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Abstract—Nowadays, although Model Predictive Control 

has been interested in stabilizing systems, it mainly 

considered terminal equality constraints method by adding 

a terminal – state penalty into the cost function (i.e finite 

predictive horizon). But up to now there is no any law to 

find a terminal – state penalty. The Twin Rotor MIMO 

systems (TRMS) is a nonlinear object with a complex 

dynamic. This paper offers a method which differs one 

based on the Bellman’s dynamic programming for stably 

tracking of bilinear continuous systems with infinite 

predictive horizon instead of controlling stably and uses 

continuous model directly instead of non-continuous 

approximate model. This method is built basing on variation 

of optimal control and apply to control TRMS. 

 

Index Terms—Twin Rotor MIMO System (TRMS), stability, 

dynamic programming, variation method, stably tracking 

model predictive control 

 

I. INTRODUCTION 

Optimization of the model predictive control is a 

problem that is researching by many scientists. Until now, 

it was mainly used line search methods with finite 

predictive horizon for solving to optimize the model 

predictive control [1], [2], because these methods are 

quite favorable for contrainted optimal problems. 

Moreover, there have few other optimization methods as 

Levenberg-Marquardt or trust region. However, all above 

methods were only used for finite predictive horizons. 

Therefore, these do not ensure the global optimization. So, 

the system is hard to be stable [3]. 

The dynamic programming method is an effective one 

for solving optimal problems in multivariable with 

ensuring the global of the optimal solution. Currently, 

this method is just applied to solve the optimal problem 

for linear systems with constant parameters or parameters 

changing over time. In [4], we applied the dynamic 

programming method to solve the optimal problem for 
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systems with state-dependent state-space model as the 

TRMS. However, in this article, we studied only the 

stable control problem, and did not consider the stably 

tracking control problem. Based on the stability control 

method for a bilinear system built on the Bellman 

dynamic programming [4], in this paper, we will present 

the tracking model predictive control method to get 

desired output and an infinite predictive horizon for 

bilinear continuous systems by using the variation 

method. 

II. CONTROL ALGORITHM 

Consider a bilinear system MIMO with the same input 

and output signals, presented by continuous model: 

           
( ) ( )

( )

 




A B

C

x x x x u

y x x
                     (1)

 

where  mRu are vector of m  the input signals, 

 mRy  are vector of m  the output signals, and  nRx  

are vector of n  the state variables. ( ),  ( )A Bx x  and 

( )C x   are state dependent matrices. In general, the model 

(1) has n m . 
Assuming that the system is controlled by the model 

predictive controller with the interval 1 k k kT t t  of 

predictive horizon which is also the sample time signal. If 

kT  is small enough, the matrices ( ),  ( ),  ( )A B Cx x x  can 

be approximated by constant matrices: 

( ) ,  ( ) ,  ( )  k k kA A B B C Cx x x            (2)
 

when 1 k kt t t . An in this case, the system can be 

approximated by a linear model with constant parameters:  

 




k k

k

A B

C

x x u

y x
                           (3)

 

Let refy  be the sample output signals that system must 

follow. Assume that the sample signals are constants (or 

299

International Journal of Mechanical Engineering and Robotics Research Vol. 4, No. 4, October 2015

© 2015 Int. J. Mech. Eng. Rob. Res.
doi: 10.18178/ijmerr.4.4.299-303

Model Predictive Control to Get Desired Output 



may be segment constants) as well as under the influence 

of constant signals, state feedback closed-loop system (3) 

will tend to the steady state, with steady state ex , i. e, 

constant signals  0ex , and input signals are also in 

steady state. Now, the established values of this system 

will satisfy:  

 




0n k e k e

ref k e

A B

C

x u

y x
                      (4) 

Hence, we get a system of n m equations with 

unknowns n m :  ,e ex u as follows: 

  
     

   

0nk e k e
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x u

yx

   
           

0nk k e
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1
    

             

0ne k k

refe k
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C

x
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                                (5)

 

This system allow us to find the steady state values 

 ,e ex u  from the sample output signals refy . Put  

  ex x  and   eu u . Since  ,e ex u  are constant 

vectors, and in (3) and (4), we have the  equivalent model 

in transitional process as the following: 

  k kA B                        (6)
 

In order to design model predictive control for the 

continuous system (1) to get stable tracking, i.e., 

 refy y , we will control the system (6) to achieve 

   0ex x  and    0eu u  by using the 

optimal control method LQR for the translated step of 

the k th  predictive horizon with the infinite predictive 

horizon. That means, we minimize the objective function

 
      1

( ) .
2



  
k

T T
k k k

t

J Q R dt               (7)

 

where ,  k kQ R  are two arbitrary symmetric positive 

definite  matrices, which can be changed at each 

translated step of the predictive horizon. 

Using the variation method to find solution *  of the 

optimal problem in transitional process, given by (6), (7). 

We will have [5]: 

1   T T
k k k k k k k k k kL B R B L L A A L Q         (8 )

 

and  

 * 1 1    T T
k k k k k k eR B L R B L x x            (9)

 

From these, we get optimal control signals: 

* *( ) ( )  et tu u  
với 

1 k kt t t        (10) 

for bilinear continuous systems (1) in the current 

predictive horizon. 

Summarily, model predictive control with infinite 

predictive horizon to apply for bilinear continuous 

systems (1), will work well with an algorithm including 

iterative steps as follows: 

Algorithm: The state feedback model predictive 

control so that the output signals track the reference for 

bilinear continuous systems with an infinite predictive 

horizon.   
1. Choose the appreciate symmetric positive definite 

weight matrices ,k kQ R . Take 0 0t  and 0k .  

2. Sample kx  and approximate ( ), ( ), ( ) A x B x C x by
 

, ,k k kA B C  as (2). 

3. Determine  ,e ex u  from refy  by (5). 

4. Find kL  
that is a symmetric positive semidefinite 

solution of Riccati equation (8). 

Find *  corresponding kL  by (9), then find *u  from 

(10). 

5. Choose 1kt  so that 1( )
1 

k k kA t te  with 

1  T
k k k k k kA A B R B L . Put *u  as the input of (1) in the 

interval 1 k kt t t  and assign : 1 k k  , then go back 

to step 2. Here, kQ  and kR  are the arbitrary weight 

matrices, which can be changed at each step of the 

translation of the predictive horizon, i. e they depend on 

k  such that the solution of the optimal problem satisfies 

the bounded condition 

  R                              (11) 

with   is the given upper bounded value whereas 

   0ex x . In [6], we can find a law to change   

,k kQ R   in  which kR  decreases and the bounded 

conditions (11) are satisfied or kQ  increased with respect 

to k  (i.e., with respect to the translation of the predictive 

horizon) 

Moreover, to  set up the algorithm, we have to use a 

method for solving the Riccati equation (8). We can find 

some methods to seek kL  effectively in [5]. 

A model predictive control working in the way of this 

algorithm was illustrated Fig. 1. This close-loop system 

works basing on the state feedback principles and is not a 

discrete system. In each control horizon with a infinite 

width  ,k , *( )tu  are used to control the plant only in 

an sample time interval 1 k kt t t . Thus, we denote 

*( )tu  instead of * ( )k tu . In the whole control proccess, 

control signals ( )tu  will be a sequence of continuous 

signals *( ), 0,1,...ku t k Therefore, this close-loop 

system is one of the sampled data systems [1].  

Stability of a sampled data system are given in the 

following theorem. 

Theorem: If , ,  0,1,  k kQ R k are symmetric 

positive definite matrices and sample time 

0 1 20,  ,  ,  t t t  are chosen, such that:   

 
 

 

k k

k

A B

C
                            (12)
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do not degrade k  and 

           1( )
1 

k k kA t te                    (13)
 

where 1  T
k k k k k kA A B R B L , then with the model 

predictive control is proposed in Fig. 1, we 

have  refy y .  

 

 

Figure 1. Model predictive control for bilinear continuous systems with 
infinite predictive horizon 

Proof: With the moldel predictive control described in 

the algorithm, kL  is the symmetric positive semidefinite 

solution of the Riccati equation (8), which always is 

updated after each translated step of the predictive 

horizon. So, in fact, it will change with respect to k , and 

we denote L  instead of kL .  

Evidently, with the supposition (12), we can show that 

( )t  is bounded and ( )  0t , where ( )t  is the state 

error trajectory in the whole time axis, which is obtained 

by connecting all sub-trajectories in each predictive 

horizon (figure 1).   

Now, we consider the k th  predictive horizon. 

Because ,k kQ R  are symmetric positive definite matrices, 

the close-loop system with the error model:  

 1  T
k k k k k kA B R B L A    

Subject to ( 1)  kT t k T   

We have: 1  T
k k k k k kA A B R B L  is a Hurwitz matrix 

[5]. Thus, in its respective state trajectory, 

( )
( )


 k kA t t

kt e   with ( )k kt 
 

there always exists 1kt  satisfying  (13). So, 

1( )
1( )  
  k k kA t t
k k kt e  

  
1 k k   

k Thus, ( )t  is bounded decreasing for 0   t . By 

Cauchy’s theorem of the convergence, 

lim ( ) 0


 
t

t  

We will prove that 0  . Indeed, if we suppose  that 

0  . We have: 

min 0 k
k

a A  

Choose a predictive horizon l  and ( )l t  is the 

solution of: 

 1  T
l l l l l l l l lA BR B L A    

 ( )
( ) ( )


 l lA t t

l l lt e t 
 

Then, we have: 

         0 lim ( ) lim ( )
 

  l
t t
a t t                 (14)

 

However, since lA  is Hurwitz, i.e., ( ) 0l t ,  (14) is 

meaningless. Thus, the above assumtion is incorrect. In 

other words, we must have: 

lim ( ) 0



t

t
. This completes the proof. 

III. TWIN ROTOR MIMO   (TRMS)   

The TRMS was given in Fig. 2. 

Main rotor

Free beam

Tail rotor

Pivot

TRMS 33-220

Tower

Counterbalance

Main shield

Tail shield

 

Figure 2. The TRMS 

The TRMS is a bilinear system with two inputs and 

two outputs. It can be described by the continuous model 

(1). State variables, inputs, outputs, respectively, are: 

( ) [ ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )]    T
ah h h h av v v vx t i k k S k k i k k S k k

 ( ) ( ) ( ) ;
T

h vu k U k U k    
T

h vy k k k
  

where: 
iah: Armature current of the tail motor (A) 
ωh: Rotational velocity of the tail rotor (rad/s) 
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( ) ( ) ( ) (15)



Sh :Angular velocity of TRMS beam in the horizontal    
plane without affect of the main rotor (rad/s) 

iav: Armature current of the main motor (A) 
ωv: Rotational velocity of main rotor(rad/s) 
Sv: Angular velocity of TRMS beam in the vertical plane 

without affect of the tail rotor (rad/s) 

v: Pitch angle of the TRMS beam (rad) 
Uh: Input voltage signal of the tail motor (V) 
Uv: Input voltage signal of the main motor (V) 

The nonlinear continuous state space equations of the 

TRMS are expressed in [7]-[9]:  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )   
T

h h h v v vx k k S k k k S k k (16) 

2

1
6

2 7 3

2 2

2 2

2

( ) ( )
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( ) cos ( ) ( )

cos sin

cos

cos sin
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 
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(17) 

where: 

 
, , , , , , , , , , , ,

, , , , , , , , , , ,





ah ah ah h tr tr t m av av

av v mr mr m g v t

R L k J B l D E F k R L

k J B l k g A B C H J k
  

are positive constants, h and v is defined by 

2 2

cos

cos sin

 

 
  

 

m v v
h h

v v

k
S

D E F
          (18) 

            


   t h
v v

v

k
S

J
                        (19)

 

 

Structure diagrams of state feedback model predictive 

control was given in Fig. 3. 

Out1

Out2

Square-wave

Scope1

TRMS2

S-Function2

TRMS_Controler

S-Function1

 

Figure 3. Structure diagrams of state feedback model predictive control 
to get desired outputs for TRMS. 

Use the above algorithm and install on TRMS as 

structure diagrams of state feedback model predictive 

control in Fig. 3, we get the simulation results as in the 

figures from 4 to 9. 
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Figure 4. The response of the Yaw angle control loop with respect to a 

constant (t=20s). 
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Figure 5.   The response of the pitch angle control loop with respect to a 
constant (t=20s) 
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Figure 6. The response of the Yaw angle control loop with respect to a 
square – wave 
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Figure 7. The response of the pitch angle control loop with respect to a 
square – wave 
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Figure 8. The response of the Yaw angle control loop with respect to a 
substep 
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Figure 9. The response of the pitch angle control loop with respect to a 
substep 

With simulation results given in Fig. 4 and Fig. 5, the 

responses of the yaw and pitch angles when reference is 

constant, we see that at sixth and eighth seconds, the 

responses of outputs track the reference. And if we 

change the inputs such as: square – wave or substep, then 

we get the same results in the figures from 6 to 9.  

Especially, in the Fig. 6 and 7, when changing the 

values of the references then the responses are modified, 

this prove that TRMS has cross-coupling channels 

between the yaw and pitch angles. This is really 

reasonable because when the speed of the main rotor 

changes, the speed of the tail rotor also change, and vice 

versa. In the case where the speed of these both rotors 

change, this influence increases. This can be illustrated 

clearly in the Fig. 6 and Fig. 7 at the time of the 

simulation at the 0th second, the 50th second, the 100th 

second, and the 150th second. Similarly, in the figure 8 

and 9, also shows the signal outputs always following the 

substep signals. In the seconds 10th, 120th and 150th 

when the signal of the yaw and pitch angles changes from 

0 to 0.6 and from 0.6 to - 0.2, the cross – coupling is very 

clear. In the seconds 40th or 80th when the signal 

changes little, the influence between channels is small. 

From the above simulation results proved that the 

correctness of the proposed algorithm when applying the 

dynamic programming and variational methods to control 

stable tracking for continuous bilinear system with 

infinite predictive horizon. 

V. CONCLUSION 

Using dynamic programming of Bellman and variation 

methods, the model predictive control are designed to get 

stable tracking for TRMS with infinite predictive horizon. 

Simulation results on Matlab demonstrate that the outputs 

of system track and keep stably to the reference. These 

results also prove that the accuracy of the methodology 

was built in the above algorithm. In the future, the 

authors will apply this method for other nonlinear objects 

to illustrate the strength of proposed algorithm. 
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