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Abstract—Nowadays cars are equipped with more and more 

sensors to be able to drive autonomously. Soon cars will 

become service robots which require a precise self 

localization. But instead of interacting in a goodwill 

environment like offices, hallways or warehouses, 

automated cars will be interacting in the real world. Hence 

they have to handle different types of challenges like 

seasonal and structural change, changing lighting, and 

weather conditions. These atmospheric conditions influence 

the required precise self localization. Therefore this paper 

introduces a method to generate weather specific field of 

view parameters for dashed road marking landmarks 

extracted by a mono camera. With these parameter sets a 

useful reduction of the measurement set is achieved. This 

should lead to an improvement of the localization accuracy 

compared with standard field of view parameters. To this 

end, we examine three atmospheric conditions: rain, wetness 

and dryness.  
 

Index Terms—localization, fuzzy learning, landmark based 

localization, field of view, atmospheric conditions, weather 

conditions 

 

I. INTRODUCTION 

Fully automated driving systems need a localization 

module with a precision of few centimeters. Scenarios 

like lane changing, cross ways, and overtaking maneuvers 

require such a high degree of precision. 

Nowadays common localization methods for 

automated driving differentiate between mapping as well 

as localization and treat both in isolation. These 

localization methods use a precomputed map and match 

current sensor observations (called measurements) into 

this map [1]–[10]. For this approach classified features, 

called landmarks, serve as measurements. Independently 

of the used measurements the localization global 

accuracy depends on the previously acquired map and the 

handling of measurements. Both parts affect the 

localization uncertainty. 

In general, the domain of automated vehicles will be 

the real world and its systems will be confronted with 

different types of challenges connected with this 
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environment, such as atmospheric conditions. Examples 

include heavy rain, fog, snow, and blinding effects which 

can negatively influence the localization. 

The work in [1] for instance shows that backlighting 

can produce ghost landmarks or even make them 

unrecognizable. The authors of [8] point out that changes 

in the appearance of the environment, for example by 

changing seasons, influences the localization results. 

Other authors like [1], [4] explicitly limit their 

localization procedure to specific weather scenarios. The 

authors of [11] show that lidar reflection on a wet street is 

not as well as on a dry one. This leads to different map 

qualities. A normalization of the brightness values is 

proposed, but this approach is not necessarily robust 

under all atmospheric conditions. In [12] it is shown that 

camera-based landmark detection works under good 

natured weather conditions but is strongly affected by 

rain. Hence a camera-based weather classification to 

adjust the camera perception has been introduced. Other 

approaches for rain detection are presented in [13]-[15]. 

The above mentioned approaches are not influenced by 

weather conditions on the localization accuracy into 

account. Instead localization and weather identification 

are treated separately. Furthermore, most publications on 

localization explicitly exclude bad weather conditions or 

build an algorithm for a single type of weather condition. 

In this paper a concept on how to adjust the 

localization to different weather conditions is presented. 

The influence of these conditions on the localization 

precision will be addressed. In our concept an alterable 

field of view is used to reduce the measurement set. 

Different parameter sets for the field of view and their 

impact on the localization accuracy are analyzed. Our 

research examines three atmospheric conditions: rain, 

wetness (without rain) and dryness. We have determined 

different field of view parameters for each category 

which improve the localization. Our main contribution is 

to show that different field of views for the corresponding 

scenarios can be determined. 

The remainder of this paper is organized as follows: 

Section II explains our localization framework and 

describes our modules. Afterwards we explain our 

optimization process for the field of view parameters and 

the corresponding experiments in Section III and Section 
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IV. Finally, Section V gives a conclusion and outlines 

upcoming research.

II.   LOCALIZATION FRAMEWORK

This chapter introduces the used methods and 

technique. Therefore each module will be briefly 

described.

To run our localization framework we use mono 

camera images taken from a front dash camera to road 

markings detection. The landmark extraction module 

detects dashed road markings and returns these landmarks 

as measurements. As a consequence we get a new sample 

of landmarks in each detection cycle. This data contains a 

lot of clutter which disorder information. To reduce noise 

the detected measurements need to be stabilized by a 

tracking approach.

Based on findings in [16], the memory module has 

been designed to work on two layers. Its first layer 

statically filters length and width of the landmarks to 

reduce clutter. The second layer tracks the detected 

landmarks and calculates a belief value. The field of view 

is set inside this module and is used to reduce the 

measurement set.

The Electronic Horizon provides a map which contains 

road markings. The map is manually generated from 

WGS84 geo referenced aerial images. By sending a 

request with a WGS84 position, the Electronic Horizon 

responds with the corresponding map selection.

The association module matches the tracked landmarks 

of the memory into the map and recalculates the position 

of the car. Each dashed road marking landmark i is 

defined by a starting point s⃗i = (sxi , syi) and an endpoint 

e⃗i = (exi, eyi) in the vehicle reference frame. We 

differentiate between sensor landmarks Lscan from the 

memory and map landmarks Lmap from the Electronic 

Horizon. Hence a landmark can by written as L⃗⃗⃗i

scan
for a 

sensor landmark i in Lscan with starting point s⃗i
scan

and 

ending point e⃗i
scan

. Map landmarks are defined likewise.

For two landmarks L⃗⃗⃗i

scan
and L⃗⃗⃗j

map
we calculate 

distances z1,i,jas well as z2,i,jand the angle α. With these 

results the distance function dL returns the distance value. 

Equation (1) to (5) show the distance calculation. Fig. 1 

introduces the described calculation, whereas part a) 

show two landmarks from Lscan and Lmap with 

corresponding start points s⃗i
scan

, s⃗j
map

and end points e⃗i
scan

, 

e⃗j
map

and part b) the distances z1,i,j , z2,i,j between the 

landmarks.

z1,𝑖,𝑗 =  ‖ s⃗𝑗
map

− s⃗𝑖
scan

‖ + ‖e⃗𝑗
map

−    e⃗𝑖
scan

‖       (1)

z2,𝑖,𝑗 =  ‖ s⃗𝑗
map

− e⃗𝑖
scan

‖ +  ‖e⃗𝑗
map

−   s⃗𝑖
scan

‖        (2)

∠𝑖,𝑗 =  
180

𝜋
 ⋅ arcos 

|L⃗⃗⃗𝑖
scan

| ⋅|L⃗⃗⃗𝑗
map

|

‖L⃗⃗⃗𝑖
scan

‖ ⋅‖L⃗⃗⃗𝑗
map

‖
              (3)

𝛼 = min (∠𝑖,𝑗, 180 −  ∠𝑖,𝑗)                  (4)

dL (L⃗⃗⃗𝑖

scan
, L⃗⃗⃗𝑗

map
) =  √min(z1,𝑖,𝑗 , z2,𝑖,𝑗)2 +  (0.1 ⋅  ∠𝑖,𝑗)2 (5)

We do this for all landmarks Lscan within our field of 

view and determine thereby an assignment to the 

corresponding Electronic Horizon landmarks Lmap . 

Therefore all distances are calculated as can be seen in 

(6). The corresponding map landmark L⃗⃗⃗j

map
for a given 

scan landmark L⃗⃗⃗i

scan
is identified by the lowest distance 

value in Ai,j as defined in (7).

Figure 1. Distance calculation for map and scan landmarks

∀ 𝑖 ∈  |Lscan|, ∀ 𝑗 ∈  |Lmap| ∶  A𝑖,𝑗 =  dL (L⃗⃗⃗𝑖

scan
, L⃗⃗⃗𝑗

map
)  (6)

dopt (L⃗⃗⃗𝑖

scan
) =  min𝑗 A𝑖,𝑗                       (7)

The localization process uses a non persistent, multi 

hypothesis particle filter. As a characteristic of this 

approach particles are newly sampled in every association 

step. For a given input pose a fixed number of Gaussian 

distributed particles are generated. The association cost 

for each particle p
k

is the sum of all single distances per 

scan landmark L⃗⃗⃗i

scan
divided by their quantity as stated in 

(8).

p
𝑘
cost =

∑ dopt(L⃗⃗⃗𝑖
scan

)
|Lscan|
𝑖=1

|Lscan|
                       (8)

The particle with the lowest cost is used to calculate 

the corrected vehicle position.

The sensor fusion method ”Localization-Sensor-

DataFusion 2.0” (LSDF) [17] is used to estimate the 

absolute and relative position of the car by merging 

odometric data like the Electronic Stabilization Program 

(ESP) and the Antilock Braking System (ABS) with a 

serial car inertial measurement unit (IMU) as well as a 

serial GPS receiver. The calculated absolute and relative 

car position serves as input for the memory and 

association module.

The following Fig. 2 shows the described modules as 

an architecture overview.

Figure 2. Localization framework

III. IMPACT OF FIELD OF VIEW VARIATION

To evaluate whether or not different atmospheric 

conditions influence the localization architecture we used 



three categories: rain, wetness (without rain) and dryness. 

Fig. 3 to 5 show single images with detected landmarks 

for each category. 

The field of view for the camera is set as an isosceles, 

symmetric trapeze in front of the vehicle. As the camera 

angle α is fixed, the distance to the bottom edge of the 

trapeze hfix is known. The bottom vertices, equivalent to 

the bottom edges of the camera image, are also fixed then. 

However, the top vertices are adaptable. The described 

field of view is depicted with red stripes in Fig. 6. 

According to our hypothesis the field of view can be 

optimized for each single category. 

A parameter set paraset  consists of the total height h 

and a width offset w for the top vertices: 

 

Figure 3. Rain 

 

Figure 4. Wetness 

 

Figure 5. Dryness 

 

Figure 6. Field of view in red color in front of the vehicle 

 paraset = (paraheight, parawith_offset)        (9) 

Thereby the total height h is defined as the trapeze 

heightℎtrapeze  plus hfix . Thus, ℎtrapeze  is the first alterable 

parameter. The both alterable top vertices define the 

trapeze width W(ℎ) and can be calculated when the total 

height is known as follows: 

 WNeg(h) = (hfix + htrapeze) ∙ tan α           (10) 

 WPos(h) = (hfix + htrapeze) ∙ tan β          (11) 

 W(h) = WNeg(h) + WPos(h)            (12) 

The offset w is used as second alterable parameter to 

variate the calculated width W(h) . Fig. 7 shows the 

influence of different field of view parameter sets. 

 

Figure 7. Different field of view configurations 

To generate different parameter sets, we define start-, 

end and step values for both parameters. In the following 

hs represents the start value for the trapeze height hj, he 

represents the end value and hstep is the step size for each 

iteration. The width is defined similarly. For each hj,wj 

 hj = hs + j ∙ hstep, j ϵ ℕ, hj ϵ hs, . . , he         (13) 

and 

 wj = ws + j ∙ wstep , j ϵ ℕ, wj ϵ ws, . . , we       (14) 

hold true. 

With this formula we get at most 

 ch(hs, he, hstep) = 1 +
he-hs

hstep
                      (15) 

 cw(ws, we, wstep) = 1 +
we-ws

wstep
                   (16) 
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 ct(hs, he, hstepws, we, wstep) = ch∙cw            (17) 

An amount of ct(hs, he, hstep, ws, we, wstep) parameter sets as 

shown from (15) to (17) has to be tested. An overturning 

trapeze with crossing vertices is not allowed. 

Consequently the effective amount of parameter sets is 

equal or less then the result of (17). 

In order to get an optimal parameter set for one 

weather class we determine the effect on the localization 

quality for each set. The localization quality is defined as 

the average absolute distance between the corrected 

localization and a reference position. 

We assume that optimal field of view parameters for 

different atmospheric conditions reduce the above 

mentioned distance better than a single set. As previous 

research has shown, different weather conditions 

negatively influence the localization accuracy [1], [11], 

[12]. 

To obtain the localization quality, we define a 

localization quality vector D , which contains the 

euclidean absolute distance di  for each position 

measurement point i  (see (18) and (19)). Each Di is 

equivalent to the longitudinal ( δi
x)  and lateral (δi

y
) 

differences between the corrected localization and the 

reference position at the same point in time. 

 di(δi
x, δi

y) =  √(δi
x)2 + (δi

y
)2                (18) 

 D =  (
d0

d1
⋯
dn

)                               (19) 

Afterwards we calculate the average μ  of D  which 

defines the localization quality. Furthermore we assume 

that due to the continuity of environmental conditions the 

field of view parameter sets may lead to similar 

localization qualities. For this reason it is beneficial to 

identify appropriate regions of parameter sets. Of course, 

the parameter set with the lowest μ has to be part of this 

region. The region of appropriate parameter sets includes 

sets with similar localization quality. Thus, it is necessary 

to estimate the fluctuation of the set with the lowest 

average μ. Each parameter set the μ of which is within 

this fluctuation, is part of the appropriate parameter set 

region and others are discarded. 

In order to approximate the fluctuation, we put each 

value i of D in one of ten bins by assigning i to the i mod 

10-th bin. For each bin the average μi is calculated. Then, 

the standard deviation σ over all μiis computed as in (20) 

presented. 

 σ =  √
∑ μi

210
i=1

10
−  μ2                      (20) 

The evaluation focuses on those parameter sets which 

are within two standard deviations. 

We use the weighted average of the appropriate 

parameter sets para
k
set = (para

k

height
, para

k
width) and interpret 

this as the optimal parameter set para
opt
set . The weighted 

average for each set k is thereby defined as 

 g
k

(μk) =
1

μk
                             (21) 

with g
k

(μk)  as the weight and μk  as the set’s average 

distance.  

The number of appropriate parameter sets n with hopt 

and wopt is represented by para
opt
set as follows: 

 hopt = ∑ g
𝑘

(𝜇𝑘) ∙ para
𝑘

height𝑛
𝑘=1                    (22) 

 wopt = ∑ g
k

(μk) ∙ para
k
widthn

k=1                     (23) 

 para
opt
set = (hopt, wopt)                           (24) 

For each predefined weather class we use several test 

drives. Respectively we alter the field of view as 

described by (10) to (14). Then we apply (18) to (24) to 

determine the optimal parameter set. These sets then are 

averaged to compute the optimal parameter set for each 

atmospheric condition class. 

IV.  EXPERIMENTS AND RESULTS 

A. Preparation and Execution of Experiments 

To start our evaluation, we make different test drives 

for each weather class. The used test vehicle is equipped 

with a Lidar, a front dash mono camera and an Applanix 

POS LV 510 System as reference system. During a test 

drive we collect and save all raw data. We have collected 

six drives for the wetness class, seven for the rain class 

and nine for the dryness class. 

 

Figure 8. Urban 2.2 km long track from starting point A (52.423416, 10.748314) to ending point B (52.424257, 10.717625) in Wolfsburg, Germany 

In our experiment we have used an urban 2.2km long 

road as shown in Fig. 8 from point A to B. All drives 

have been done under real traffic conditions but with the 

same traffic ratio. 

The atmospheric conditions have been manually 

classified with meteorological data from a weather station 

near the track. 

After all raw data has been collected, each test drive 

was simulated in several runs on a desktop machine. 

Within each run, a different parameter set was tested. . In 

each simulation run random noise was added to the 

reference position which was used as input for the 

memory and association module. The noise is based on 

the uncertainty of the LSDF position and has a Root 
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Mean Square (RMS) value of 0.75 meters for longitude 

and lateral position. The heading has a RMS of 0.5°. On 

average the input position has an inaccuracy of 1.5 meters 

which is equal to the typical uncertainty of the LSDF in 

urban areas. 

Until now, the original field of view in the localization 

framework has been defined by the height value horiginal 

of 25m including hfix  and a width offset woriginal  of 0m. 

The angles α and β are equally set to 24° which leads to a 

width of 11.1 m per side. We begin and end our field of 

view alterations with the following values: 

 hs = 10𝑚, he = 60𝑚, hstep = 0.5𝑚          (25) 

 ws = 2.0m, we = −15.5m, wstep = −0.5m     (26) 

B. Results 

First we analyzed the field of view alterations for each 

test drive. Our findings for each drive show that different 

field of view parameters effect the localization quality 

that confirms our initial assumption. We have shown this 

behavior exemplary in Fig. 9 for one drive in the dryness. 

Here, all field of view parameter combinations are plotted. 

The localization quality is plotted along on the z-axis 

with ascending quality values in z-axis direction. The best 

result is shown as a black triangle on top. Additionally 

the expected field of view parameter set is depicted as 

black circle. It is easily seen that the expected set is far 

away from the best set concerning the parameters and 

particularly the localization quality. 

 

Figure 9. Localization quality for field of view alterations in one 
dryness drive 

As the next step we analyzed the appropriate parameter 

sets for each drive in each atmospheric class respectively. 

With these values each drive’s weighted parameter set 

para
k
set  (as shown in (21)) and para

opt
set  have been 

determined. For this we used the doubled standard 

deviation from (20). Subsequently we computed the 

average parameter set of each drive’s optimum to receive 

the best set for the specific class. 

The results are visualized from Fig. 10 to 12 for all 

weather classes. Hereby each drive’s appropriate 

parameter sets are plotted with red dots. The dot size 

correlates to the localization quality, better quality leads 

to larger diameter. Each para
k
set is represented by a black 

square. The average of allpara
k
set is para

opt
set  and is shown 

as black star. This is the estimated optimal field of view 

parameter set for this atmospheric condition. 

 

Figure 10. Field of view results for rain 

 

Figure 11. Field of view results for wetness 

 

Figure 12. Field of view results for dryness 

The final field of view for each class is shown in Fig. 

13. Hereby the red broken dotted line symbolized the 

determined field of view for rain, the blue broken line 

stands for the field of view of the wetness class. For the 

dryness class a black dotted line is used to show the 

corresponding field of view. The beige box symbolizes 

the car with hfix as starting point for the field of view and 

htrapeze as height for the field of view. 

 

Figure 13. The optimal field of view for each weather class 
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TABLE I. DETERMINED FIELD OF VIEW VALUES FOR EACH 

WEATHER CLASS

Class
Field of view parameter

Width [m] Height [m] Area [m2]

Rain 7,3 16,1 99,82

Wetness 10 16,4 123,82

Dryness 9,7 15,4 113,96

Table I outlines the determined field of view parameter 

set values for each atmospheric condition presented in 

Fig. 13. It can be seen that the parameter sets differentiate.

For a final test, we used test drives in each atmospheric 

condition which have not been considered to identify the

optimal field of view parameter sets. In each category we 

run our localization framework with these test drives and 

the determined parameter sets from Table I. Furthermore, 

the LSDF absolute and relative car position estimates are 

used as input for the localization. The parameter sets 

presented here outperform the original field of view 

values in each class.

V.   CONCLUSION

A method to generate field of view parameters for 

different atmospheric conditions has been presented. It 

has been assumed that results from a landmark based 

localization framework are correlated with the 

surrounding conditions and that the used modules can be 

parameterized for it. Contrary to prior research, we 

proposed a method to adjust the landmark based 

localization framework to the specified weather classes 

rain, wetness and dryness. Our results show that it is 

beneficial to find field of view parameters for each class. 

Also the transition from wetness to rain is smooth and 

hard to determine manually as proposed here, 

distinguished field of view parameter sets could be 

identified. In a first analysis the results showed that each 

identified field of view parameter set outperforms the 

origin one in the corresponding class.

In further work we want to improve our partitioning of 

the atmospheric conditions. Thus, the class wetness and 

rain will be divided into two classes each: low and high 

wetness as well as low and high rain. Also an 

improvement of the training set is needed. For that more 

drives in each class will be generated and used for the 

parameter exploration. Additionally, not only the field of 

view parameter should be determined for each class but 

also the tracking parameter within the memory module. 

By adjusting tracking parameters to the atmospheric 

conditions, better clutter handling might be reached. This 

topic will be also further investigated.
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