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Abstract—Many optimization approaches adopt piecewise 

linear functions to solve real applications that are 

formulated as nonlinear programming problems. The 

number of the break points and the positions of the break 

points are two major factors that affect the quality of the 

linear approximation. Most of existing methods select 

evenly-spaced break points for constructing a piecewise 

linear approximation of a nonlinear function. This study 

investigates the impact of different break points selection 

strategies on the accuracy of the linear approximation. Two 

numerical experiments are presented to compare the 

performance of different break points selection strategies in 

solving nonlinear programming problems. 

 

Index Terms—global optimization, break point selection, 

piecewise linear function. 

 

I.   INTRODUCTION 

Piecewise linear functions (PLFs) are frequently used 

to solve real applications that are formulated as nonlinear 

programming problems, such as engineering design, 

inventory control, production planning, and portfolio 

management etc. Much research has discussed how to 

piecewise linearize a nonlinear function as a mixed-

integer program in last few decades. The commonly used 

textbooks (Bazaraa et al. [1], Taha [2]) of nonlinear 

programming provide some methods to formulate PLFs. 

Recently various mixed-integer programming models for 

PLFs have been proposed by Kontogiorgis [3], Padberg 

[4], Croxton et al. [5], Keha et al. [6], Li et al. [7], 

Vielma and Nemhauser [8]. For expressing a piecewise 

linear function of a single variable x  with 1m  break 

points (i.e., m  line segments), most methods mentioned 

above require additional m  binary variables and m4  

constraints. Li et al. [7] developed a representation 

method for PLFs by using  )1(log2 m

additionalbinaryvariables and  )1(log88 2  m  

additional constraints. Vielma and Nemhauser [8] 

developed another logarithmic method for piecewise 

linearizing functions of one and two variables.  
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The number of the break points and the positions of the 

break points are two major factors that affect the quality 

of linear approximation. Most of the above linearization 

methods use numerous evenly-spaced break points for 

constructing a piecewise linear approximation of a 

nonlinear function with a low error. Since adding 

numerous break points substantially increases the number 

of additional variables and constraints required for 

expressing PLFs, some research investigated how to 

select the break points to accelerate the process of finding 

the optimal solution. Meyer [9] and Bazaraa et al. [1] 

generated finer break points around the obtained optimal 

solution computed by the previous problem. Li and Yu 

[10] selected finer break point at maximal error of linear 

approximation. Kontogiorgis [3] placed the break points 

uniformly or minimizing the approximation error. 

Lundell [11] discussed three break points selection 

strategies: (i) the solution point of the previous iteration; 

(ii) the midpoint of the interval of existing break points; 

(iii) the point with largest approximation error.  

Both Li et al. [7] and Vielma and Nemhauser [8] 

developed logarithmic methods for piecewise linearizing 

a non-linear function. The computational results in 

Vielma and Nemhauser [8] show that their piecewise 

linearization technique outperforms other piecewise 

linearization formulations including the SOS2 (special 

ordered sets of type 2) model without binary variables. 

This study employs the Vielma and Nemhauser [8] 

method to piecewise linearize nonlinear functions with 

three different break points selection strategies. Several 

experiments are conducted to compare the performance 

of different break points selection strategies in solving 

nonlinear programming problems.  

II.   PIECEWISE LINEAR TECHNIQUES 

Consider a nonlinear function )(xf  where 
maxa 0

, 

and denote ,,, 21 aa 1ma being other break points 

between 
0a  and 

ma  for representing the piecewise linear 

function of )(xf , where 
mm aaaaa  1210  . 

Let ,...,2,1,0{P }m  and Pp . An injective function 

for modelling a piecewise linear functions is described as 

follows. 
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Remark 1: An injective function
}1,0{},...,2,1{: mB ,  m2log , where the vectors 

)( pB  and )1( pB  differ in at most one component for 

all }1,...,2,1{  mp , can always be constructed [8].  

Let ),,,()( 21 uuupB  , }1,0{ ku , ,...,2,1k , 

and )1()0( BB  . Some notations are introduced below: 

)(kS 
: a set composed of all p where 1ku of )( pB  

and )1( pB  for ,1,...,2,1  mp or 1ku of )( pB  for 

},0{ mp , i.e., 

}1,...,2,1,1),1( and )(|{)(  mpupBpBpkS k

}},0{,1),(|{ mpupBp k  . 

)(kS 
: a set composed of all p where 0ku of )( pB  

and )1( pB  for ,1,...,2,1  mp or 0ku  of )( pB  for 

},0{ mp , i.e., 

}1,...,2,1,0),1( and )(|{)(  mpupBpBpkS k

}},0{,0),(|{ mpupBp k  . 

Tsai and Lin [12] deduced the following theorem to 

construct a linear approximate of a nonlinear function by 

the Vielma and Nemhauser [8] technique. 

Theorem 1: Given a univariate function )(xf , 

maxa 0
, denote ))(( xfL  as the piecewise linear 

function of )(xf , where 
maaaa  210

 be the 

1m  break points of ))(( xfL can be expressed as 





m

p
ppafxfL

0

)())((  , 



m

p

ppax
0

 , 1
0




m

p
p , 

k

kSp

p u
 )(

 , k

kSp

p u


1
)(

 ,  p , 

}1,0{ ku . (1) 

III.   BREAK POINTS SELECTION STRATEGIES 

Enough break points are required in the linearization 

process to construct a linear approximation of a nonlinear 

function with a low approximation error. However, 

adding numerous break points substantially increases the 

size of the reformulated problem and results in long 

solution time. This study investigates break points 

selection strategies to further enhance the computational 

efficiency in solving nonlinear programming problems. 

Three existing break points selection strategies [11] listed 

in the following are compared in this study. 

1) Add a new break point at the midpoint of each 

interval of existing break points; 

2) Add a new break point at the point with largest 

approximation error of each interval;  

3) Add a new break point at the previously obtained 

solution point. 

If a new break point is added at the midpoint of each 

interval of existing break points or at the point with 

largest approximation error, the number of line segments 

becomes double in each iteration. If a new break point is 

added at the previously obtained solution, one more line 

segment increases in each iteration. 

IV.   NUMERICAL EXAMPLES 

Two examples are presented to demonstrate the impact 

of different break points selection strategies on the 

accuracy of the linear approximation and the performance 

of solving nonlinear programming problems. All 

reformulated programs are solved by LINGO 11.0 on a 

PC with an Intel Core 2 Quad 2.66 GHz CPU and 3.46 

GB Memory. 

Example 1: The problem introduced in [7] is used to 

compare the accuracy of the linear approximation by 

different break points selection strategies 

Minimize 11

21


xx   

subject to ,6 22

211 bxxx 


 

,821  xx  

4.71 1  x , ,4.71 2  x  

where ,,,, 2211   and b are fixed constants. By 

specifying three sets of different values for 

b,,,, 2211   referred from [7], two problems are 

generated for comparing the performance of three break 

points selection strategies. In the first problem with 

( b,,,, 2211  ) = (0.4,2,1.85,2,5), 
4.0

1x  and 
2

2x  are 

concave terms required to be piecewise linearized, while 

the other convex terms 
85.1

1x  and 
2

2x  do not need 

linearization. The original problem becomes the 

following mixed-integer problem: 

Minimize 
21 yy   

subject to ,056 2

21

85.1

1  xxx  

,0821  xx )( 4.0

11 xLy  , )( 2

22 xLy  , 

4.71 1  x , ,4.71 2  x  

where )( 4.0

1xL  and )( 2

2xL  are piecewise linear functions 

of 
4.0

1x  and 
2

2x , respectively.  

Table I lists number of line segments ( m ),accumulated 

CPU time, solution, objective of reformulated model, 

error in objective, and error in constraint in each iteration 

under three break points selection strategies with different 

numbers of line segments. The error in objective is 

evaluated by  2*

2

4.0*

1 )()( xx  ))(())(( 2*

2

4.0*

1 xLxL   

and the error in constraint is evaluated by MaxMax

 0,8,5)(6)( *

2

*

1

2

2

*

1

85.1*

1
*  xxxxx on the obtained 

solution (
*

2

*

1 , xx ). With the error in constraint below 10
-5

, 

the error in objective decreases as the number of line 

segments increases. That is, the objective value 

approximates the real global objective value better as the 

number of break points increases. Selecting break points 

at midpoint or at the point of 

maximumapproximationerror does not obviously affect 

the performance of solving the nonlinear problem. 

However, adding a new break point at the previously 

obtained solution point spends less CPU time and obtains 

a solution closer to the real global solution than other two 

methods. 
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In the second problem with ( b,,,, 2211  ) = 

(0.5,0.5,0.8,0.9,-7) referred from Li et al. [7] ,
5.0

1x , 
8.0

1x , 

and 
9.0

2x  are concave terms required to be piecewise 

linearized and 
5.0

2x  is convex. The original problem 

becomes the following convex mixed-integer nonlinear 

programming problem: 

Minimize 
5.0

21 xy   

subject to ,056 312  yxy  

,0821  xx  

)( 5.0

11 xLy  , )( 8.0

12 xLy  , )( 9.0

23 xLy   

4.71 1  x , ,4.71 2  x  

where )( 5.0

1xL , )( 8.0

1xL and )( 9.0

2xL  are piecewise linear 

functions of 
5.0

1x , 
8.0

1x  and 
9.0

2x , respectively. Since 1x  is 

involved in two piecewise linear functions and the points 

of the largest approximation error in the same interval for 

these two functions are different, this study only 

compares the methods of adding a new break point at the 

midpoint of each interval and adding a new break point at 

the previously obtained solution point. Table 2 lists 

experiment results of Example 1 with ( b,,,, 2211  ) = 

(0.5, 0.5, 0.8, 0.9, -7). Compared with the midpoint 

strategy, the previously solution point strategy has a 

faster speed of convergence to the real global optimal 

solution.  

 

TABLE I. RESULTS OF EXAMPLE 1 WITH ( b,,,, 2211  ) = (0.4,2,1.85,2,5) 

Iteration m  
Accumulated  

CPU time(ss:ms) 
Solution(

*

2

*

1 , xx ) Objective Error in objective Error in constraint 

Break point selection: midpoint 

1 2 00:687 (3.701948,3.993769) -14.912872 0.650680 <10-5 

2 4 00:905 (3.813995,3.997974) -14.565576 0.290032 <10-5 

3 8 01:373 (3.843920,3.998755) -14.399169 0.122729 <10-5 

4 16 02:028 (3.855708,3.999022) -14.316734 0.040258 <10-5 

5 32 03:058 (3.850149,3.998899) -14.276803 0.000321 <10-5 

6 64 04:477 (3.850863,3.998915) -14.276625 0.000142 <10-5 

7 128 07:644 (3.852289,3.998947) -14.276538 0.000053 <10-5 

8 256 15:881 (3.852457,3.998951) -14.276511 0.000024 <10-5 

Break point selection: point of maximumapproximationerror 

1 2 00:109 (3.813229,3.997952) -14.896051 0.620546 <10-5 

2 4 00:234 (3.837631,3.998603) -14.565364 0.289017 <10-5 

3 8 00:484 (3.844592,3.998770) -14.399441 0.123000 <10-5 

4 16 01:014 (3.856414,3.999038) -14.316678 0.040200 <10-5 

5 32 01:857 (3.850687,3.998911) -14.276781 0.000299 <10-5 

6 64 02:980 (3.851319,3.998925) -14.276624 0.000143 <10-5 

7 128 05:242 (3.851625,3.998932) -14.276546 0.000063 <10-5 

8 256 14:337 (3.852350,3.998948) -14.276512 0.000030 <10-5 

Break point selection: previous solution point 

1 1 00:094 (3.849184,3.998877) -24.644387 10.367909 <10-5 

2 2 00:250 (3.679977,3.992706) -14.288065 0.030348 <10-5 

3 3 00:468 (3.912514,4000000) -14.280144 0.005912 <10-5 

4 4 00:686 (3.853261,3.998969) -14.276488 0.000001 <10-5 

5 5 01:810 (3.853261,3.998969) -14.276487 <10-6 <10-5 

 

TABLE II. RESULTS OF EXAMPLE 1 WITH ( b,,,, 2211  ) = (0.5,0.5,0.8,0.9, -7) 

Iteration m  
Accumulated  

CPU time(ss:ms) 
Solution(

*

2

*

1 , xx ) Objective Error in objective Error in constraint 

Break point selection: midpoint 
1 2 00:109 (2.274817,5.725183) -0.974679 0.090193 0.089606 

2 4 00:250 (2.286923,5.713077) -0.897593 0.019646 0.016031 

3 8 00:452 (2.288718,5.711282) -0.882750 0.005772 0.005121 

4 16 00:722 (2.289399,5.710601) -0.877568 0.000958 0.000981 

5 32 01:061 (2.289502,5.710498) -0.876910 0.000355 0.000355 

6 64 01:841 (2.289555,5.710445) -0.876561 0.000035 0.000033 

7 128 02:886 (2.289558,5.710442) -0.876540 0.000015 0.000015 

8 256 04:259 (2.289560,5.710440) -0.876529 0.000006 <10-5 
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Iteration m  
Accumulated  

CPU time(ss:ms) 
Solution(

*

2

*

1 , xx ) Objective Error in objective Error in constraint 

Break point selection: previous solution point 

1 1 00:124 (2.254374,5.745626) -1.059833 0.164287 0.213827 

2 2 00:234 (2.288782,5.711218) -0.880208 0.003265 0.004732 

3 3 00:358 (2.289543,5.710457) -0.876604 0.000071 0.000106 

4 4 00:499 (2.289560,5.710440) -0.876525 0.000002 <10-5 

 

V.   CONCLUSIONS 

Piecewise linear functions are frequently applied in 

many optimization methods for nonlinear problems. Most 

of existing methods select evenly-spaced break points for 

constructing a piecewise linear approximation of a 

nonlinear function. Since an appropriate selection of the 

break points can decrease the maximum tolerated 

distance between original nonlinear function and 

piecewise linear approximation, this study compares the 

impact of different break points selection strategies on the 

performance of solving nonlinear problems. More 

numerical experiments should be conducted and 

theoretical analysis should be done to investigate the 

break points selection strategies more completely. 
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