximum construction heating t7 (Fig. 11). As a result 

the pore pressure of the gaseous products of thermal 

decomposition of the matrix increases. 

Fig. 12 show the distribution of the transversal stresses 

σ33 along the shell thickness at the control point for the 

different time points of aircraft flight. These graphs show 

that the peak of the positive (tensile) stress σ33 occurs in 

the subsurface layer due to the increase of the pore 

pressure and the formation of shrinkage deformation of 

the shell after the initiation of thermal decomposition of 

the polymer. The values of transversal stresses are 

reached values of 0.13 GPa at the bottom of the shell at 

the time t6. It is significantly higher than the breaking 

point of the composite's shell in the transversal direction. 

The destruction of the bundle type may occur in this part 

of the shell in which upper layers of the composite's 

fabric are delaminated from the rest of the material. A 

similar effect may occur at the top of the shell to the time 

t7, as the transversal stresses rise to 0.06 GPa (Fig. 13). It 

is less than the values at the bottom of the shell, but also 

comparable to the breaking point of the composite's shell 

in the transversal direction. 

 

Figure 1.  Temperature of the flow, θ (°K) at the time t = 0. 

 

Figure 2.  Temperature gradient, θ − θ0 (°C). 

  

Figure 3.  Volume concentration of the polymer phase, φb. 

  

Figure 4.  Volume concentration of the pyrolytic phase, φp. 

 

Figure 5.  Temperature on the outer surface, θw (°K) at the time t = t7. 

 

Figure 6.  The thickness maximum pore pressure, pmax (GPa) at the 
time t = t7. 
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Figure 7.  Pore pressure p, atm. 

  

Figure 8.  The coefficient of changes of elastic properties of the 
composite, aθ1. 

  

Figure 9.  Thermal longitudinal deformation, 
1

ˆ .  

  

Figure 10.  Thermal transversal deformation, 
3

ˆ .  

 

Figure 11.  Maximum circumferential stress, σ22 (h/2) (GPa) at the time t 
= t7. 

  

Figure 12.  Transversal stress, σ33 (GPa). 

 

Figure 13.  Maximum transversal stress, σ33 (GPa) at the time t = t7. 
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