
A Human-Inspired Real-Time Grasp Force 

Selection Policy Based on Load-Grip Force 

Coupling 
 

Michael Stachowsky, Julie Vale, Hussein A. Abdullah, and Medhat Moussa 
University of Guelph, Guelph ON, Canada 

Email: {mstachow, jvale, habdulla, mmoussa}@uoguelph.ca 

 
 

 

Abstract—A robotics grasp force setpoint determination 

policy based on coupling the load force (at the robot's wrist) 

to the desired grasp force (at the contact points) is presented. 

The policy can handle, online, changing load forces, and is 

able to assist in the prevention of slip and the safe grasping 

of objects with unknown mass, rigidity, and friction 

properties. Experimental results show that the policy is 

capable of handling unanticipated mass changes in real time 

with appropriate choice of controller parameters.  

 

Index Terms—grasp force determination, precision grasping, 

load-grip coupling 

 

I. INTRODUCTION 

An important problem in robot grasping is estimating 

the grasping force required to immobilize an object. If the 

task is a simple pick and place and the object's shape, 

mass, and surface friction are known, the problem is well 

studied and generally considered to be solved (see, for 

example, [1], [2]). If the object is unknown but is rigid, a 

recent crop of compliant grippers (for instance [3]-[5]) 

have shown great promise in executing a grasp with 

proper grasping forces. The problem becomes more 

difficult if the object is non-rigid and has an unknown 

shape and frictional characteristics; for example, grasping 

a slippery, permanently deformable fruit, such as a 

strawberry. The robot must choose the grasping force so 

that it neither drops nor crushes the object. This problem 

is wide spread in food processing and agricultural 

applications where robots are being developed to perform 

various fruit harvesting tasks. Since fruits are nonuniform 

and can be easily damaged by inappropriate choices of 

grasping forces, fruit harvesting robots have had 

challenges picking fruit without damaging them [6], [7].  

In a recent work, we developed a strategy for 

regulating grasping forces on nonrigid, fragile objects 

with constant mass [8]. However, robots may encounter 

many scenarios in which object properties change during 

a grasp. For instance, consider filling a paper cup with 

water. Although the initial grasping force may have been 

sufficient to grasp the cup, it is difficult to estimate the 

exact mass of the water being poured into the cup at any 

given time. Thus it becomes difficult to estimate the 

desired grip force as the water is being poured. The issue 
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is further complicated if the cup is a crushable paper cup. 

It is not acceptable to simply grasp with the maximum 

possible grip force at the beginning of the task (which 

may be appropriate for, say, grasping a rigid object in a 

power grasp to ensure grasp stability), since we must 

avoid crushing the cup.  

To that end, the problem addressed in this paper is how 

to choose a grasping force when grasping a non-rigid 

object where its mass is unknown, and can change during 

the grasp. This also includes the case where the mass 

remains constant but the center of mass changes. We 

briefly note that the choice of grip force is often a distinct 

problem from the actual control of those forces. 

Physically controlling the forces is the act of ensuring 

that the desired and actual grip forces agree. In this work, 

we focus solely on the choice of desired grip forces 

because, in the absence of a priori object knowledge, this 

problem is nontrivial, difficult, and relevant to robots 

operating in unstructured environments. 

II. PRIOR WORK 

Romano et al. [9] were able to mimic human mechano-

receptors to predict grasping forces during contact; 

however, their grasp force estimation was based on 

heuristics dealing with contact speed and forces, and did 

not include any on-line estimation of object properties. 

Some methods of grasp force estimation, for instance [10], 

[11], and early work by Cutkosky [12], propose that the 

estimation of grip force or friction properties can be 

performed by observing a signal based on object motion 

within the hand. Although these approaches are useful 

during a slip, they require grasp quality to degrade before 

any corrective action is taken.  

Yussof et al. 

estimation and control of tangential (frictional) grasping 

forces using shear force sensors and advanced estimation 

algorithms. Both solutions were able to handle the task of 

filling a crushable cup with water under uncertainty, 

although they did not control grasping forces directly.  

From the above review, several open problems remain. 

First, it is not clear how to use the object's interaction 

with the hand to choose an appropriate gripping force. 

Second, although many researchers have studied the 

problem of adjusting desired grasping forces in response 

to slip, it is not clear how to prevent slip by adjusting grip 

forces. 

336

International Journal of Mechanical Engineering and Robotics Research Vol. 4, No. 4, October 2015

© 2015 Int. J. Mech. Eng. Rob. Res.
doi: 10.18178/ijmerr.4.4.336-342

[13] and Wettels [14] both worked on 



We propose a policy based on the use of load-grip 

coupling to select grasping forces. This approach is 

particularly suitable for grasping fragile, uncertain objects 

and objects whose mass changes during a grasp. Our 

policy ensures that the desired grasp force increases as 

needed. The policy has several features that, to the best of 

our knowledge, are not present in the literature: 

 It increases the desired grasp force to a 

constrained maximum value based on the mass of 

the object and expected friction properties. 

 It can handle unexpected changes in object mass 

by directly adjusting the desired grasping forces in 

real-time. 

III. PROPOSED APPROACH 

A. Motivation from Human Grasping 

Research into human grasping has shown that humans 

are able to couple the load force (i.e., the force required 

to lift the object) with the grip force (i.e., the force 

required to keep the object stationary in the hand). As the 

object lifts, more of its weight is shifted to the hand, 

which increases the load force until liftoff occurs, at 

which point the load force becomes constant. This 

increase in load force causes a simultaneous increase in 

grasp force. When humans encounter a new object, they 

use this load-grip force coupling to determine when 

grasping force becomes sufficient [15]. This operation is 

performed in real-time during the time it takes to 

complete the Lift-and-Hold task [16].  

To compensate for inertial loads that are generated, 

coupling between loading and grip forces occurs during 

gross arm motion. This suggests that grip force and load 

force are not controlled independently and that “the basic 

coupling of the forces is a prerequisite for the sensory 

motor mechanisms that control adaptation of the fingertip 

forces" [17]. Further, it seems that the load-grip force 

ratio is an important variable in controlling the forces 

during a grasp. In essence, this ratio is related to the 

expected friction properties between the fingers and the 

object [18]. 

By using similar load-grip coupling structures as are 

present in the human sensorimotor system, a robot will be 

able to enhance its ability to grasp under uncertainty. 

B. Using Object/Robot Interaction for Grasp Force 

Choice 

A common approach to selecting the desired grip force 

in robot grasping is to do so offline, or to simply not 

control grip force altogether. This is a type of open-loop 

grip force selection that works in many cases where the 

object is rigid, friction characteristics and mass are 

known, or where it is acceptable to use a power grasp, 

which is typically a more stable grasp [19].  

However, the above review of human grasping shows 

that in cases of uncertainty, when dealing with 

permanently deformable objects with time-varying mass, 

or where a precision grasp is required (for instance, if 

high dexterity or manipulation is necessary for future task 

requirements), a feedback structure is more appropriate. 

In closed loop, the object's interaction with the hand is 

used to inform the choice of grip forces, enabling a 

greater degree of reactivity in the grasp force controller. 

Fig. 1 shows this structure conceptually. 

 

Figure 1. Feedback control structure 

Another key benefit to using a feedback structure is 

that it alleviates the need to preprogram the task variables, 

which may vary considerably and unpredictably. A 

feedback structure enables a robot to handle many similar 

possibilities without the need for continual 

reprogramming. In this paper we develop a closed-loop 

approach that uses the load force sensed at the robot's 

wrist to select the grip force applied at the fingers during 

the grasp in order to leverage the benefits of feedback 

control. 

C. Theoretical Preliminaries 

In order for an object to be in a stable grasp two 

conditions must be met [20]: 

 The sum of forces and torques acting on the object 

must be zero. 

 The tangential contact forces must be within the 

friction cone at the point of contact. 

In this work we assume that the object is in a grasp that 

can be stabilized by an appropriate choice of grasp forces 

without crushing the object, but that the final desired 

grasp forces are unknown. The goal, then, is, given a 

specific grasp, to choose contact forces that satisfy the 

two conditions given above. Recall that we would like to 

use the load force to inform our choice of grip force, so 

let us investigate that relationship. To that end, define 𝐹𝐿 

to be the load force, measured at the wrist, m be the mass 

of the object, and 𝐹𝐺𝑃  be the desired grip force for the 

fingers.  

After the robot has made contact with the object, but 

before the lift begins, the robot will apply some small 

grip force in order to maintain contact. As the object lifts 

from the table, the load force will increase until one of 

two possible scenarios occurs: 

 if 𝐹𝐺𝑃  is sufficient to lift the object, 𝐹𝐿 will 

continue increasing until 𝐹𝐿 = 𝑚𝑔, at which point 

liftoff will occur and 𝐹𝐿will become constant, or 

 𝐹𝐺𝑃 is not sufficient to lift the object and at some 

point during the lift 𝐹𝐿will overcome the force of 

friction. At this point, termed incipient slip, 𝐹𝐿 will 

stop increasing and its derivative will equal zero. 

To justify this further, consider that the 𝐹𝐿 is, in fact, 

due to the reaction forces due to fingertip/object friction. 

In general, the load forces are related to this friction force 

by: 

𝐹𝐿 = [𝑅1, 𝑅2, … 𝑅𝑛][𝐹1,𝐹2, … 𝐹𝑛]
𝑇

    (1) 

where 𝐹𝑖 = [𝑓𝑖,𝑥 , 𝑓𝑖,𝑦, 𝑓𝑖,𝑛𝑜𝑟𝑚𝑎𝑙]
𝑇

 is the contact force at 

contact location 𝑖, with 𝑓𝑖,𝑥 and 𝑓𝑖,𝑦 being caused only by 
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friction forces. 𝑅𝑖  is a rotation matrix that rotates the 

contact forces at contact location 𝑖  into the coordinate 

frame of the load force sensor [20].  

Note that the friction forces will do one of two things: 

either they will balance the load forces or they will reach 

some maximum dictated by the coefficient of friction. It 

is well known that, once sliding occurs, the friction forces 

become relatively constant with respect to velocity. Thus, 

during a slip, the load forces will become relatively 

constant (or reduce) and it is not possible to distinguish 

between the case of stable grasping and the case of slip. 

Notice how in both cases the derivative of the load 

force becomes zero, so it is not obvious to a grasp force 

controller whether this happened due to lifting or due to 

incipient slip. Fig. 2 shows this behaviour for two 

representative scenarios: one in which the lift force is 

sufficient to hold the object, and one in which slip occurs 

during lifting. 

 

Figure 2. Wrist force response 

Note: the negative wrist force indicates that the robot hand was initially 
pushing the object into the table slightly and is simply an experimental 

artifact. 

The question now becomes how to choose grip force 

based on load force in order to avoid this ambiguity. 

Since the robot does not have any information about the 

final value of the load force, a naive approach would be 

to select a grip force that is directly proportional to 𝐹𝐿 . 

However, during slip, a proper response is to increase the 

grip force, not to allow it to remain constant or to drop. 

Similarly, a delay would not be sufficient, since the drop 

in load force would still be applied, albeit after the delay 

period, which is not desirable. To combat this, we suggest 

filtering 𝐹𝐿 through a low-pass filter. The benefit of using 

such a filter is that the filter output will increase with 𝐹𝐿; 

however if 𝐹𝐿  levels out, the output of the filter will 

continue to increase for a short time. If the leveling off 

was due to slip, the increase in grip force can stop the slip, 

and the load force should continue to increase. On the 

other hand, if the leveling off was due to the object being 

in a stable grasp, a reasonable choice of filter parameters 

will ensure that the slight increase in grip force that 

follows will not cause a crushing problem. Thus, by 

closing the loop between the object's interaction with the 

hand and the grip force, and by designing an appropriate 

controller for the feedback system, we can prevent slip in 

situations where it otherwise would have occurred, as 

well as handle uncertainty. 

D. Choosing Desired Grip Forces Using Load-Grip 

Coupling 

Recall that our approach is motivated by human 

grasping. Humans use the ratio between the load force 

and the grip force, 𝐾𝐿 , to assist in the choice of 

appropriate grasping forces [21]. We have already 

established in Section III. B that using 𝐾𝐿  as a simple 

gain by which to multiply the load force will not be 

sufficient to prevent slip; instead we propose a first order 

low-pass filter. Let 𝜏be an as yet unselected time constant 

and consider the filter 

𝑲𝑳

𝝉𝒔+𝟏
    (2) 

which will filter the load force to produce a desired grip 

force. This filter has both of the desired qualities stated 

above. First it enables us to choose a grip force that, in 

steady-state, is proportional to the load force by a factor 

of 𝐾𝐿. Second, if the load force levels off the output of 

the filter will continue to increase for a brief time, which 

we have established can be used to prevent slip.  

We now turn to the question of how to select 𝐾𝐿 and 𝜏. 

A typical value of 𝐾𝐿used by humans is approximately 

1.3, although this can vary widely depending on the 

object mass and friction properties and the intended use 

of the object [21]. In Section V.A we will show a series 

of experiments that justifies that a choice of 𝐾𝐿 = 1.3 is 

also appropriate for robot grasping. It should be noted 

that adapting 𝐾𝐿  online to changing friction conditions 

would be desirable and more general, but that is beyond 

the scope of this paper. 

The time constant of the filter, 𝜏, must be chosen so 

that it is neither too fast nor too slow. If 𝜏 is chosen to be 

too fast, the filter will act like a gain, which we have 

already established is undesirable. If 𝜏 is chosen to be too 

slow then the grip force will not increase fast enough to 

respond to the load force increase during lifting, and slip 

may occur.  Once again we can turn to previous research 

on human grasping. Humans are able to increase the grip 

force due to a slip response in under 100ms [22]. Using 

this figure as the rise time required by the filter, we can 

use the well-known rise-time equation ( 𝑇𝑟𝑖𝑠𝑒 ≈ 2.2𝜏 , 

where 𝑇_𝑟𝑖𝑠𝑒  is the rise time) to determine that a 

reasonable choice of 𝜏 is 𝜏 ≈ 0.05. This value is used for 

the experimental setup in this paper. 

Although it is intuitive to discuss the filter in 

continuous time, the robot will be operating in discrete 

time. To that end it is beneficial to re-derive the filter 

equations in discrete time. Let k be the current time step, 

𝐹_𝐿[𝑘] be the current sample of the load force, 𝐹𝐺𝑃[𝑘]be 

the current sample of the grip force and ℎ be the sampling 

time of the robot. We use the bilinear transform to obtain 

the following discrete-time version of this filter: 

𝐹𝐺𝑃[𝑘] =
𝐾𝐿ℎ

ℎ + 2𝜏
[𝐹𝐿[𝑘] + 𝐹𝐿[𝑘 − 1]] −

ℎ − 2𝜏

ℎ + 2𝜏
𝐹𝐺𝑃[𝑘−1] 

(3) 

E. Required Grasp Quality and Multifingered Grasping 

A fundamental assumption in this paper is that 

increasing the grip force will not destabilize the grasp. 

Ideally, then, each contact point would have its own value 
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of 𝐾𝐿  corresponding to both local friction and local 

contact geometry, as well as predicted directions of 

external wrenches that are applied to the COM. We 

maintain that this is impractical
1
. In the absence of any of 

this information, we must set the value of 𝐾𝐿 to be equal 

for all fingers and refine the above assumption to 

assuming that there is a maximum load force below which 

the increase of grip forces will not destabilize the grasp. 

Since no further information is available about the object, 

the extension of this algorithm to the case where multiple 

fingers are in complex contact with the object must 

reduce to using the same value of 𝐾𝐿for all contact points. 

IV. EXPERIMENTAL SETUP 

A prototype multi-fingered, under-actuated hand was 

designed and built at the University of Guelph and was 

used for all experiments. It is controlled by a Digilent 

ChipKit Max32 microcontroller, which is responsible for 

reading the tactile sensors and encoders and for 

controlling the grasp. Each finger has three Flexiforce 

sensors embedded into each of its three phalanges. The 

fingers are capable of changing resistance from between 

1MΩ -100Ω , and read forces from 0.1N-10N. Normal 

forces at the contact locations were measured at a sample 

rate of 50Hz. A Proportional-Derivative (PD) controller 

was used to actuate the fingers based on the desired grip 

force. 

The hand is attached to the robot's wrist through a 

Loadstar Sensors iLoad digital load cell, which is 

sampled at 100Hz and capable of sensing a load of 3Kg. 

The entire assembly is attached to a Fanuc LR Mate 

200iC-5L 6 Degree of Freedom (DOF) robot arm.  

Five objects were used for the study. The first is a ripe 

tomato, which has low friction skin and is easily damaged. 

The second, a boiled egg, also has low friction skin. The 

third was a muffin, which can be easily crushed. The 

fourth is a rigid ball, which was used to determine the 

policy's ability to prevent slip. These first four objects 

were used to test the policy against different object 

object is a paper cup that was filled with water after it 

was lifted. The final two objects were used to test the 

policy's ability to handle changing grasp conditions. 

 

Figure 3. The experimental objects with varied surface properties. From 
the left: tomato (mass 150g), egg (mass 75g), muffin (mass 175g), ball 

(mass 120g) 

                                                           
1
 If all of this information were available, then the amount of available 

information would be equivalent to having full object knowledge and 

thus the well-studied techniques of [20] could be used. 

For all experiments, a two-finger pinch grasp was used. 

In particular, the contact points were chosen to be 

antipodal across the point where the object had maximum 

radius. According to [20], this grasp is force closure 

under minimal assumptions on contact friction for these 

objects. In order to control the grip forces once they were 

determined by the algorithm, a PD controller was used to 

regulate the maximum force applied to the object. The 

gains 𝐾𝑃 = 3 and 𝐾𝑑 = 5 were arrived at experimentally. 

V. EXPERIMENTAL RESULTS 

Three experiments were run for this study: 

 Lifting food items with varying 𝐾𝐿  to justify the 

choice of 𝐾𝐿 = 1.3 

 Testing the policy against a scenario in which slip 

is known to occur, in order to determine slip 

prevention properties. Also, testing the policy 

against a simpler proportional controller in this 

slip-prone scenario for comparison 

 Filling a crushable cup with water to test the 

policy's ability to handle unplanned object mass 

changes. 

A. Experiment 1: 𝐾𝐿 Validation 

A preliminary experiment was run with the food items 

(tomato, egg, muffin) in order to explore possible ranges 

for 𝐾𝐿 , and to determine if our estimate of 𝐾𝐿 = 1.3 , 

which was drawn from human grasping literature, could 

easily be used for a robot grasping task. The food items 

are challenging in that they have low friction and are 

permanently deformed by too high a grip force. Thus we 

can experiment with them to determine the minimum and 

maximum values of 𝐾𝐿 that are appropriate, and attempt 

to generalize to other objects. 

The experiment proceeded in three rounds: one for the 

tomato, one for the egg, and one for the muffin. For each 

item, the value of 𝐾𝐿 that was used during a particular test 

was chosen from a range between 0.1 and 5.0, in 

increments of 0.2. Experiments were carried out five 

times per object per value of 𝐾𝐿, and a “safe" value of 𝐾𝐿 

was determined as a value for which the object was safely 

grasped all five times. Slippage is defined as the object 

being ejected from the grasp after the lift is complete. 

Object damage is defined as visible, permanent 

deformation as observed by the experimenter. Once the 

object was damaged at one set of grasping locations it 

was rotated for subsequent experiments if possible (hence 

the choice of axially symmetric objects). The range of 

values for 𝐾𝐿 were chosen based on an approximate range 

of human values of 𝐾𝐿 from [21]. 

The food item was placed on a table in front of the 

robot, and the robot hand was moved into a position to 

grasp it in a two-finger pinch grasp. The robot was 

commanded to close the hand and regulate the grasping 

forces to a low value of 0.5N in order to begin the test. 

The item was lifted vertically by the robot, during which 

time the load-grip coupling policy would regulate the 

desired grasping force. After the lift, whether the object 

slipped from the hand, was in a stable grasp without 

damage, or was damaged, was recorded. 
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The results are summarized in Table I. For brevity, 

wrist and grasp forces are not shown for this experiment. 

TABLE I: RESULTS FROM FOOD LIFTING 

𝐾_𝐿 Result 

0.1-1.0 All slip 

1.0-1.6 All safe 

1.6-2.0 Muffin damage 

2.0-5.0 Tomato damage 

>5.0 Egg damage 

 

Above 𝐾𝐿 = 1.0, no slip was observed in any of the 

subsequent trials for any object, so a large range of 

potential values for 𝐾𝐿  could be chosen. Research into 

human grasping has shown that humans tend to add a 

safety factor to their estimates of 𝐾𝐿 in order to account 

for uncertainty, so choosing 𝐾𝐿 = 1.0, the minimal value 

that did not lead to slip, would potentially mean that the 

safety factor is not ensured. As a result, we have chosen 

the value used in the remainder of these experiments to 

be 1.3, which allows for this safety factor to be included.  

Surprisingly, the egg was the most durable object; 

likely because it was hard boiled, which made it stronger. 

The muffin was the most fragile object, so we choose an 

upper bound on 𝐾𝐿 to be 1.6.  

We acknowledge that choosing 𝐾𝐿 experimentally may 

not work in all scenarios. Specifically, it is possible that 

there are objects for which 𝐾𝐿 = 1.3 will cause either slip 

or crushing. Thus an adaptive approach to the choice of 

𝐾𝐿 , which is beyond the scope of this work, may be 

beneficial. For all remaining experiments, a value of 

𝐾𝐿 = 1.3 was used. 

B. Experiment 2: Evaluating Slip Prevention 

In this experiment a rigid ball was placed on the table 

and the robot grasped it with a force that was 

experimentally chosen to be too low to lift the object - 

every time a constant force was tried with this insufficient 

grip force the grasp would end in a slip. This set-up is 

identical to the one used to cause slip in Section III. 

The ball was grasped by the hand with the insufficient 

grip force and the load-grip coupling policy was turned 

on. Ten trials were run for this experiment, and the final 

state of the ball (whether in the hand or ejected) was 

recorded. 

A second experiment was then performed to determine 

if a simpler proportional controller would be sufficient to 

stop slip in this scenario. The procedure for this controller 

was identical to that for the load-grip coupler that used a 

first order filter. In order to ensure a direct comparison, 

the lift was completed five times with both the 

proportional controller and first order filter. 

For both experiments, 𝐾𝐿 = 1.3 was used. 

When our load-grip coupling policy is enabled, the lift 

stabilizes as the grip forces increase along with the wrist 

forces. Fig. 4 shows typical results, with and without the 

load-grip coupling policy operating. All ten lifts ended in 

a stable grasp. 

This experiment clearly demonstrates that, when using 

load-grip coupling, slip can be prevented despite an initial 

choice of grasping forces that was too low.  

 

Figure 4. Load-grip stabilization 

The pure proportional controller was then used. The 

results are summarized in Table II: 

TABLE II: COMPARISON OF SUCCESS RATES 

Algorithm Result 

Proportional 3/5 success 

Filter 5/5 success 

 

The pure proportional controller was able to lift the 

object only 60% of the time. This is due to the presence 

of slip in the beginning of the grasp. Since the initial grip 

force is not sufficient, some grasps resulted in an initial 

slip, which the pure proportional controller was unable to 

correct. This is because in an initial slip, when wrist force 

decreases so too does the proportional control output 

(reaching a minimum of the initial grip force). However, 

we have shown that the filter is able to prevent that initial 

slip by not responding immediately to any potential 

decreases in wrist force. 

It is, of course, likely that a higher initial grip force 

would remove this problem entirely for this specific 

object. However, we have argued in Section I that 

choosing an initial grip force for every object that is 

sufficient to lift it is not feasible, which is why we have 

advocated a reactive approach in the first place.  

C. Experiment 3: Handling Continuous Changes in 

Mass 

The paper cup was placed in the hand, which was held 

stationary above the table. The load-grip coupling policy 

was activated, and the grasp forces stabilized for the 

empty cup. 

After the grasp forces stabilized, 75mL of water was 

poured into the cup in approximately 1 second by the 

experimenter. The human in the experiment allowed us to 

test whether small random variations in pouring speed 

affected the algorithm's ability to compensate. The 

amount of water was chosen arbitrarily. The wrist forces 

and grasp forces were recorded during the pour, and the 

state of the cup (whether crushed, slipped, or safely 

grasped) was recorded. The experiment was repeated ten 

times. 

Fig. 5 shows a typical profile of the wrist force sensor's 

response to the cup being filled with water. In each of the 

ten trials that were carried out the cup remained in a 
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stable grasp without crushing, implying that the results 

obtained were repeatable and confirming that slight 

variations in pour speed had no impact on the algorithm's 

ability to stabilize the grasp. 

To evaluate the effect of the proposed policy we 

conducted a second experiment where an open loop 

approach was used. The grip forces from this experiment 

are overlaid on those in Fig. 5. The grip force was held 

constant at approximately the final value encountered 

during the previous experiment. This experiment also 

resulted in a stable grasp and was used to ensure that 

appropriate choice of grasping force could indeed lead to 

a stable grasp without experimentation if the final mass 

was exactly known. 

 

Figure 5. Continuous mass change 

VI. SUMMARY AND FUTURE WORK 

In this paper we presented a policy for computing 

desired grasp force using a load-grip force coupling 

controller. The policy uses the load forces sensed at the 

wrist to select gripping forces at contact points. 

Experimental results with fragile food items show that a 

large range of load-grip ratios could be used to safely 

grasp. Experimental results with an object whose mass 

changes in an unplanned way during the grasp have 

shown that the policy is robust to such changes.  

The proposed policy is based on the principles of 

closed-loop feedback control and therefore did not 

require learning or training; furthermore, the policy is 

capable of handling changing grasp conditions in real 

time. We have shown that an unplanned change in mass 

is handled reactively, which underscores the usefulness of 

using a closed-loop system. By allowing the object's 

interaction with the hand to inform the choice of grip 

forces, we can alleviate the difficulty of pre-programming 

all grasping scenarios that can be encountered in rich, 

unstructured environments. 

We note that this policy does not grantee a stable grasp. 

If the contact configuration is inherently unstable given 

the object shape and COM, then this policy will fail. To 

that end, we intend to use this controller as a base layer 

for a robust grasp control system. This additional layer of 

robustness could, for example, be equipped with a 

learning system that can record mass and friction 

properties of various objects and use that to estimate grip 

forces for other novel object/grasp configurations. As 

well, an online slip detection system can terminate grasps 

before failure and signal that new contact locations are 

necessary.  

The gain 𝐾𝐿 = 1.3 was chosen based on the average 

load-grip force ratio that humans use and experiment with 

a low friction, crushable object. However, since 𝐾𝐿  is 

related to mass and friction properties, it should be tuned 

to suit the object and its surface friction characteristics. In 

the future a second layer of control could be used to 

adjust 𝐾𝐿  if necessary. We further assume that each 

contact point must use the same value of 𝐾𝐿.  

Finally, although the policy was only tested with a 

single DOF force sensor, there are no limitations on the 

number of DOF that can be used. For example, a six DOF 

force sensor, sensing both forces and torques at the wrist, 

would provide the robot with the ability to undergo rapid, 

gross arm movements or to perform more advanced 

manipulation tasks, including twisting. In this paper, 

however, inertial loads were assumed to be negligible, 

mainly due to an inability of the experimental apparatus 

used to move fast enough to provide such loading. We 

leave the further testing of the algorithm to future work, 

but note that the appropriate response to inertial loads is 

the same as the response to loading due to gravity. 
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