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Abstract—This paper presents an automation approach 

towards the detection and classification of cracks on bridge 

surfaces using a robot platform. The approach is designed 

to exploit the physical features of cracks and is therefore 

capable of overcoming the challenges that traditional crack 

detection approaches are faced with. The approach adopts 

the Beamlet and Wavelet Transforms in the realization of a 

robust crack segmentation scheme. The Radon transform is 

coupled with the Projection Variance towards the extraction 

of crack features which facilitates a high specificity even in 

the presence of noise and texture irregularities. Finally, in 

order to render all this information useful and applicable 

towards the maintenance of bridges, a classification scheme 

is proposed which classifies cracks into non-crack, simple 

crack and complex crack categories. The classification 

scheme is realized through an AdaBoosted RVM 

implementation that achieves a high classification accuracy 

and generalization. This detection and classification system 

is deployed on the six-legged robot platform designed to 

operate semi-autonomously on bridges. The performance of 

this scheme is verified through comparison experiments 

with state-of-the-art and the experimental results indicate 

that the proposed scheme achieves effective results while 

outperforming some of the state-of-the art in terms of 

accuracy and classifier training time.  

 

Index Terms—crack detection, crack classification, 

AdaBoost-RVM, image processing 

 

I. INTRODUCTION 

Bridges are designed to bear large traffic volumes and 

within the lifetime of a bridge, it is subject to cumulative 

damage from adverse weather conditions, drastic weather 

changes as well as the wearing effect of the motor 

vehicles that traverse almost incessantly in certain cases. 

The expiration of certain components of the bridge's 

structure could also compound and further escalate this 

degradation process. If left unchecked, this degradation 

results in a compromise of the integrity and load-bearing 

capacity of the bridge which could ultimately lead to a 

collapse. This bears strong economic implications and 

hence motivates the periodic inspection of bridges in an 

attempt to efficiently deduce their physical conditions and 

carry out necessary and timely maintenance operations. 

Such routine inspections and maintenance operations in 

themselves have posed life-threatening situations to 

maintenance personnel due to the locations and structures 
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of most bridges. Machine vision and robotic vision have 

offered opportunities in the automation of these processes. 

Cracks are arguably one of the most important indicators 

of the physical integrity of bridges and tapping 

information from cracks has been the goal of most 

machine vision systems that have attempted to offer 

solutions within this problem domain. Through image 

preprocessing, segmentation and detection, traditional 

machine vision has attempted to offer solutions to this 

problem. The solutions are broadly categorized into 

online and offline approaches. While offline approaches 

have had no time constraints, they have had the 

advantage of relying on much denser computational 

mechanisms which have boosted their accuracies whereas 

in online approaches, time constraints are present and 

hence there is usually a trade-off between accuracy and 

processing time. Regardless which category of 

implementation is undertaken, crack detection and 

classification has been riddled with challenges that have 

stemmed from its reliance on machine vision. These 

challenges include but are not limited to uneven 

illumination, texture inhomogeneity on the bridge surface, 

low reflectivity in regions where cracks occur leading to a 

reduction in the intensity of crack pixels and hence, 

leading to a sharp contrast between crack and background 

pixels. 

From a morphological point of view, cracks could be 

regarded as linear structures whose physical 

representations derive from the joint actions of the 

variations in the load that the bridge surface bears, as well 

as the uneven structural strength which results from the 

structural design. 

II. RELATED WORK 

Regardless the application domain, all systems that 

attempt to extend machine and robotic vision towards 

inspection tasks can be broadly grouped and termed as 

Computer-aided Inspection. Computer-aided inspection 

has drawn considerable attention from the research 

community and its progress and evolution has been 

widely documented over the decade. Numerous surveys 

have covered the topic with some outstanding ones being 

seen in [1]-[5]. A key component of these systems is the 

approach they take towards imaging. While some 

implementations have relied upon depth imaging [6], 

others have continued to adopt intensity imaging due to 

its ease of implementation as well as its relatively lower 
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computational complexity, compared with range imaging. 

Intensity imaging algorithms have greatly relied upon 

various signal processing techniques which include but 

are not limited to Gabor Filters [7], morphological 

operations [8], [9] and the Wavelet Transform [10]-[12]. 

In [10], the Wavelet Transform is adopted in reducing the 

impact of noise while the Otsu thresholding is applied 

towards the segmentation of cracks. This approach 

proved effective in situations where noise was quite 

minimal, whereas performance became unstable with an 

increase in noise. This unstable performance is explained 

by the fact that the approach fails to take into account the 

physical features of cracks such as shape features which 

could offer increased robustness in segmentation. In a bid 

to boost segmentation performance, some algorithms 

have proposed to segment the frame itself in multiple 

smaller sized frames through implementation with a 

sliding window, after which crack segmentation is 

applied independently to each sub-frame. An example of 

such a segmentation scheme is seen in [13]. Generally 

speaking, segmentation performance is significantly 

higher in such schemes but performance is still far from 

ideal. The major drawback with such segmentation 

schemes is attributed to the fact that manual tagging of 

crack samples is usually required and this has the 

potential of introducing subjective errors into the overall 

performance. Henrique and Correia presented a crack 

identification scheme based on algebraic computation of 

probability in [14]. This approach was capable of 

accounting for the horizontal and vertical directions of 

cracks as well as their standard differential features. 

However, this scheme depended excessively on prior 

information which rendered it incapable of handling the 

various shapes that cracks could assume owing to its 

inability to guarantee generalization. Based on digital 

image processing techniques, another approach is 

presented in [15] towards surface distress detection in 

pavements. This approach also relied excessively on 

traditional image processing techniques while failing to 

incorporate robust features into its framework. All these 

approaches have shown effective performances as well as 

certain drawbacks that both merit further research and 

investigation. 

Based directly upon the physical features of cracks, a 

crack detection and classification approach is proposed 

for implementation in automated bridge inspections 

III. AUTOMATED BRIDGE CRACK DETECTION AND 

CLASSIFICATION 

A. General Overview 

The proposed approach discussed here in this paper is 

sub-divided into six computational stages as illustrated in 

Fig. 1. 

The original colour images from the bridge surface are 

acquired by means of the single RGB camera mounted 

onboard the six-legged spider robot.  Since the proposed 

approach makes no use of colour information, the image 

is converted to gray-scale and passed on to the 

preprocessing stage, stage 2. Taking into account that 

cracks manifest themselves within high-frequency 

regions in the image, the Fourier High-Pass and Gaussian 

High-Pass filters are applied in boosting the contrast and 

highlighting the cracks within the image while discarding 

lower frequency components in a discriminative manner. 

The Beamlet transform is at this point applied in the third 

stage towards a segmentation of cracks, based on the 

physical features of cracks. At the fourth computational 

stage, the Wavelet and Radon Transforms together with 

the Projection Variance are applied in extracting features 

that are representative of cracks and then passed along 

into stage 5 where classifier training is conducted. While 

we do not claim novelty in proposing the Adaboost-RVM 

classifier, the major contribution of this paper is its 

combination scheme between the AdaBoost and the RVM 

and also how the resultant AdaBoost-RVM is applied 

towards classifier training and classification in stages 5 

and 6 respectively. In stage 6, crack images are classified 

into non-crack, linear and complex categories. 

 

Figure 1.  Flow chat illustration of the proposed scheme. 

B. Image Acquisition 

As illustrated in the Fig. 2, the entire bridge crack 

detection and classification system is implemented upon a 

six-legged spider robot. The entire platform is 

multidisciplinary and the scope of this paper will only be 

limited to the imaging, crack detection and crack 

classification components. The bridge surface images are 

acquired with and RGB camera that is mounted on the 

side of spider robot at an angle of 90° to the bridge 

surface. The position of the camera is selected, taking 

into the account the various gaits that the spider applies in 

movement so as not to occlude the surface of the bridge 

at any point in time. The acquired images from the 

camera are transferred to the onboard computing platform 

via an RS485 communication link. It is necessary to 

mention here that, in the paper, the bridge surface refers 

to both the top-facing and bottom-facing surfaces of the 
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bridge as the spider robot is equipped with suction cups, 

designed to enable it maneuver both on top and 

underneath the bridge. 

 

Figure 2.  The image acquisition platform built upon the six-legged 
spider robot where: (1) RGB Camera; (2) Computer Platform 

Embedded into the robot; (3) Suction Cups equipped on each foot of the 
robot. 

C. Image Preprocessing 

The original input image acquired by the RGB camera 

is riddled with redundant and in some cases, information 

that bears no application potential. We treat all this 

information as noise and hence there is the need to 

remove them while also highlighting the crack 

information. First and foremost, the proposed algorithm 

has no need for the colour information which is present 

within the original image. The first stage in preprocessing 

is therefore to convert the original image into gray-scale. 

In order to highlight the crack information while 

dimming all other information, it is crucial to understand 

the physical nature of cracks and how they manifest 

within an image. Firstly, the gray values of cracks tend to 

be much higher than those of the surrounding pixels due 

to the sharp changes that occur at the boundaries where 

cracks connect with the rest of the image. It is therefore 

deducible that in the frequency domain, crack pixels 

should be positioned at relatively higher frequencies. This 

motivates our selection of the Fourier high-pass filter in 

the first preprocessing step. The effect of the filter is a 

sharpening of the image contrast and a highlighting of the 

cracks that may be present within the image. A feature of 

noise within the input image is a manifestation ringing or 

otherwise referred to as wavy effects within and around 

the central frequency region of the image. The second 

preprocessing stage therefore adopts the Gaussian high-

pass filter which attenuates these central frequency 

components and further boosts the contrast of the input 

image. 

(a) (b) (c) (d)  

Figure 3.  Comparison of (a) the original image and Gaussian Filter 
output with (b) D0=0.002 , (c) D0=0.08, (d) D0=0.8 

The quality of the Gaussian Filter output is strongly 

dependent on the Gaussian width parameter as well as its 

lower cutoff frequency, which we represent as D0. We 

establish this relation by presenting the original gray-

scale image along with Gaussian filter results with some 

selected lower cutoff values shown in Fig. 3. 

D. Crack Segmentation 

The task of target segmentation is perhaps one of the 

most fundamental problems associated with machine 

vision. In adopting this machine vision technique towards 

crack detection, traditional approaches have essentially 

focused on gray threshold segmentation due to its 

implementation simplicity and high efficiency. However 

such approaches rely heavily upon local features in order 

to achieve the segmentation result and this has rendered 

them inefficient in the presence of significant amounts of 

noise. This limitation of gray threshold segmentation has 

been noted by recent literature that has attempted to 

propose solutions to the flaws existent in tradition 

techniques. Note-worthy attempts are seen in [10] and [13] 

where sliding windows are applied in sub-dividing the 

original image into sub-windows after which 

preprocessing of each sub-window is conducted, followed 

by the extraction of features for the training of neural 

networks towards the detection of cracks within each sub-

window. Although such approaches have managed to 

overcome to some extent, the limitations of gray 

threshold segmentation, they fail to take into account the 

shape features of the cracks they attempt to detect and 

hence, in the presence of uneven illumination and 

complex background textures, segmentation performance 

rapidly deteriorates. 

In this paper, the Beamlet transform is adopted towards 

the segmentation of cracks. The Beamlet transform was 

originally introduced as a multi-scale image analysis tool 

in [16]. The transform has been shown to have the 

capability of computing a line's position, direction and 

magnitude within an image while also being robust to 

noise. Given an nxn pixel image containing two points 

and a line segment, referred to as a beam, as illustrated in 

Fig. 4(a), dividing the image into 
20 logm n   sub-

images yields 2

2( log )O n n  beamlets as illustrated in 

Fig. 4(b). 

(a) (b)  

Figure 4.  (a) A beam through pixel points with their corresponding 
weights (b) Resulting beamlets of various scales and orientation. 

The Beamlet transform function, fT , of the 2-

dimensional function, 
1 2( , )f x x  , is defined in [10] as: 

( ) ( ( )) ,f E
b

T b f x l dl b B            (1) 

where BE represents a collection of all present beamlets. 

In the context of digital images, the Beamlet transform is 
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defined as the line integral in the discrete domain. This is 

formulated as: 

1 2 1 2( ) ( , ) ( , )
b

T b f i i i i           (2) 

where, 
1 2( , )f i i  represents the gray values of the pixel 

1 2( , )i i , while 
1 2( , )i i  represents the weight of each 

pixel. The interested reader is referred to the original 

work in [16] for a much detailed discussion of the 

Beamlet transform. 

After the image has been passed through the 

preprocessing phase, a threshold value is obtained for the 

extraction of the binary image. In order to cut down 

computational load and time, we adopt a fixed window 

size of 16x16 pixels in order to constrain the total number 

of beams for each image to a maximum of 2( )O n . The 

Beamlet transform is then applied to each 16x16 sub-

window after which each sub-window's Beamlet 

maximum value is compared with the previously selected 

threshold value. Sub-windows that have maximum values 

larger than the threshold are retained while all others are 

discarded. In this manner, the beam lengths reflect the 

crack lengths within each sub-window. The selection of 

the threshold value is therefore crucial in determining the 

accuracy of the Beamlet crack segmentation. Fig. 5 

presents segmentation results with different threshold 

values. 

(a) (b) (c)  

Figure 5.  Beamlet Segmentation results with threshold values of (a) 

3 (b) 5, (c) 7 

E. Feature Extraction 

Here in this paper, we assume that cracks assume 

irregular physical representations and are composed by a 

linear combination of pixels. The irregularities present 

within the physical structures of cracks make it possible 

to apply the Wavelet transform towards the extraction of 

representative features. As earlier stated, the pixels that 

make up cracks are linearly connected and this 

establishes a premise for the adoption of the Radon 

transform, coupled with the Directional Projection 

Variance in extracting features that establish the direction 

of cracks within the target image. This proposed feature 

extraction scheme is illustrated in Fig. 6. 

 

Figure 6.  Crack feature extraction scheme. 

In our feature extraction scheme, firstly, a two-

dimensional scaling function is applied to the gray-scale 

image, represented as f(x,y). A one-dimensional Discrete 

Wavelet Transform (DWT) is then computed for the 

resulting image, column by column. Through an iteration 

of this decomposition process, a multi-scale Wavelet 

transform is achieved. The percentage of high-amplitude 

wavelet coefficients (HAWCP) within the image 

represents the total number of pixels present within a sub-

band. It is represented as: 

/8 /8

0 0

( )
8 8

W L

p q
HAWCP

W L

 




 
            (3) 

where W and L represent the width and length of the 

gray-scale image respectively. The three-dimensional 

wavelet coefficient modulus can be obtained through a 

computation of the standard deviation of the wavelet 

coefficients. This computation can be obtained as 

2 2 2

3 3 3 3( , ) ( , ) ( , ) ( , )M p q HL p q LH p q HH p q     (4) 

The Radon transform [17] has proven highly efficient 

in the extraction of linear features. Due to linear 

combination of pixels that make up cracks, the transform 

is applicable towards the extraction of crack features. The 

Radon transform along a line can be represented as 

( , ) (( sin cos ),( cos sin ))Rf s f t s t s dt    



    (5) 

 

Figure 7.  Radon transform results of (a) a sample without cracks (b) a 
sample with a simple crack, (c) a sample with a complex crack. 

After applying the Radon transform to the gray-scale 

image, peak values are obtained in regions of the image 

where linear features are present. The corresponding α 

and s represent the direction and position of these features 

364

International Journal of Mechanical Engineering and Robotics Research Vol. 4, No. 4, October 2015

© 2015 Int. J. Mech. Eng. Rob. Res.



within the image. We establish this relationship between 

the Radon transform and cracks in the Fig. 7. 

Finally, at the feature extraction phase, the projection 

variance is applied. The projection variance has the 

capability of providing information on the position of the 

crack within the image, in relation with the horizontal and 

vertical axes. The projection variance along the 

horizontal and vertical axes are respectively formulated 

as: 

2

1 1

1 1
( ) ( )

N N

N N

H H Hy y
D I y I y

 

 
  

 
      (6) 

2

1 1

1 1
( ) ( )

N N

N N

V V Vx x
D I x I x

 

 
  

 
       (7) 

The two parameters, 
HD  and 

VD  represent the rate 

of change of the crack along the horizontal and vertical 

axes respectively. Here also, we establish this relationship 

between cracks in the image and their projection variance. 

This relationship is illustrated in Fig. 8.  

 

Figure 8.  Establishing the relationship between cracks in (a) the gray-
scale image and the projection variance along (b) the horizontal 

direction and (c) the vertical direction.  

In Fig. 8, the projection variance of a gray-scale image 

with a single crack is computed. Due to the direction in 

which the crack is inclined, it is seen that the projection 

variance in the horizontal direction has sharply rising 

peaks while the corresponding vertical projection 

variance exhibits no such significant peaks. 

Since in this paper, we attempt to not only detect 

cracks within the bridge surface images but to also 

classify these images into categories namely non-cracks, 

simple cracks and complex cracks, we establish the 

relationship between the features we extract at this stage 

and the three categories into which images will be 

classified. Towards achieving this, 90 bridge surfaces 

image samples are collected and manually labeled. The 

samples are collected such that there are 30 sample 

images for each of the three categories. The features 

presented in Fig. 6 are computed for all image samples 

and the average results are presented in Table I. 

TABLE I.  ESTABLISHING THE RELATIONSHIP BETWEEN THE 

EXTRACTED FEATURES AND CRACKS WITHIN THE SAMPLE IMAGES. 

Feature 

Vector 

Samples 

Non Crack Simple Crack Complex Crack 

HAWCP 0.4052 1.072 1.1258 

Max 12.8904 71.6273 89.0890 

Radial 0.3597 0.3842 0.2643 

Theta 0.6278 0.9778 0.5889 

DH 1.2563 71.3544 27.6186 

DV 1.2625 2.3975 31.9323 

F. Classifier Training  

In this paper, cracks are classified into three categories 

based on the physical features of the crack. In order to 

achieve such a multi-class classification scheme, we 

adopt and implement an Adaboost-RVM classifier. Some 

literature [18]-[20] have presented implementation 

schemes in which the SVM has been applied towards 

distinguishing defects from pseudo-defects in steel 

structures. Compared with the SVM, the RVM possesses 

a high generalization capability which enables it to more 

effectively identify and classify samples for which it has 

not yet been trained. This inspires our selection of the 

RVM for our application since the bridge surface presents 

a broad spectrum of surface textures. Attempting to train 

a classifier for all texture possibilities could increase the 

training and classification times, thereby adversely 

affecting the online performance of the algorithm.  

The Adaboost algorithm originally proposed in [21] 

offers a scheme in which the RVM classifier can be 

boosted quite efficiently due to the simple interface of the 

RVM classifier itself. Adaboost requires no prior 

knowledge nor learning process and this signifies that 

boosting is achievable without a trade-off between 

classification accuracy and training time. The scheme 

through which a combination between the RVM and 

AdaBoost is achieved is as follows. 

 Given a training set,
1{(x , y )}N

i i i
,where 

{ 1,1}iy   , assign a label 
ix  to the correct class. 

 Assign the initial distribution of the training set: 

1

1
(i)D

N
  

 Train the RVM classifier: : { 1,1}th X  
 

with 

1,2,3,...,t T . 

 Compute the errors of the distribution tD   of the 

RVM classifier: 

1
( ( ) ) ( )( ( ) )

t

N

t D t i i t t i ii
P h x y D i h x y


    . 

  Compute the weight of the RVM classifier: 

11
ln

2

t

t

t






 
  

 
 

 Update the training set: 

t

1

( )exp( ( ))
( ) t i t i

t

t

D i y h x
D i

Z





 ; where tZ  

represents the normalized constant. 

 Enhance the classifier through: 

1
( ) ( ( ))

T

t tt
H x sign h x


   
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Once this Adaboosted RVM multi-class classifier has 
been achieved, non-cracks, simple cracks and complex 

cracks are labeled as 
1{ }A n

i ix 
, 

1{ }B n

i ix 
and 

1{ }C n

i ix 
 

respectively with corresponding class labels of A, B and 
C. 

IV.  EXPERIMENTAL RESULTS 

Experiments are conducted with the six-legged robot 

on actual bridge surfaces in an attempt to evaluate the 

online performance of the proposed approach. The robot 

platform was deployed to acquire 200 bridge surface 

images. Out of the total 200 sample images acquired, 

manual labeling established that 92 were non-crack 

samples, 76 contained simple cracks and the remaining 

32 contained complex cracks. 

A cross validation is conducted with another 100 

samples for each training and testing instance. The 

images were acquired in RGB at a resolution of 256x256. 

The algorithm testing results are presented in Table II. In 

order to validate the efficiency and accuracy of the 

proposed approach, a comparison is conducted with 

Adaboost, RVM, BP Neural Network and Prior 

Mathematical Modeling.  

 
Figure 9.  The six-legged spider is deployed on actual bridge surfaces 
in order to acquire image samples for the validation of the performance 

of the proposed classification approach. 

 
 

Testing 

Instance 
Accuracy (%) 

Processing 

Time (s) 
Weak Classifiers 

1 93.5 32.3 3 

2 95.1 35.6 4 

3 94.7 36.4 3 

 
 

Classifier Accuracy 

(%) 
Training 

Time (s) 
Processing 

Time (s) 
Adaboost 87.8 643.4 24.5 

RVM 83.7 71.8 5.3 
BP Neural 
Network 88.5 1.022.4 34.7 

Prior 

Mathematic
al Modeling 

82.1 - 5.6 

Proposed 

Approach 94.8 713.8 26.7 

 

To the best of our knowledge, at the time of these 

experiments, there are still no conventional datasets 

available for bridge crack classification and hence, these 

comparison experiments are conducted with images that 

are acquired with the six-legged robot platform as 

illustrated in Fig. 9. A total of 200 images are applied in 

these validation experiments and the results are presented 

in the Table III. 

V. CONCLUSIONS 

In this paper, a crack detection and classification 

scheme is presented for the application of bridge 

maintenance. The proposed approach is implemented on 

a six-legged spider robot which is designed to operate 

semi-autonomously on bridge surfaces. Although crack 

detection and classification is a well studied area and the 

Adaboost-RVM has been applied to this problem prior to 

this paper, this paper addresses the problem by presenting 

a new way by which crack features can be extracted 

through the Wavelet and Radon transforms as well as the 

projection variance. This paper also discusses the topic of 

crack detection and classification on bridges using actual 

images captured by the spider robot while maneuvering 

the bridge surface. This allows for a practical presentation 

and discussion of the problem as well as the challenges 

that accompany deployment. The presented classification 

scheme is tested in experiments and the obtained results 

have shown that the approach performs efficiently with a 

high classification accuracy and a low processing time. 

This confirms that indeed this approach is feasible in 

applications that require real-time classification of cracks. 

The proposed approach in this paper is also compared 

with state-of-the-art. This comparison is conducted on 

real images acquired by the spider robot. Comparison 

results have shown that the approach achieves a 

significantly higher accuracy in classification compared 

with state-of-the-art. While the training and processing 

times are slightly higher in some cases, the overall 

processing time is still small enough, making this 

approach applicable in real-time applications. The high 

accuracy in classification that the proposed approach 

achieves is attributed to the crack detection and 

segmentation schemes that take into account the physical 

features of cracks 

REFERENCES 

 
 

[2] J. B. C. Eduardo, “Review of automated visual inspection 1983-
1993, Part I: Conventional approaches,” SPIE, vol. 2055, pp. 128-

158, 1993. 

[3] J. B. C. Eduardo, “Review of automated visual inspection 1983-
1993, Part II: Approaches to intelligent systems,” SPIE, vol. 2055, 

pp. 159-172, 1993. 

[4] S. N. Timothy and K. J. Anil, “A survey of automated visual 
inspection,” Computer Vision and Image Understanding, vol. 61, 

pp. 231 - 262, 1995. 

[5] N. M. Elia, G. M. P. Euripides, Z. Michalis, P. Laurent, and D. L. 
Jean, “A survey on industrial vision systems, applications and 

tools,” Image and Vision Computing, vol. 21, pp. 171-188, 2003. 

[6] A. Landstrom and M. J. Thurley, “Morphology-based crack 
detection for steel slabs,” IEEE Journal of Selected Topics in 

Signal Processing, vol. 6, pp. 866-875, Nov. 2012. 

[7] J. P. Yun, S. H. Choi, B. Seo, C. H. Park, and S. W. Kim, “Defects 
detection of billet surface using optimized gabor filters,” in Proc. 

World Congress, South Korea, 2008, pp. 77-82. 

366

International Journal of Mechanical Engineering and Robotics Research Vol. 4, No. 4, October 2015

© 2015 Int. J. Mech. Eng. Rob. Res.

[1] R. T. Chin and C. A. Harlow, “Automated visual inspection: A 
survey,” IEEE Trans. on Pattern Analysis and Machine 

Intelligence, vol. PAMI-4, pp. 557-573, Nov. 1982.

TABLE II. EVALUATION RESULTS OF THE PROPOSED ADABOOST-
RVM CLASSIFICATION APPROACH FOR BRIDGE CRACK SAMPLES.

TABLE III. EVALUATION RESULTS OF THE PROPOSED ADABOOST-
RVM CLASSIFICATION APPROACH IN COMPARISON WITH SOME STATE-

OF-THE-ART



 

 

 

 

 

 

 

 

 

  

  

 
 

 

 

 

 

 

 

 

 

 

 

367

International Journal of Mechanical Engineering and Robotics Research Vol. 4, No. 4, October 2015

© 2015 Int. J. Mech. Eng. Rob. Res.

    

 

  

   

  

 
  

  

       

 

  
        

 
 

  

 

  

  
  

    

  

  
  

    

   
 

  

    
    

 

  

       

  

 

       

  
   

 

   
 

  

 

 

 

 

     

   

 
 

   

   
 

 

  

  

  
 

   

 

  

 

 

 

[8] M. R. Yazdchi, A. G. Mahyari, and A. Nazeri, “Detection and 
classification of surface defects of cold rolling mill steel using 

morphology and neural network,” in Proc. International 

Conference on Computational Intelligence for Modelling Control 
Automation, 2008, pp. 1071-1076. 

[9] D. Lee, Y. I. Kang, C. Park, and S. Won, “Defect detection 

algorithm in steel billets using morphological top-hat filter,” in 
Proc. Automation in Mining, Mineral and Metal Processing, 

Vienna, 2009, pp. 209-212. 

[10] E. Salari and G. Bao, “Pavement distress detection and 
classification using feature mapping,” in Proc. IEEE International 

Conference on Electro/Information Technology, 2010, pp. 1-5. 

[11] P. Y. Jong Y. Pil, C. Sung Hoo, J. J Yong, C. C. Doo, and W. K. 
Sang, “Detection of line defects in steel billets using undecimated 

wavelet transform,” in Proc. International Conference on Control, 

Automation and Systems, Seoul, 2008, pp. 1725-1728. 
[12] J. J. Yong, P. Y. Jong, S. H. Choi, and W. K. Sang, “Defect 

detection algorithm for corner cracks in steel billet using discrete 

wavelet transform,” in Proc. ICCAS-SICE, Fukuoka, 2009, pp. 
2769-2773. 

[13] X. Guoai, M. Jianli, L. Fanfan, and N. Xinxin, “Automatic 

recognition of pavement surface crack based on BP neural 
network,” in Proc. International Conference on Computer and 

Electrical Engineering, Phuket, 2008, pp. 19-22. 

[14] H. Oliveira and P. L. Correia, “Automatic road crack detection 
and characterization,” IEEE Trans. on Intelligent Transportation 

Systems, vol. 14, pp. 155-168, March 2013. 

[15] A. Ouyang, C. Luo, and C. Zhou, “Surface distresses detection of 
pavement based on digital image processing,” in Proc. Computer 

and Computing Technologies in Agriculture IV, Normal, IL, 2011, 

pp. 368-375. 
[16] D. L. Donoho and X. Huo, “Beamlets and multiscale image 

analysis,” in Multiscale and Multiresolution Methods, T. J. Barth, 

T. Chan, and R. Haimes, Eds., Springer, 2002, pp. 149-196. 
[17] J. Radon, “On the determination of functions from their integral 

values along certain manifolds,” IEEE Trans. on Medical Imaging, 

vol. 5, pp. 170-176, Dec. 1986. 
[18] P. Y Jong, H. P. Chang, B. H. Moon, H. Hwawon, and C. Seho, 

“Vertical scratch detection algorithm for high-speed scale-covered 
steel BIC (Bar in Coil),” in Proc. International Conference on 

Control Automation and Systems, Gyeonggi-do, 2010, pp. 342-345. 

[19] C. C. Doo, J. J. Yong, P. Y. Jong, W. Y. Sung, and W. K. Sang 
“An algorithm for detecting seam cracks in steel plates,” World 

Academy of Science, Engineering and Technology, vol. 6, pp. 

1459-1462, 2012. 

[20] J. J. Yong, C. Sung Hoo, P. Y. Jong, P. Chang Hyun, and W. K. 
Sang, “Detection of scratch defects on slab surface,” in Proc. 11th 

International Conference on Control, Automation and Systems, 

Gyeonggi-do, 2011, pp. 1274-1278. 
[21] F. Yoav and E. S. Robert, “A decision-theoretic generalization of 

on-line learning and an application to boosting,” Journal of 

Computer and System Sciences, vol. 55, pp. 119-139, 1997. 
 

Yao Yeboah received the B.Eng. in the field 

of electronic information engineering from the 
Huazhong University of Science and 

Technology, Wuhan, China in 2011 and the 

M.Eng. from the South China University of 
Technology, Guangzhou, China in 2013. He is 

currently pursing his Ph.D. in the Department 

of Electrical and Computer Engineering, 
School of Automation Science and 

Engineering, South China University of 

Technology. His research interests include pattern recognition, 
intelligent systems and robotic vision.  

 

Wei Wu received the Ph.D. degree in the field of control theory and 
control engineering from the Huazhong University of Science and 

Technology, Wuhan, China in 2000. He is currently a professor in the 

School of Automation Science and Engineering of South China 
University of Technology, Guangzhou, China. His research interests 

include intelligent control systems, robotic control and engineering, 

pattern recognition and intelligent systems. 
 

Wang Junjie received the M.Eng. in control theory and control 

engineering from the South China University of Technology, 
Guangzhou, China in 2013. His research interests include machine 

learning, artificial intelligence and machine vision for robotic 

applications.  
 

Zhu L. Yu received the BSEE in 1995 and the MSEE in 1998, both in 

electronic engineering from the Nanjing University of Aeronautics and 
Astronautics, Nanjing, China and the Ph.D. in 2006 from Nanyang 

Technological University, Singapore. He joined the Center for Signal 
Processing, Nanyang Technological University in 2000 as a research 

engineer, then as a Group Leader. In 2008, he joined the College of 

Automation Science and Engineering, South China University of 
Technology, China. He was promoted to be a full Professor in 2009. His 

research interests include signal processing, machine learning, computer 

vision and applications in biomedical engineering and robotics. 

 




