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Abstract—Vehicle detection and tracking with unmanned 

aerial vehicles (UAVs) find increasingly widespread 

applications in both military and civilian domains. In this 

paper, a method for vision-based multiple vehicle detection 

by using the proposed self –learning tracking and detection 

(SLTD) method has been proposed. The method used 

Features from Accelerated Segment Test (FAST) and 

Histograms of Oriented Gradients (HoG) for vehicle 

detection. Based on the detection results, a Forward and 

Backward Tracing (FBT) mechanism has been employed in 

the new self-learning tracking algorithm based on Scalar 

Invariant Feature Transform (SIFT) feature. The main aim 

of this research is to improve the accuracy of the detection 

and tracking system, where the detector relies on the 

features of a pre-trained model with no connection with the 

current detection or tracking. The main contribution of this 

paper is that the proposed system can detect and track 

multiple vehicles with a self-learning process leading to 

increase the tracking and detection accuracy. UAV videos 

captured in different situations have been used to evaluate 

the proposed algorithm. The results demonstrated that the 

accuracy can be improved by using the proposed method. 

 

Index Terms—Unmanned Aerial Vehicle (UAV), vehicle 

detection, self-learning-tracking, Forward and Backward 

Tracking (FBT) 

 

I. INTRODUCTION 

Unmanned Aerial Vehicles (UAVs) have become a 

new area in aviation industry and are deployed in both 

military and civilian applications. UAVs have advantages 

of “zero” casualties, high mobility, fast deployment and 

wide surveillance scope, as well as being capable of 

deployment in extreme environments and situations. In 

particular, vehicle detection from aerial images or videos 

has become a key research topic in many areas such as 

automatic traffic monitoring, commercial aerial 

surveillance and security related tasks, etc. Normally 

UAVs are remotely controlled by an operator with a 

terminal device that receives the aerial images taken from 

the UAVs. In this circumstance the operator needs to 

monitor and examine the images/videos by themselves 

and then make the decision to control the UAVs. 

In recent years there has been increased research in 

autonomous vehicle detection and tracking by UAVs. 

One of the main challenges of the detection and tracking 
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is the target objects might change their appearance or 

reappear during the tracking process which might cause 

errors. The detection and tracking process also needs to 

handle the following various problems. First of all, the 

tracker and detector should be scale invariant to the 

targets which can reduce the errors caused by the UAVs 

changing their altitude during tracking. Secondly, the 

UAV’s flight directions change rapidly and unpredictably, 

leading the changing directions of the target’s movement. 

Thus, rotationally invariant features are needed. 

Furthermore, the illumination to the target may vary 

depending on the UAV’s flight directions and the 

shooting angles to the target. Also the images captured by 

the UAV camera may get blurred and warped so they 

need to get transformed to reduce these effects. Therefore 

the transformation invariant is needed. Furthermore, the 

background confusions and targets occlusions may exist. 

Finally, the most important issue is the detection and 

tracking process have to be real-time.  

 

Figure 1. The diagram of the proposed approach 

In this paper, we propose a method of self-learning 

UAV vehicle detection and tracking as shown in Fig. 1. 

From the input video, vehicles are detected by using the 

features extracted from Histogram of Oriented Gradients 

(HoG) [1] and Features from Accelerated Segment Test 

(FAST) [2] with Support Vector Machine (SVM) 

classifier [3]. It is assumed that the vehicle has higher 

density of corners than other objects in the environment so 

finding the distribution of corners should be the very first 

thing to narrow the area for further HoG processing. 

FAST corner detection method can quickly and accurately 

detect relevant corner points. In this system, the testing 

International Journal of Mechanical Engineering and Robotics Research Vol. 5, No. 2, April 2016

© 2016 Int. J. Mech. Eng. Rob. Res. 149
doi: 10.18178/ijmerr.5.2.149-155

mailto:X.Chen-09@student.lboro.ac.uk
mailto:Q.Meng@lboro.ac.uk


results of the Region of Interest (RoI) by using FAST 

achieved accuracy of 98.3%. The proposed method 

applied the HoG algorithm to detect the edge pattern in a 

rectangular shape which is the most obvious feature for 

vehicles. However, the HoG is not rotationally invariant 

so the proposed approach tackles this by using four 

separate orientation directions (0°, 45°, 90°, and 135°) 

into the original HoG algorithm. One of the key elements 

in the system is tracking as shown in Fig. 1. The original 

Tracking Learning Detection (TLD) in [4] can only track 

one object, the proposed approach in this paper extended 

it to track multiple targets in real-time. It is assumed that 

both detection and tracking process could make errors 

during the process so the detection and tracking processes 

should monitor each other during the process and the 

system keeps updating the detection and tracking results.  

Another difference from the original TLD algorithm is 

that a Forward and Backward Tracking (FBT) model has 

been proposed between the detection and tracking process 

to check if there are any errors in the results of each of 

detection and tracking processes. Two inspectors (positive 

and negative) have been developed for the error 

estimations which will be discussed in Sector IV-B. 

Furthermore, the FBT will also update the classification 

samples based on the tracking results for future detection 

use. There are two assumptions in the FBT. Firstly the 

FBT checks the current tracking results with the results 

from previous and following frames, also with the results 

in the current detection process. In an image frames 

sequence, the matching score between the same trackers 

should be very high when the tracker is tracking the same 

target. The FBT has a Tracked Vehicle Database (TVD) 

which stores the SIFT information about already tracked 

vehicles. If the FBT results indicated that all matching 

results between the trackers in the frame sequences are 

from the same vehicle which means the tracker is tracking 

the same object, the features of this object will then be 

checked with the results in the detection process. If they 

are very similar, this means the tracker is tracking the 

same object. On the other hand, if the vehicles being 

tracked are different from the detected vehicle, this will be 

considered as false negative error for the tracking which 

means a new vehicle has been detected and tracked, so a 

new tracker will be created for tracking the new detected 

vehicle. All these results in the FBT will be considered as 

positive samples used later in classification. Secondly, the 

other assumption of the FBT is if the tracker cannot match 

with both previous and following frames this tracking 

result will be considered as the false negative sample for 

later detection training. This approach applied Scale-

Invariant Feature Transform (SIFT) matching method in 

the tracking process because SIFT has a considerable high 

matching performance with acceptable processing 

resources requirement. In the TVD, each vehicle has its 

own SIFT points’ descriptors which will be used in the 

matching process.  

The rest of this paper is organized as follows: Section II 

is the literature reviews of the work related to vehicle 

tracking and detection. Section III introduces the vehicle 

detection method; Section IV presents vehicle tracking 

methods; Section V presents the experiments and the 

results; and Section VI concludes the paper. 

II. R  

Vehicle detection methods can be broadly divided into 

two groups which are appearance-based and motion-based 

methods. Appearance-based methods recognize vehicles 

directly from a single image and the motion-based 

methods require a set of sequenced images or frames of a 

video in order to recognize vehicles. Generally speaking, 

the appearance-based methods are more common used in 

the literature because the motion-based methods are only 

suitable in moving object detection with a stable camera. 

In this situations, where videos are captured from a flying 

UAV which means the stationary vehicles cannot be 

recognized apart from the background by the motion-

based method, so appearance-based methods were used in 

the proposed detection process. The appearance-based 

target detection are typically based on two methods, local 

object features method [5] and the sliding window method 

[6]. The local feature method always has three main 

principles: feature abstract, feature classification and 

model fitting. The main advantages of this method is to 

perceive the object feature in advance, however it is also a 

drawback which means it can only detect the already-

known feature classes. The sliding window method works 

as scanning the whole input image by a pre-set window in 

a certain size and each time the method will decide 

whether the current sub-image contains the target object 

or not. This method requires large computational 

calculations which might be a weakness for the real-time 

process. 

HoG based approach is a commonly used in the 

appearance-feature-based vehicle detection. HoG features 

are extracted by evaluating edge operators over the whole 

image and discretizing and binning the orientations of the 

edge intensities into histogram descriptors that are used 

for creating classification models. Shi et al. [7] developed 

a context-driven framework to improve the detection of 

moving vehicles. Their approach comprises three stages: 

motion detection, vehicle detection and an online road 

network estimation filter. The HoG features are used in 

cascade SVM classifiers to detect vehicles. They 

evaluated their system and obtained a positive target and 

negative background classification rate of 84.3% and 79.7% 

respectively for their detections. Gleason et al. [8] 

compared the performance of HoG feature and Histogram 

of Gabor Coefficients (HGC) features used as the 

descriptors of vehicles, it obtaining an average detection 

rate of 80%. According to the detection rate figures the 

HoG has obtained better performance. They also applied 

Harris corner detectors to identify the interest area of 

detection as they assumed that vehicles usually contain a 

large number of edges and corners.  

Point descriptor is also used in classification method 

apart from HoG which acts as an area descriptor. Sahli et 

al. [9] proposed a local feature-based approach based on 

Scale-Invariant Feature Transform (SIFT) [10]. They used 
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SIFT feature of vehicles and background to train a SVM 

classifier to create a model that was used to classify 

vehicles and background in query images. They obtained 

an accuracy of 95.2%. Comparing the detection results 

between the HoG feature and SIFT feature it apparently 

seems that SIFT feature is better. However, in terms of 

real-time detection, SIFT feature needs to use more 

computational resources especially when processing the 

whole image for small targets. In this paper, the proposed 

approach integrated feature based method and sliding 

window method by using HoG feature with a corner 

detection algorithm FAST (Features from Accelerated 

Segment Test) which can process quicker than the SIFT 

feature. Furthermore, the SIFT features have been applied 

in the tracking section because of its high matching 

accuracy and the long processing time problem has 

tackled by narrow the search area that the targets are most 

likely to appear in the tracking process.  

In object tracking, various features are used such as 

points [11], models [12], shapes [13], and motions [14]. 

This paper focuses on the methods using object points and 

their motion. Window tracking is a widely used approach 

in object tracking [15]. The tracked object is described by 

a window template which can be a sub-image or a 

histogram feature etc. In the existing tracking approaches, 

the window tracking can be divided into static template 

model [16] and adaptive model [17]. The main difference 

between them is that the template will be updating during 

the process in the adaptive model and the other is not. 

However, one drawback of the window tracking is that its 

template has limited capabilities for modelling the 

appearances of the target. In this process, an adaptive 

discriminative tracking model has proposed which the 

model template of the targets are updated continually in 

both offline and during the process. The positive results in 

the neighbourhood frames by the tracking process are 

used to be the positive training samples in the following 

detection and tracking process, similarly, the negative 

results are used as negative training samples. The update 

strategy can handle the problems of changing appearance 

of the target and short-term occlusion which is another 

problem in tracking as tracking will be affected by any 

frames lost or random similar appearances of background 

during tracking.  

Kalal et al. [4] proposed a Tracking-Learning-

Detection (TLD) approach as the solution to long-term 

tracking which built an online feature detector from the 

first frame of a single tracking target. The detector 

continuously searches the target during entire tracking 

process and generates positive and negative samples that 

can update the detector for further tracking. TLD 

approach addresses the problem of recovering the tracking 

target in the event of tracking failures but it can only track 

the area selected in the first frame by the operator. Some 

vehicle tracking approaches have used colour-based 

particle filter features [18] which produce reasonable 

tracking results. However, this method is based on 

measuring the similarity of colour distribution between 

frames, making it likely to miss-track the target when a 

similar colour from background or other object occurs.  

III. VEHICLE DETECTION 

A. Feature Density Estimation based on FAST 

The first step in Fig. 1 is The FAST detection. The 

FAST detector developed by Rosten and Drummond [2] is 

based in principle on the SUSAN corner detector [19]. 

The FAST detector classifies a pixel p as a corner by 

performing a simple brightness test on a discretized circle 

of sixteen pixels around the pixel p. A corner is detected 

at p if there are twelve contiguous pixels in the circle with 

intensities that are all brighter or darker than the centre 

pixel p by a threshold t. A score function is evaluated for 

each candidate corner in order to perform non-maximal 

suppression for the final detection where Sbright is the 

subset of pixels in the circle that are brighter than p by the 

threshold t ,and Sdark the subset of pixels that are darker 

than p by t. 

 Score (𝑝) = MAX (∑ |𝐼𝑞 − 𝐼𝑝|𝑞∈𝑆𝐵𝑟𝑖𝑔ℎ𝑡
−

𝑡,   ∑ |𝐼𝑝 −  𝐼𝑞| − 𝑡𝑞∈𝑆𝑑𝑎𝑟𝑘
)           

Having detected the FAST corner, the next step is to 

select the interest regions where have high density of the 

corner that more likely have objects where the HoG will 

be applied.  

B. Histogram of Oriented Gradients (HoG) 

The HoG feature proposed by Dalal and Triggs [1] was 

originally developed for detecting humans. The idea of the 

HoG descriptor is that the shape of the objects can always 

be identified by the distribution of the edge even without 

precise information about the edges themselves. HoG can 

be well applied in vehicle detection because edges and 

shapes of the vehicles can generally be grouped into two 

major edge orientations. These edge orientations are 

largely perpendicular; therefore this gives a common 

distribution of edge directions among vehicles. In addition, 

the HoG descriptor has more advantages as it is relatively 

invariant to geometric and photometric changes. However, 

a weakness of the HoG descriptor is that it is not 

rotationally invariant. To solve this problem, four 

different directions (0, 45, 90, 135 degrees) of each 

training samples were used in the proposed method. Each 

group of the orientated training sample has its own 

classification model and the final classification model is 

calculated based on all four of the orientated classification 

models. The extraction of a HoG feature vector starts with 

colour and gamma normalisation, then edges are detected 

by convolving the image patch with the simple mask [-1, 

0, 1] both horizontally and vertically. The image patch is 

then subdivided into rectangular regions cells, and within 

each cell the gradient for each pixel is computed. In the 

next step each pixel computes a weighted vote for the 

orientation of the cell by the gradient magnitude. Those 

votes are accumulated in to orientation bins with the range 

of 0 to 180 degrees which identify as the gradient angle 

that stored in a histogram. Local contrast normalisation is 

used to suppress the effects of changes in illumination and 

contrast with the background on the gradient magnitude. 

This step was found to be essential for better performance 

which is achieved by grouping cells into large blocks and 
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normalising within these blocks, ensuring that low 

contrast regions are stretched. Finally the normalised 

orientation histogram for each cell are collected together 

and result in a 𝑏 × c𝑥  ×  c𝑦  dimensional feature vector 

where b is the number of orientation bins and c𝑥  ×  c𝑦 is 

the number of image cells. The HoG feature vectors 

extracted from the regions of interest are imported into a 

binary classifier that determines the presence of a vehicle 

in the image patch. The method used separate SVMs to 

train on sample vehicle images that are categorised into 

four angular offsets (0, 45, 90, and 135). These four 

SVM’s models are then intergraded as a single classifier 

model that evaluates a rotationally invariant response for a 

single HoG feature vector. The Support Vector Machines 

were chosen as the learning algorithm used in 

classification as they demonstrated a very high accuracy 

in previous vehicle detection research [7].  

IV. VEHICLE TRACKING 

The proposed tracking framework designed as: Tracker 

estimates the motion of vehicle or vehicles between the 

frame sequences. Detector processes in each frame 

independently and localise the target vehicle or vehicles 

based on the training classifier. The training classifier 

updates constantly from the learning process. The learning 

component also estimates the errors of the detector which 

it can make two types of errors: the false positive and 

false negative. In addition, the learning component also 

can generate positive and negative training samples based 

on the error estimation for the future detection to avoid 

errors. It is assumed that both detector and tracker can 

make errors so FBT has been proposed to monitoring the 

performance of the tracker. By using the proposed method, 

more training samples based on the current input video 

can be generated which the classifier will be updated more 

accurate. 

A. Forward and Backward Tracking 

This method followed the TLD tracking algorithm 

based on the optical flow and extended it to track multiple 

targets. The FBT method has been proposed to monitor 

the vehicle tracking results and the detection results. The 

FBT runs in parallel with the detection and monitor the 

tracking results by setting the detection results as ground 

truth. It can also run self-check based on the prior and 

after information. 
An algorithmic description of FBT is given in Alg. 1. 

After the detection process, all detected vehicles have 

been labelled by the coordinates 𝐶𝑛
𝑓

(xn
f , yn

f ) and the image 

patches 𝐼𝑛
𝑓
 where the n is the numbers of the vehicles and 

the f is the frame numbers and 𝐼𝑛 
𝑓

also defined as the 

detector. Set 𝐹𝑡as an input frame image at time t and 𝑅𝑡
𝑛 

as the region of interest (RoI) of the detected vehicle and 

n is the numbers of vehicles have been detected. In the 

FBT, the RoI are extracted from the vehicles’ coordinates 

in the previous frame. In other word, the RoI are the 

predicted areas of the targets. The SIFT point matching 

process is conducted with the image patches of the targets 

𝐼𝑛 
𝑓

 and the predicted regions 𝑅𝑡+1
𝑛  in the following frame 

to check if the targets is appeared in their corresponding 

predicted regions with their SIFT descriptors 𝑆𝑛
𝐼  and 𝑆𝑛

𝑅 . 

The set of sequent regions define the tracking results 

Tt{R0R1 … Rt} at the time t, by representing the positions 

of the target in each frame where Tt also identified as a 

tracker.  

Algorithmically, the tracker Tt in the tracking system 

computes the similarity of the SIFT features between the 

detected vehicles’ image patches and the RoI areas. The 

detected vehicles area based on the detection of first frame 

of the video, this area is considered as a sample of the 

vehicle that is used to find matched features in the regions 

of following frames and each frame of tracking will give a 

positive or negative results. However, these results might 

be inaccurate if there is any vehicle that is similar to the 

sample vehicle. For instance, it may have the matching 

results just above the threshold or when the target exits the 

image there is a vehicle similar to the target. The proposed 

a FBT method is to solve this kind of issue. It is assumed 

that if the tracker is tracking the same vehicle in the video 

the features of that vehicle will be highly similar to each 

other. Thus, this paper compared each tracking results 

forward to the next frame and backward to the previous 

frame.If the similarity of the feature is lower than the 

threshold it considered a lost target or a target that has left 

the image. The vectors of the system interact as follows. 

Regions of interest  Rt+1
n  are selected according to the 

vehicle positions  Cn
f , the SIFT vector Sn

I  and Sn
R  are 

calculated for the  Rt+1
n  and the detected vehicles area In

f .  

Algorithm 1 The Forward and Backward Tracking 

Input: 𝐶𝑛
𝑓
 ,𝐼𝑛 

𝑓
,𝐿 

  𝑅𝑡+1
𝑛  ← generateRoI(𝐶𝑛

𝑓
) 

  for 

    Sn
I  ← SIFT  (𝐼𝑛 

𝑓
) 

    Sn+2
R  ← SIFT (𝑅𝑡+1

𝑛 ) 

  End for 

    Match (Sn+1
I  ,Sn+2

R ) ← Matching results  𝑀 

  If  𝑀 > 𝐿 

     𝑇 ∈ 𝑃   

   else 

      𝑇 ∈ 𝑁 

The SIFT vectors Sn
I  and Sn

R make a match process to 

each other if the match results is higher than the threshold 

score  L , then the tracker Tf  will be addressed to the 

position of the targets and the target areas are considered 

as the positive results P. Otherwise the trackers Tfwhich 

has highest match but not reached to the threshold L are 

considered as the negative results N. The tracked vehicle 

databases MP, MN are created to store the positive results 

and the negative results, whose results will be use in 

further tracking and detection processes. The main 

purpose of creating the TVD M  is to let the system 

continuously update the database for the detection 

classifier. For each frame the regions of interest does the 

matching process with each vehicle in positive 

memory MP.  
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In the tracking process, SIFT point matching method 

was used and each tracked vehicle has its own 

combination of the SIFT points. Firstly, a tracker 

produces a trajectory of vehicle by tracking the SIFT 

points forward in time. Secondly, the point location in the 

last frame initializes a validation trajectory which is 

obtained by backward tracking from the last frame to the 

first one. Finally, the two trajectories are compared to 

each other and if there is a significant difference between 

them the tracking results will be recorded as an error. let V 

= (It, It+1…It+k) be the sequence of frames and 𝑥𝑡 be the 

trackers points location in time t. the points 𝑥𝑡  is the 

tracked forward for 𝑘  steps. The resulting trajectory is 

𝑇𝑓
𝑘 = (𝑥𝑡 , 𝑥𝑡+1 … 𝑥𝑡+𝑘) where f stands for forward and 𝑘 

indicates the length. The purpose is to estimate the error 

of the trajectory 𝑇𝑓
𝑘  given the frame image sequence S. 

The points  𝑥𝑡+𝑘 is tracked backward from current frame 

𝑦𝑝 to the first frame and produces 𝑇𝑏
𝑘 = (𝑥𝑡 , 𝑥𝑡+1 … 𝑥𝑡+𝑘). 

The error is defined as the distance between these two 

trajectories ( 𝑇𝑓
𝑘 𝑎𝑛𝑑 𝑇𝑏

𝑘 ).  When the error occurs, the 

current tracking target will be considered as false negative. 

The main advantage of this FBT is that it can prevent 

tracking fails in the case of the moving target being faster 

than expected, or when the target is temporarily blocked 

by the environment etc. Also with this method, multiple 

targets can be tracked in the video. 

B. Self-Learning System 

This section introduces the self-learning process. The 

purposed of the self-learning is to improve the 

performance of the vehicle detection. In each frame image 

the detector(s) will be evaluated for the error estimation. 

Two different self-learning systems are included in the 

proposed approach: positive inspectors P and negative 

inspectors N. Positive inspectors are used to identify 

whether the tracker labelled as positive by the classifier 

have been recognised as negative by the detector. 

Negative inspectors are used to identity whether that 

trackers labelled as negative by the classifier have been 

recognised as positive by the detector.  

In the tracking process, let 𝑇  be a result from the 

tracker and 𝐿 be a label from 𝑌 = {−1,1}. A set of testing 

frames 𝐼  is considered as unlabeled data and the 𝑆 =
{(𝑇, 𝐿)} is considered as labelled data. The input to the 

self-learning is a labelled dataset 𝑆𝑙  and an unlabeled 

dataset 𝑆𝑢  where  𝑙 ≪ 𝑢 . The task of the self-learning 

process is to learn and update the detection classifier 𝑓 

from the labelled tracking results 𝑆𝑙  and bootstrap its 

performance by the new detection results. The detection 

classifier 𝑓  is corresponds to the estimation of targets 

from the training set with the TVD. However, there is an 

exception where is the TVD is iteratively augmented by 

the initial training samples created for the detections. The 

training process is initialized by inserting the tracking 

results to the classification set and by estimating the 

classifier parameters  𝜃 . As mentioned that the process 

proceeds iteratively and in the iteration 𝑘, the classifier 

trained in 𝑘 − 1  assigns labels to the training samples 

formed from the tracking results, 𝑦𝑇
𝑘 = 𝑓(𝑇|𝜃𝑛−1)  for 

all  𝑇𝑛 ∈ 𝐼𝑛 . Note that, the classifier can operate on 

multiple trackers at same time. Then self-learning system 

is used to verify that the labels assigned by the classifier 

are correct or not. The samples labels that violate the 

process are corrected and added to the TVD. The iteration 

is finished by retraining the classifier with the updated 

tracking results.  

The positive inspectors samples are then inserted into 

the TVD thus improve the generalization properties of the 

classifier. Negative are used to identify the trackers that 

have been labelled as negative by the classifier but the 

detector labelled as positive. The negative samples then 

extend the pool of the TVD which improve its 

discriminative properties of the classifier. Based on the 

proposed theory, the errors between the tracker and the 

detector have been analysed. In the classifier f, the errors 

will be characterised by false positives α (f) and false 

negatives β (f). Let the 𝑛𝑐
+(𝑓) be the number of training 

samples for which the label was correctly changed in the 

TVD and 𝑛𝑖
−(𝑓) is the number of samples for the labels 

that was incorrectly changed in the TVD. The error of the 

classifier will be: 

α(K + 1) =  𝛼(𝑘) −  𝑛𝑐
−(𝑓) + 𝑛𝑖

+(𝑓)    

β(K + 1) =  β(𝑘) −  𝑛𝑐
+(𝑓) + 𝑛𝑖

−(𝑓)    

The quality of the checking process is characterized by 

four measures. P-true is the number of correct positive 

samples divided by total number of results. P-false is the 

number of correct positive samples divided by the number 

of false negatives; N-true is the number of correct 

negative samples divided by number of results. Finally the 

N-false is the number of correct negative samples divided 

by the total number of false positives. It is assumed here 

that the self-learning are characterised by fixed measure 

throughout the training. The number of correct and 

incorrect results then expressed as follows: 

𝑛𝑐
+(𝐾) = 𝑅+ β(𝑓),  𝑛𝑖

+  
(1−𝑃+)

𝑃+  𝑅+β(𝑓)    

𝑛𝑐
−(𝐾) = 𝑅− α(𝑓),  𝑛𝑖

−  
(1−𝑃−)

𝑃−  𝑅−α(𝑓)     

In the real-time, it might be not possible to identify all 

the error between the detectors and trackers. Therefore, 

the training cannot converge to all the tracking results. 

There is another scenario that assuming if the detection 

result is incorrect which can leads the tracking process 

track the wrong target. Also in the tracking process, 

occlusion issue is a key problem that causes tacking error. 

These problems can be tackled by the proposed FBT 

process.  

V. EXPERIMENTS AND RESUTLS  

This paper used 5 different videos under certain 

circumstances to test the proposed system. They are aerial 

videos captured by UAV to detect vehicles on a highway. 

The five videos contain different scenarios including 1) 

Complex background, 2) Vehicle occlusion, 3) Blocked 

vehicles, 4) Blurred vehicles and 5) Changing vehicle size 

and appearance. This paper compared the proposed 
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approach with several other different methods in vehicle 

detection in the experiment including HoG [8], SIFT [10] 

and PLS Hough [20]. It also compared with tracking 

algorithms including original TLD [4], STRUCK [21] and 

CoGD [22]  

A. Detection Results 

To test the performance of the detection, the detection 

rate on correctly identifying regions that contain vehicles 

in the entire testing videos have been evaluated. Assuming 

that for each frame t the number of positive detections is 

indicted by 𝑃𝑡 and the number of ground-truth vehicles is 

indicted as 𝑁𝐺
(𝑡)

, the detection accuracy is calculated as: 

Detection accuracy =  
∑ 𝑃𝑡

𝑁𝑓𝑟𝑎𝑚𝑒𝑠
𝑡=1

∑ 𝑁𝐺
(𝑡)𝑁𝑓𝑟𝑎𝑚𝑒𝑠

𝑡=1

            

TABLE I.  DETECTION RESULTS 

video HoG SIFT 
PLS 

Hough 
SLTD 

Video 1 89.90% 70.14% 70.52% 94.06% 

Video 2 80.17% 70.96% 74.21% 91.86% 

Video 3 73.43% 74.18% 67.15% 97.27% 

Video 4 82.21% 93.01% 75.33% 97.03% 

Video 5 75.09% 96.05% 97.91% 94.06% 

Avearage 80.16% 80.87% 77.02% 94.86% 

 

The Table I shows the comparison of vehicle detection 

results using  several  methods.  The result  shows that  the  

proposed system obtained better  detection  accuracy  than 

others: 0.9486 across all the video dataset.  

B. Tracking Results 

To perform this tracking experiment, the same testing 

videos as used in the previous vehicle detection 

experiment have been used. For each frame, the number 

of correctly tracked vehicles was considered as True 

Positives (TP), the number of background regions that 

were incorrectly classified as vehicles was considered as 

False Positives (FP), and the number of vehicles that were 

missed in detection was considered as False Negatives 

(FN) were recorded. The tracking results are calculated by: 

𝐹1 = 2 ×
𝑃𝑅

𝑃+𝑅
               

where 𝐹1 is a harmonic mean of precision 𝑃 and recall 𝑅. 

𝐹1 gives a value in the interval (0, 1) with a larger value 

corresponding to a higher classification rate. The Multiple 

Object Tracking Accuracy (MOTA) metric propose [10] 

was used to measure an accuracy score that considers the 

number of missed detection, the false positive rate and the 

mismatches between tracker and the vehicles. Table II 

shows the tracking comparison results. Note that the 

tracking comparison only evaluated the tracking 

performance on single vehicle in TLD, this is because the 

TLD can only track single target and other methods used 

10 vehicles for tracking test. The result shows that the 

SLTD achieved the best score in each video and matched 

the performance of the original TLD for single vehicle 

tracking while SLTD has the advantage of tracking 

multiple targets.  

TABLE II.  TRACKING RESULTS 

Video CoGD STRUCK TLD SLTD 

Video 1 1.00/1.00/0.97 0.23/0.23/0.57 0.94/0.94/N/A 0.97/0.98/0.99 

Video 2 1.00/0.99/0.98 1.00/1.00/0.95 0.86/0.77/N/A 0.89/0.83/0.90 

Video 3 1.00/1.00/0.99 0.84/0.84/0.88 1.00/0.95/N/A 1.00/1.00/0.98 

Video 4 0.72/0.92/0.88 0.26/0.21/0.37 1.00/0.94/N/A 1.00/1.00/0.99 

Video 5 0.85/1.00/0.93 0.88/0.88/0.90 0.93/0.83/N/A 0.95/1.00/0.95 

The performance measured by Precision/Recall/MOTA 

VI. CONCLUSIONS 

This paper proposed a Self-Learning Tracking 

Detection method for vehicle detection and tracking from 

UAV video. This method has solved a problem in vehicle 

detection and tracking where the training samples are 

taken from other vehicles that are different from the 

vehicles in testing. The appearance of the vehicle in the 

captured video is affected be the attitude, speed and the 

image resolutions of UAVs. The proposed method can 

learn the vehicle features and created a unique detection 

model for each vehicle during the tracking process. A 

Forward and Backward Tracking mechanism was 

proposed to check the errors from the tracking and 

detection process. The proposed method demonstrated a 

reasonably high accuracy and can successfully detect and 

track a variety of differing vehicle types under varying 

rotation, sheering and blurring conditions. Notice that the 

proposed method in this paper is inspired by the TLD 

algorithm and the compared tracking results have shown 

that the proposed method can achieve higher tracking 

accuracy than the TLD under some complex 

circumstances such as occlusions and blocked vehicles in 

a complex background. This paper also compared the 

proposed approach with other tracking and detection 

approaches by using 5 different videos captured from 

UAVs in different situations. The results show that the 

proposed approach has slightly better performance. For 

the future work a larger and more diverse datasets with 

more varieties of vehicles and background will be used to 

train the system in order to improve the classifier for 

initial detection in order to perform better learning model 
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in the tracking process. Also, the lerning component could 

be improved by revising the error checking part between 

the detector and tracker.  
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