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Conical sections and shells are produce using 3-roller conical bending machines. In this conical
bending process, the blank is given static bending by placing the blank over the bottom rollers
and lowering the top roller. The rollers are rotated than to get roll bending action. Static bending
of the plate requires larger force and it is done in multiple stages to lower down the value of
required force [Gajjar et. al., 2008]. The total deflection of the top roller required is divided in
steps to get the multipass bending.  The machine is designed on the basis of maximum reaction
forces during bending. In this paper an analytical model is proposed for the prediction of bending
force during the multiple pass 3-roller conical bending.  Multipass bending experiments are
carried out to validate the developed model. Experimental results do not match exactly with the
analytical results. So a correction factor for each pass has been found out and applied to the
analytical results. The corrected analytical results match with experimental results quite
satisfactorily. The model derived can be effectively used to study the effect of various parameters
on the bending force and can be helpful to the researchers working in this area.
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Research Paper

INTRODUCTION
For construction of various structures as well
as integral part of machines various conical
sections are widely used. Such conical
sections are manufactured by various methods
and 3-roller conical bending process is one

such process. It consists of two bottom rollers
and a top roller. Metal plates with specified
contours are rolled without decrease in
thickness to get the desired cone angle. The
plate undergoes plastic deformation and it is
cold forming process and hence it has higher
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dimensional accuracy. 3-roller conical bending
process has four stages, (a) static bending,

(b) forward rolling, (c) backward rolling, and
(d) unloading. In the first stage the plate is kept

Figure 1: 3-Roller Conical Bending Setup: Schematic Representation
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between top roller and bottom rollers as
shown in Figure 1 and the top roller is given
vertical displacement to get the required
bend. In next stage the bottom rollers are
driven using motors in forward direction to get
the roll bending of the plate. Similarly the
rollers are driven in reverse direction to get
better dimensional accuracy of the final
product. The bent plate is than unloaded by
raising the top roller.

Mechanics involved in the conical bending
is very complex. It can be observed that there
will be 3-dimensional force pattern at the roller
plate interface during the conical bending. In
this paper an attempt is made to get the
analytical model for bending force prediction
for such complex mechanics.

Various researchers have worked for the
development of mathematical models for
cylindrical bending process (Wang et al.,
1993). Hua et al. have proposed a method of
determining the plate internal bending
resistance at the top roll contact for multi-pass
four-roll thin-plate bending operations (Hua
et al., 1995). For continuous single-pass four-
roll thin plate bending a model was proposed
by Hua and Baines, considering the
equilibrium of the internal and external bending
moment at and about the plate-top roll contact
(Baines et al., 1997). Lin et al. had considered
varying radius of curvature for the plate
between the rollers and proposed a
mathematical model to simulate the
mechanics in a steady continuous bending
mode for four-roll thin plate bending process
(Hua and Lin, 1999). Hua and Lin also
investigated Influence of material strain
hardening on the mechanics of steady
continuous roll and edge-bending mode in

the four-roll plate bending process (Hua and
Lin, 2000).

For continuous multi-pass bending of cone
frustum on 3-roller bending machines with non-
compatible (cylindrical) rollers, Gandhi et al.
had reported the formulation of springback and
machine setting parameters (Gandhi et al.,
2008 and 2009). They incorporated the effect
of change of flexural modulus during the
deformation in the formulation to study the effect
on springback prediction. For plane strain flow
of sheet metal subjected to strain rate effects
during cyclic bending under tension Sanchez
presented an elastic–plastic mathematical
model (Sanchez, 2010). He also included
Bauschinger factors in the model for stress
reversal. Chudasama and Raval have reported
analytical model of force prediction for single
pass in static bending stage during 3-roller
conical bending process (Chudasama and
Raval, 2011).

The roll bending process is used for years,
it can be observed from the literature reviewed
that conical bending process is untouched
area as far as force prediction is concerned.
Even in the industries the normal practice of
plate roller bending still heavily depends upon
the experience and the skill of the operator.
Working to templates, or by trial and error, yet
remains a common practice (Gandhi, 2009).
For conical bending investigation related to
conical bending as far as machine setting is
concerned is done by Gandhi et al. (2008 and
2009), but few references are available to
addressed the problem of bending force
prediction for roll-bending  so far as the
knowledge of the authors is concerned.
Considering this, in this paper an attempt is
made to develop force prediction model for
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multipass 3-roller conical bending process
which will be useful to the researchers to
understand the complex mechanics of the
process.

ANALYTICAL MODEL
Hua et. al. have concluded that it is very difficult
to have a single mathematical model that
takes into account all the complexities of the
bending process (Hua et al., 1995). As 3-roller
conical bending is also a bending process it
is very difficult to get a mathematical model
for of 3-roller conical bending process taking
all the factors into consideration. A realistic
simplification is thus necessary.

So following simplifying assumptions have
been made for formulation of the relation for
force prediction:

Assumptions
• Plate is always having line contact with the

roller which is parallel to roller axis during
the process.

• The forces acting during the bending are
larger than the self weight of the plate. So
the self weight of the plate is neglected.

• The shift of the neutral plane is zero, i.e., it
is considered to be at the center line of the
plate thickness.

• Frictional force at the bottom roller and the
plate interface is always tangent to the roller
surface.

• Rollers are assumed to be rigid. Roller
material and plate material is assumed to
have stable microstructure throughout the
deformation process.

• Deformation occurs under isothermal
conditions and ‘E’, i.e., Modulus of Elasticity
remains constant during the process.

• As cone angle considered being small.

• As cone angle considered being small
blanks for the cone frustum bending are
selected such that ((w/t) > 8) and hence plane
strain conditions maintained (Marciniak,
1992; and Wang et al., 1993).

•  Plane section remains plane, before and
after the bending. Blank thickness (t)
remains constant during and after the
bending.

• Baushinger effect is neglected. Blank is
having uniform/constant radius of curvature
for the supported length of the blank
between two bottom rollers.

• Further simplifying assumptions are
discussed as and when required during the
formulation.

Based on the above assumptions the
bending force equation can be derived by
equating the external bending moment
required to bend the plate and internal bending
moment induced in the plate.

External Bending Moment

In 3-roller conical bending process first step is
bending of the plate by lowering down the top
roller. In this step it is required to exert force
on the top roller to lower it, which will bend the
plate. This vertical force exerted on the top
roller will give the external bending moment
required to bend the plate.

External bending moment over the plate
exerted by the rollers can be derived by
considering the geometry of the setup during
bending. The force pattern during conical
bending is complicate and needs to be
simplified. During the bending process there
will be reaction forces on the bottom roller
because of the top roller load.
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In the derivation of external bending
moment over the plate, forces in vertical plane
passing through the three rollers and
perpendicular to the top roller axis is
considered. If axial forces on the bottom rollers
are resolved, they will not have any component
along the vertical plane, as bottom rollers are
inclined only in horizontal plane as explained
earlier. So axial force on the bottom rollers will
not affect the derivation of the external bending
moment derived earlier by Chudasama and
Raval (2011). Reaction on the top roller will
have three components in mutually
perpendicular directions. Axial force on the top
roller will also not affect the external bending

moment as it is not inclined in the vertical plane.
In the present analysis vertical component of
the force on top roller, ‘P’, is considered for
the calculations.

Figure 2 gives schematic of blank and roller
arrangement for static bending. Equation for
external bending moment can be derived as
reported (Chudasama and Raval, 2011),

























sincos

1

sin

sin
1

2 1

1

ra

rxP
Mtotal

    tan*tan 1 xUrx 

  Ur  1costan*sin1 
...(1)

Figure 2: Schematic of Blank and Roller Arrangement for Static Bending
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It is to be stated here that external bending
moment equation for multipass is similar to the
single pass equation but the values of the
parameters ‘U’ and ‘’ will be different for
multipass.

Internal Bending Moment for
Multipass

When the top roller is lowered down and
external force is exerted to bend the plate, the

material of the plate will resist the deformation
of the plate. There will be elastic as well as
plastic deformation of the plate and hence
there will elastic as well plastic resistance to
the deforation. Combined effect of elastic and
plastic resistance will give the internal bending
moment and can be calculated as below:

The bending moment can be split into an
elastic contribution and plastic contribution as
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discussed earlier and can be calculated by
Chudasama and Raval (2011).

M
total

 = M
elastic

 + M
plastic

...(2)

dyydyy xplasticxelastic    22 ...(3)

Hill’s non-quadratic yield criteria (Hill, 1979)
for plane strain deformation in plastic region
for isotropic material is,
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 ...(4)

where, F = Anisotropic constant,

x = Uniaxial stress,

 = Effective stress,

 = Effective strain,

x = Axial strain.

The power law material behaviour
considering initial strain å0, is assumed in the
plastic region.
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For elastic region 
x
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 E, where E =

Elastic constant ...(8)

Considering plane strain bending, E is
replaced by E’ for plain strain conditions and
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...(9)

For deciding the limits of the integration,
the elastic zone thickness is considered upto
a distance of y

ep
 from the neutral plane.

Inserting the values of 
x
 and E   elastic and

plastic bending moment in Equation (3), we
get,
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For bending operation,
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where,  = bending stress, y = distance of
outermost fibre from neutral axis, E = elasticity
constant, and R

b
 = bend radius.

From this
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In Single pass bending, initial radius of the
blank will be infinite, i.e., flat plate is considered.
But in case of multipass bending, blank will
have some initial radius except for first pass.
So the radius of curvature for multipass will be
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Now considering only elastic moment,
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From Equations (17) and (19)
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where 
E

R
yep


  (Chudasama and Raval,

2011)

Expression for Bending Load P

Equating Equations (1) and (21), and
rearranging,
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where, X = (x – tan (r
1
 – U) +  (x * tan –

r
1
(sin * tan + cos – 1) – U))

Equation (23) gives the bending force
required to get the required bend radius for
multipass conical bending. It is required to
integrate the equation for plastic bending
moment. In the present case of integration
there is no standard formula available for it.
Also it is not possible to solve it by using any
conventional method like substitution. So it is
to be evaluated using Numerical Method.

In Equation (23), there is no term which
reflects the effect of bottom roller inclination
on the bending force P. Bottom roller inclination
is set by setting the bending radius at front end
and rear end on 3-roller conical bending
machine. The relation between rolling radius
and bottom roller inclination is given in
Equation (24) (Gandhi, 2009). If bottom roller
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inclination is zero than both the radius will be
same, with no top roller inclination, this
condition is of cylindrical bending.
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where,  = bottom roller inclination,

A
F
, A

R
 = Center distance between bottom

rollers at front and rear end respectively

 = Top roller inclination, in the present case
it is zero

 = Cone angle

R
F
, R

R
 = Bending radius at the front end and

rear end respectively

To get the value of P, i.e., top roller load,
from the above Equation (23) along with the

material properties and geometrical
parameters of the machine setting, the value
of coefficient of friction  at roller plate interface
is required. Value of angle  can be calculated
from the geometrical configurations of the
machine setting.

EXPERIMENTATION
For verification of the developed analytical
model for prediction of force during multipass
cone frustum bending, experimentation is
carried out. Details of experimentation are
discussed in subsequent sections.

Experimental Setup

To validate the analytical models of force
prediction developed in earlier section it is
required to do the experiments. 3-roller
conical bending machine is used to carry out

Figure 3: 3-Roller Conical Bending Machine Setup; and Arrangement of Load Cell to
Measure the Bending Force

(a)
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the bending force over the top roller. These
load cells are attached to the online data
acquisition system which gives the force
variation during the continuous roll bending
process.

Material Selection

Structural steel FE 410 WA is widely used for
the various structural applications and is easily
available in Indian commercial market. Hence,
structural steel of material grade FE 410 WA
as per IS 2062 (2006) is selected for cone
frustum bending experiments. Mechanical
properties and chemical composition of the
structural steel FE 410 WA is given in
Tables 1 and 2 respectively.

the experiments. It is shown in Figure 3. The
bottom rollers of the machine are driven by
two independently driven electric motors.
The rollers are attached with the motors using
universal joints as shown in Figure 3a.
Bottom rollers can be set at angle as the
spherical roller bearings are provided at the
roller supports. The top roller can be lowered
down using power screws as the bearing
blocks for top rollers can slide vertically
Figure 3b. The setup is facilitated with the
load cells at the top roller as well bottom roller
bearings to measure the reaction in 3
mutually perpendicular planes. Figure 3b
shows the location of load cell to measure

Table 1: Mechanical Properties of Structural Steel Material Grade FE 410 WA
(IS 2062, 2006)

<20 20-40 >40

410 250 240 230 23

Tensile Strength Minimum (MPa) % Elongation at Gauge Length 5.65, Minimum
Yield Stress, Minimum (MPa)

Figure 3 (Cont.)

Power Screw to Move
the Top Roller

Load Cell to Measure
the Bending Force

Top Roller Bearing
Block (Can Slide

Vertically Up or Down)

Top Roller

(b)
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Blank Geometry

Plate thickness for the plate to be bend are
selected as per the availability in the
commercial market. The plates were taken and
the thicknesses were measured over the length
at 6 points on each side using vernier calliper.
The average of the reading were taken as the
thickness of the plates. The thickness ‘t’ of the
plates are: 5.84 mm, 7.87 mm, 8.85 mm, 11.84
mm and 13.97 mm. Blank dimensions are
taken from the earlier work done by Gandhi
regarding parametric investigation of 3-roller
conical bending process (Gandhi, 2009).
Generators are marked on the blank as per
the requirements of the experiments. Figure 4
shows the photograph of the one of developed
blanks (plate thickness ‘t’ = 5.84 mm,  = 1.86°)
used for the cone frustum bending
experiments.

Experimental Procedure

As per the experimental planning presented
in this section, cone frustum bending
experiments were performed for the
verification of the developed analytical
models. First the bottom rollers are inclined

at required inclination by sliding the bearing
blocks at required distance for the inclination
of  = 1.86°. The blank is than loaded
between top and bottom rollers. To perform
the bending the top roller is than lowered
down at required distance for the first pass
using the power screws. The bending forces
at the top roller bearing are measured with
the help of load cells and the data acquisition
system. Then bottom rollers are rotated in
one direction for forming the radius over the
entire length of the blank in the forward pass
followed by the reverse rotation of rollers
during the reverse pass. Reverse pass is
necessary for forming of the initial blank length
to the desired radius which is not formed
during forward pass and for the uniformity of
the radius. After reverse pass the plate is
unloaded by raising the top roller upward.
After completion of this first pass. Again the
plate is kept between the rollers and the top
roller is lowered further for second pass. The
distance travelled by the top roller in second
pass will be more than the distance travelled
in the first pass. Again forward and reverse

Table 2: Chemical Composition, Structural Steel of Material Grade FE 410 WA
(IS 2062, 2006)

Carbon Manganese Sulphur Phosphorous Silicon Carbon Equivalent

0.23 ± 0.02 1.5 ± 0.05 0.05 ± 0.005 0.05 ± 0.005 0.40 ± 0.03 0.42

Note: In percentage maximum values.

Figure 4: Blank Before Bending (Thickness ‘t’ = 5.84 mm,  = 1.86°)
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rolling is done and the cycle repeats. In
present case the final dimensions of bending
is achieved in 5 passes and the bending force
required during each pass is measured to get
the experimental bending force (Figure 5).

Experiments have been performed as per
the plan by different thickness plates. Data of
force required for the roll bending have been
acquired through the Data Acquisition System
(DAS) as discussed earlier. Data has been
processed and the sample results for plate
thickness 0f 7.87 mm thick plate are shown in
Table 3.

VALIDATION OF THE
DEVELOPED ANALYTICAL
MODEL
Analytical model for prediction of force during
3-roller conical bending process for multipass
static bending process have been developed in
analytical model section. Analytical calculations
were done using Simpson's 3/8th Rule for
numerical integration. Experiments of 3-roller
conical bending have been performed to verify
the analytical models and have been reported in
expermentation section. In this section developed
bending force models are validated using the
data obtained from experiments.

Model for Multipass Bendig

Analytical model of force prediction for
multipass 3-roller conical bending process has
been developed in analytical model section.
The Equation (23) is rewritten below:
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1
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The values of various parameters involved
in the above equation are substituted and the
analytical results were obtained. They have
been compared. There was large difference
in the values of the analytical force and
experimental force. It can be due to the
simplifying assumptions made during the
derivation as well the uncertainties in the
experimentation. But it was observed that the
trend of the experimental results was matching
with the analytical results. So a correction factor

Figure 5: Plate After Bending

1. 20 899

2. 25 1007

3. 30 681

4. 35 931

5. 40 1176

Table 3: Sample Result Table
for t = 7.87 mm for  = 1.86°

Pass
Number

Top Roller Position
U (mm)

Top Roller
Force (N)

Data obtained through the experimentation
is to be used for the validation of the developed
analytical model of force prediction, in the
subsequent section.
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was found out. The ratio of experimental value
and analytical value was taken for each
thickness. Than the average of the ratio for
different thicknesses were taken. The average
value of the ratio has been taken as the
correction factor and applied to the analytical
results. Graphs of Experimental force and
corrected analytical force have been plotted
for each thickness as shown in Figure 6.

It can be observed from the Figure 6a to
6e that as thickness of the plate increases,
the value of required bending force also
increases. It is reflected in both, corrected
analytical bending force as well as
experimental bending force. It is quite well

represents the actual case. It can also be
observed that corrected analytical results are
having good agreement with the experimental
results except for the first pass and 5.84 mm
thickness in Figure 6a. That can be due to
some error occurred during the
experimentation or some unknown factor.
Otherwise the error observed between the
experimental and corrected analytical results
is in the range of ±20%, which is quite
satisfactory. So the analytical model
developed here can be utilised for the force
prediction with the correction factor for each
pass. Though it is not giving the exact results,
it can be further modified to give better results.

Figure 6: Variation of Bending Force P, with Respect to Number of Passes
for Plate Thickness

(a) t = 5.84 mm

(c) t = 8.85 mm

(b) t = 7.87 mm

(d) t = 11.84 mm
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CONCLUSION
An analytical model for multipass 3-roller
conical bending process has been derived.
External bending moment required to bend the
plate has been equated to internal bending
moment developed in the plate to get the
required formulation for the bending force ‘P’.
To validate the developed analytical model,
experimentation has been carried out. 3-roller
conical bending machine was set for particular
value of bottom roller inclination. Different
thickness plates were bent using the 3-roller
conical bending setup and force required to
get the required bend radius have been
measured. For the same geometrical as well
as material parameters, analytical bending
force have been calculated using Equation
(23). The value of the analytical bending force
and experimental force had large difference.
This can be due to the simplifying assumptions
made. It can be due to the uncertainties in the
experimentations also. But it was observed
that the trend of the analytical results was
matching with the experimental results. So a
correction factor has been obtained for each
pass for different thicknesses. The correction
factor was applied to the analytical results and
corrected analytical force results have been
compared with the experimental results. They

were in good agreement and the error found
to be ±20%.

Though the developed model is not giving
the exact results for the bending force, it can
be used satisfactorily with the correction factor
for each pass. Further the model can be
modified by removing the simplifying
assumptions like considering the varying
radius of curvature of bending instead of
constant radius, considering axial forces during
bending, etc. The developed analytical model
can be useful to the developers of the 3-roller
conical bending machines as well as the
researchers working in this area.
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APPENDIX

w = Width of the blank in mm.

t = Thickness of the plate in mm.

M = Bending moment in N-m.

P = Vertical load at the top roller and bending plate interface in N.

a = Borizontal distance of the bottom roller centers in mm.

x = Balf the horizontal distance of the bottom roller centers in mm.

Q = Normal force exerted by the plate on the bottom roller at roller plate interface in N.

 = Angle between frictional force and horizontal plane at the roller plate interface in radians.

U = Vertical distance travelled by the top roller for first stage of static bending in mm.

E = Young’s modulus in N/mm2.

K = Strength coefficient in N/mm2.

n = Strain hardening exponent.

r
1

= Radius of bottom roller in mm.

R = Radius of curvature of the bent plate in mm.

y = Distance of fiber from neutral plane in mm.

 = Coefficient of friction at roller plate interface.

 = Strain.

 = Stress in N/mm2.

 = Poisson’s ratio.

y
ep

= Distance of the fiber upto which elasticity E is constant in mm.

 = Curvature of the bend plate between bottom rollers, mm–1.

* = Strain at yield point.

E* = The ratio of modulus of elasticity to 
s
.

t
e

= Thickness of elastic layer in mm.


0

= Strain of the strip mid-line.

 = Effective strain.

 = Effective stress.

 = Bottom roller inclination.

A
F
, A

R
= Center distance between bottom rollers at front and rear end respectively.

 = Top roller inclination, in the present case it is zero.

 = Cone angle.

R
F
, R

R
= Bending radius at the front end and rear end respectively.

Nomenclatures




