SELECTION OF ROAD TRACK TO DETERMINE OPTIMIZED VALUE OF WHEEL DIMENSION AND SPEED RATIO BETWEEN CRANK AND WHEEL FOR CYCLE RICKSHAW

A K Mahalle* and G K Awari

*Corresponding Author: A K Mahalle, a_mahalle@rediffmail.com

The main objective of this work is to recommend the wheel diameter and speed ratio between crank and wheel under certain test conditions for the purpose of reducing strain of pedaling on rickshaw puller ergonomically. Psychological issue shall be addressed for determining the optimum diameter and speed ratio. For the same, the specific road track of 8.840 Km is identified which simulate the all road condition during the field trial. The rising and falling gradient of the track which is selected is determined with the help of auto level, leveling staff, odometer and measuring tape. The method of height of collimation system is used to determined different points of elevation. This gives the idea about the variation in slope of the road. For project design, the traffic flow data is also collected. This also helps to study future traffic trends and assisting in predicting traffic flows in the future for a given period.

Keywords: Cycle rickshaw, Road track, Pulse rate, Wheel diameter, Speed ratio

INTRODUCTION

The road is one of mode of transportation, catering a wide range of vehicles, pedestrians including cycle-rickshaw. The road transportation is the only type which could give maximum service to one and all. It has maximum flexibility for travel with reference to route, direction, time and speed of travel etc. through any type of road to provide point-to-point travel. For short distance trips, a cycle rickshaw is a popular mode of transport in Indian cities. The basic intention of undertaking of experimental is to find the way in which maximum power can be extracted without much of exertion for cycle-rickshaw puller (John Seabury et al., 1977; Davis and Hull, 1981; Mats Ericson, 1988; and Mahalle and Awari, 2011).

1 G.H. Raisoni College of Engineering, Nagpur, India.
2 Tulsiramji Gaikwad Patil College of Engineering, Nagpur, India.
The amount of energy that can be supplied by a puller depends upon speed, torque on the crank, and duration for which pedaling is required to be done. For shorter duration of pedaling, higher energy levels of puller are feasible. Lokomy (1986) has shown that as exercise time increases power output drops from 150 watts to 80 watts approximately. When time period increases even further this power is reduced to a much lower level.

Cycle rickshaw pedaling is required to be done continuously for longer duration; hence data related to short duration tests is not relevant. Data related to long duration tests only is considered.

The survey has shown that maximum 8 Km distance is traveled by a rickshaw puller at a stretch which takes around 40-60 minutes approx. Thus the proposed road track is selected and measured with odometer which is 8.840 Km. This comprise of total six rounds, out of which three are forward and three are opposite, which simulate all road condition.

The experimental set up mainly consists of road track, cycle-rickshaw (model-03 in no’s) and measuring instrument such as—UT-100 Pulse Oximeter.

The layout of road track is shown in Figure 1.

Survey of the Track
The schematic rise and fall gradient of proposed experimental road track is carried out as such. The track of nearly 8.840 Km is considered for different rising and falling gradients. So that it should stimulate all possible road condition. The survey of the track which is selected is carried out with the help of following instruments as shown in Figure 2.

Auto Level
It has combine feature of the Wye and dumpy level. The main feature is the introduction of a prismatic compensator consisting of three mirrors arranged suitably. Autolevel determine the relative difference between two or more points by measuring (with a staff) from the ground level to the line of collimation as shown in Figure 4.
Once the staff is above or below the visible line, too far away for an accurate sighting, the instrument is to move to a new location. In this way, survey is proceeding in a series of step, each steps being link by a repeat reading to the ‘change point’. In this way a series of complete survey link to each other by a common point.

Leveling Staff

It is made of pine or deodar wood, 4 meters in height as shown in Figure 5. It comprises of two meters wooden pieces with the joint assembly. Each member is divided in to 200 divisions, the thickness of the graduations being 5 mm.

While taking readings, the staff should be truly vertical. To take the reading correctly, the staff is moved a little towards the level and then away from the level, the minimum reading observed shall be the correct reading.

Odometer

The odometer is ideal for measuring distances, flat surfaces of streets, roads, path or highways as shown in Figure 6. Odometers
Figure 6: Odometer

are accurate models with a mechanical counter in the measuring wheel. Measuring wheels perimeter has been highly precise rectified with to get a great accuracy. The odometer wheel automatically measures up to 9999.9 meters (Diameter of Wheel = 318.5 m = 1 m of circumference).

Measuring Tape (Cloth-30 mt)
The measuring tape (cloth – 30 mt.) is used for marking the various points on the selected road track as shown in Figure 3.

After considering the track, temporary benchmark is assumed, RL = 100 M, in the vicinity of Vishwakarma Nagar (south part of Nagpur, M.S). By using Autolevel, different points of elevation is determined by using method of height of collimation system.

Method of Height of Collimation System
The height of collimation system consists of finding the elevation of the plane of collimation, for the every set up of the instrument and then obtaining the reduced levels of points with reference to the respective plane of collimation. To begin with the elevation of the plane of collimation, the first set up of the level is determined by adding the back sight to the reduced level of the benchmark.

Reduced Level
The system of working out the reduced levels of points from the staff reading taken in the road track is termed as reducing levels. The Reduced Level (RL) of a point is the elevation of the point with reference to some datum.

The reduced level of the intermediate points and first change point are then obtained by subtracting the staff reading taken on these points from the elevation of the plane of collimation. When the instrument is shifted to the second potion, a new plane of collimation is set up. The levels of the two planes of collimation are calculated by means of the back sight and foresight taken on the change point. The elevation of this plane is obtained by adding the new back sight taken of the change point from the second potion of the level to the reduced level of the first change point.

The RL of the successive points and the second change point are found by
subtracting their staff readings from the elevation of this plane of collimation. The process is repeated until all the RL are worked out. On completing the reduction of levels, the accuracy of the arithmetical work is checked by the following:

Arithmetical Check: In order to check that the readings are correctly entered and the calculations are correctly made, an arithmetical check is applied. The difference between the sum of the back sights and the sum of the fore sights should be equal to the difference between the last and first reduced levels.

\[\Sigma BS - \Sigma FS = \text{Last RL} - \text{First RL} \]

The different RL of the track at different interval is shown in Table 1 and Table 2 respectively.

<table>
<thead>
<tr>
<th>Point No.</th>
<th>Chainage</th>
<th>Length</th>
<th>Back Sight</th>
<th>Intermediate Sight</th>
<th>Fore Sight</th>
<th>Height of Collimation</th>
<th>Reduce Level</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM @ Pole</td>
<td></td>
<td>1.435</td>
<td></td>
<td></td>
<td></td>
<td>101.435</td>
<td>100.000</td>
<td>BM</td>
</tr>
<tr>
<td>A</td>
<td>0.0</td>
<td>0</td>
<td>1.325</td>
<td></td>
<td></td>
<td>101.435</td>
<td>100.110</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>44.0</td>
<td>44.0</td>
<td>1.245</td>
<td></td>
<td>0.780</td>
<td>101.760</td>
<td>100.655</td>
<td>CP1</td>
</tr>
<tr>
<td>C</td>
<td>37.0</td>
<td>81.0</td>
<td>1.105</td>
<td></td>
<td>0.805</td>
<td>101.760</td>
<td>100.955</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>12.2</td>
<td>93.2</td>
<td>1.355</td>
<td></td>
<td></td>
<td>101.760</td>
<td>100.405</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>35.5</td>
<td>128.7</td>
<td>0.805</td>
<td></td>
<td></td>
<td>101.760</td>
<td>100.955</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>45.5</td>
<td>174.2</td>
<td>1.685</td>
<td></td>
<td>0.610</td>
<td>102.835</td>
<td>101.150</td>
<td>CP2</td>
</tr>
<tr>
<td>G</td>
<td>30.0</td>
<td>204.2</td>
<td>1.415</td>
<td></td>
<td></td>
<td>102.835</td>
<td>101.420</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>30.0</td>
<td>234.2</td>
<td>1.075</td>
<td></td>
<td></td>
<td>102.835</td>
<td>101.760</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>30.0</td>
<td>264.2</td>
<td>1.800</td>
<td></td>
<td>0.695</td>
<td>103.940</td>
<td>102.140</td>
<td>CP3</td>
</tr>
<tr>
<td>J</td>
<td>33.2</td>
<td>297.4</td>
<td>1.170</td>
<td></td>
<td></td>
<td>103.940</td>
<td>102.770</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>30.0</td>
<td>327.4</td>
<td>1.045</td>
<td></td>
<td></td>
<td>103.940</td>
<td>102.895</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>30.0</td>
<td>357.4</td>
<td>0.970</td>
<td></td>
<td>1.015</td>
<td>103.895</td>
<td>102.925</td>
<td>CP4</td>
</tr>
<tr>
<td>M</td>
<td>30.0</td>
<td>387.4</td>
<td>1.125</td>
<td></td>
<td></td>
<td>103.895</td>
<td>102.770</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>30.0</td>
<td>417.4</td>
<td>1.180</td>
<td></td>
<td></td>
<td>103.895</td>
<td>102.715</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>30.0</td>
<td>447.4</td>
<td>1.145</td>
<td></td>
<td>1.165</td>
<td>103.875</td>
<td>102.730</td>
<td>CP5</td>
</tr>
<tr>
<td>P</td>
<td>30.0</td>
<td>477.4</td>
<td>1.115</td>
<td></td>
<td></td>
<td>103.875</td>
<td>102.760</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>30.0</td>
<td>507.4</td>
<td>1.140</td>
<td></td>
<td>1.070</td>
<td>103.945</td>
<td>102.805</td>
<td>CP6</td>
</tr>
<tr>
<td>R</td>
<td>30.0</td>
<td>537.4</td>
<td>1.210</td>
<td></td>
<td></td>
<td>103.945</td>
<td>102.735</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>30.0</td>
<td>567.4</td>
<td>0.940</td>
<td></td>
<td>1.555</td>
<td>103.330</td>
<td>102.390</td>
<td>CP7</td>
</tr>
<tr>
<td>T</td>
<td>30.0</td>
<td>597.4</td>
<td>1.080</td>
<td></td>
<td></td>
<td>103.330</td>
<td>102.250</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>30.0</td>
<td>627.4</td>
<td>1.195</td>
<td></td>
<td>1.085</td>
<td>103.440</td>
<td>102.245</td>
<td>CP8</td>
</tr>
<tr>
<td>V</td>
<td>30.0</td>
<td>657.4</td>
<td>1.200</td>
<td></td>
<td></td>
<td>103.440</td>
<td>102.240</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>30.0</td>
<td>687.4</td>
<td>1.250</td>
<td></td>
<td></td>
<td>103.440</td>
<td>102.190</td>
<td></td>
</tr>
</tbody>
</table>
Table 1 (Cont.)

<table>
<thead>
<tr>
<th>Point No.</th>
<th>Chainage</th>
<th>Length</th>
<th>Back Sight</th>
<th>Intermediate Sight</th>
<th>Fore Sight</th>
<th>Height of Collimation</th>
<th>Reduce Level</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>42.0</td>
<td>729.4</td>
<td>0.410</td>
<td>1.280</td>
<td>102.570</td>
<td>102.160</td>
<td>CP9</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>30.0</td>
<td>759.4</td>
<td>1.455</td>
<td>1.965</td>
<td>101.860</td>
<td>100.605</td>
<td>CP10</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>29.0</td>
<td>788.4</td>
<td>1.255</td>
<td>1.965</td>
<td>101.860</td>
<td>100.430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>30.0</td>
<td>818.4</td>
<td>1.480</td>
<td>1.965</td>
<td>101.860</td>
<td>100.380</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>30.0</td>
<td>848.4</td>
<td>1.430</td>
<td>1.965</td>
<td>101.860</td>
<td>100.430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>30.0</td>
<td>878.4</td>
<td>1.440</td>
<td>1.355</td>
<td>101.945</td>
<td>100.505</td>
<td>CP11</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>30.0</td>
<td>908.4</td>
<td>1.360</td>
<td>1.965</td>
<td>101.945</td>
<td>100.585</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>30.0</td>
<td>938.4</td>
<td>1.080</td>
<td>1.965</td>
<td>101.945</td>
<td>100.865</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>30.0</td>
<td>968.4</td>
<td>1.585</td>
<td>0.705</td>
<td>102.825</td>
<td>101.240</td>
<td>CP12</td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>30.0</td>
<td>998.4</td>
<td>1.510</td>
<td>1.965</td>
<td>102.825</td>
<td>101.315</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td>30.0</td>
<td>1028.4</td>
<td>1.130</td>
<td>1.965</td>
<td>102.825</td>
<td>101.695</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A9</td>
<td>30.0</td>
<td>1058.4</td>
<td>0.810</td>
<td>1.965</td>
<td>102.825</td>
<td>102.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td>30.0</td>
<td>1088.4</td>
<td>0.965</td>
<td>1.965</td>
<td>102.825</td>
<td>101.860</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arithmetic Check</td>
<td>16.105</td>
<td>27.850</td>
<td>14.245</td>
<td>1.860</td>
<td>BS-FS</td>
<td>1.860</td>
<td>OK</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Details of Leveling Using Height of Collimation at Site (Inner Path)

<table>
<thead>
<tr>
<th>Point No.</th>
<th>Chainage</th>
<th>Length</th>
<th>Back Sight</th>
<th>Intermediate Sight</th>
<th>Fore Sight</th>
<th>Height of Collimation</th>
<th>Reduce Level</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td>1.435</td>
<td></td>
<td></td>
<td>101.435</td>
<td>100.000</td>
<td>BM</td>
</tr>
<tr>
<td>B1</td>
<td>0.0</td>
<td>0.0</td>
<td>1.325</td>
<td></td>
<td></td>
<td>101.435</td>
<td>100.110</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>44.0</td>
<td>44.0</td>
<td>1.245</td>
<td></td>
<td></td>
<td>101.435</td>
<td>100.190</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>37.0</td>
<td>81.0</td>
<td>1.105</td>
<td>0.780</td>
<td></td>
<td>101.760</td>
<td>100.655</td>
<td>CP1</td>
</tr>
<tr>
<td>B3-1</td>
<td>0.0</td>
<td>81.0</td>
<td>1.700</td>
<td></td>
<td></td>
<td>103.460</td>
<td>101.760</td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>30.0</td>
<td>111.0</td>
<td>1.645</td>
<td></td>
<td>1.365</td>
<td>103.460</td>
<td>101.815</td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td>18.6</td>
<td>129.6</td>
<td>1.365</td>
<td></td>
<td>1.475</td>
<td>103.460</td>
<td>102.095</td>
<td></td>
</tr>
<tr>
<td>B6</td>
<td>30.0</td>
<td>159.6</td>
<td>1.550</td>
<td></td>
<td></td>
<td>103.460</td>
<td>101.910</td>
<td></td>
</tr>
<tr>
<td>B7</td>
<td>30.0</td>
<td>189.6</td>
<td>1.315</td>
<td>1.475</td>
<td></td>
<td>103.300</td>
<td>101.985</td>
<td>CP2</td>
</tr>
<tr>
<td>B8</td>
<td>30.0</td>
<td>219.6</td>
<td>1.440</td>
<td></td>
<td>1.440</td>
<td>103.300</td>
<td>101.860</td>
<td></td>
</tr>
<tr>
<td>B9</td>
<td>30.0</td>
<td>249.6</td>
<td>1.570</td>
<td></td>
<td>1.570</td>
<td>103.300</td>
<td>101.730</td>
<td></td>
</tr>
<tr>
<td>B10</td>
<td>30.0</td>
<td>279.6</td>
<td>1.800</td>
<td></td>
<td>1.800</td>
<td>103.300</td>
<td>101.500</td>
<td></td>
</tr>
<tr>
<td>B11</td>
<td>23.3</td>
<td>302.9</td>
<td>1.330</td>
<td>2.075</td>
<td></td>
<td>102.555</td>
<td>101.225</td>
<td>CP3</td>
</tr>
<tr>
<td>B12</td>
<td>22.1</td>
<td>325.0</td>
<td>1.525</td>
<td></td>
<td>1.525</td>
<td>102.555</td>
<td>101.030</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arithmetic Check</td>
<td>6.885</td>
<td>11.940</td>
<td>5.855</td>
<td>1.030</td>
<td>BS-FS</td>
<td>1.030</td>
<td>OK</td>
<td></td>
</tr>
</tbody>
</table>
Survey Details

- Each round consists of one outer path and one inner path.
- Length of each round path = 1473.35 mt.
- Total number of rounds to be consider for reading - 6 (3-forward rounds, 3-opposite rounds) to ensure total length of track as 8.840 Km, which is a requirement of the long path.

Considering rising and falling gradient, Outer path is mark with points: A to Z and A1 to A9 and inner path: B1 to B12 with help of Odometer. At these points, pulse is recorded during the experimentation (Cho et al., 1999). The variation of chainage of outer ring (A-A9) and inner ring (B1-B12) is shown in Figure 7 and Figure 8 respectively.

TRAFFIC DATA COLLECTION

Traffic volume is the number of vehicles crossing a section of road per unit time at any selected time in a specified direction. Traffic

![Figure 7: Variation of Levels of Outer Road Path](image)

Variation of chainage - outer ring (A-A9)

![Figure 8: Variation of Levels of Inner Road Path](image)

Variation of chainage - inner ring (B1-B12)
volume is expressed as vehicles per day and vehicles per hour.

The traffic flow data is needed for Project Design, to study future traffic trends and assisting in predicting traffic flows in the future for a given period and to classify roads on their functional basis. The magnitude of traffic data required is to be collected, manually. It is most common method of collecting traffic flow data, which consists of assigning a person to record traffic as it passes. The traffic-counting is carried out at the specific locations throughout the road network at set interval. The duration of the count is determined prior to commencement of traffic counting.

Manual Count Classification

Manual traffic flow count is categorized by a visual assessment of the vehicle size. The manual traffic flow data collection system classifies vehicles into nine categories as follows:

- Passenger Cars
- Pick up or Van/auto rickshaw
- Trucks
- Motorcycle/scooter
- Bicycle
- Cycle-rickshaw
- Heavy Busses, Mini Busses
- Small/large bullock cart and hand cart
- Agriculture Tractors

Duration of Counting

Duration of traffic counts is dependent on the type and quality of data required. However, the parameters to be considered are the peak traffic, average traffic. It is therefore important that surveys should produce information required at the lowest possible cost and to a level of accuracy that inspires confidence in decision making for the intended goal. When carrying out short-term counting, the counting period is free of events or holidays, Days with exceptionally bad weather.

Analysis and Presentation of Traffic Data

At the simplest extreme, analysis consists of totaling different categories of vehicles in a volumetric count.

The essential part of traffic data collection process is to be analyzed on the basis of Weekly traffic census count survey and Hourly traffic census survey which is presented in a format that is easily understandable. Weekly Traffic Census Count Survey is shown in Table 3.

The traffic volume generally varies throughout the week. The traffic during the working days (Monday to Friday) may not vary substantially, but the traffic volume during the weekend is likely to differ from the working days, Daily pattern of traffic is shown in Figure 9.

The pattern from Monday to Friday is often relatively consistent, a part from Monday morning and Friday afternoon traffic flow. The pattern during the weekend may vary considerably. The pattern also varies from Saturdays to Sundays. The pattern during the weekends is also likely to show more seasonal variation than during the working days.

On the road network during specific periods, traffic volumes changes considerably at each point in time as shown in Table 4.
Table 3: Weekly Traffic Census Count Survey Form Place-J-1, Census Point No-J-1, Direction Counted-Forward Month and Year-November-2012, No. of Days-7

<table>
<thead>
<tr>
<th>Day</th>
<th>Cars</th>
<th>Pick Ups or Vans</th>
<th>Auto</th>
<th>Rickshaw</th>
<th>Trucks</th>
<th>Motor Cycle/ Scooter</th>
<th>Bicycle</th>
<th>Cycle Rickshaw</th>
<th>Heavy/ Mini Buses</th>
<th>Small/ Large Bullock Cart and Hand Cart</th>
<th>Agric Tractors</th>
<th>Total No. of Vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45</td>
<td>65</td>
<td>15</td>
<td></td>
<td></td>
<td>134</td>
<td>160</td>
<td>64</td>
<td>16</td>
<td>18</td>
<td>0</td>
<td>517</td>
</tr>
<tr>
<td>2</td>
<td>58</td>
<td>57</td>
<td>16</td>
<td></td>
<td></td>
<td>150</td>
<td>169</td>
<td>70</td>
<td>18</td>
<td>14</td>
<td>02</td>
<td>554</td>
</tr>
<tr>
<td>3</td>
<td>55</td>
<td>76</td>
<td>14</td>
<td></td>
<td></td>
<td>140</td>
<td>158</td>
<td>72</td>
<td>20</td>
<td>17</td>
<td>0</td>
<td>552</td>
</tr>
<tr>
<td>4</td>
<td>56</td>
<td>70</td>
<td>20</td>
<td></td>
<td></td>
<td>145</td>
<td>158</td>
<td>74</td>
<td>17</td>
<td>19</td>
<td>01</td>
<td>560</td>
</tr>
<tr>
<td>5</td>
<td>48</td>
<td>78</td>
<td>21</td>
<td></td>
<td></td>
<td>139</td>
<td>170</td>
<td>68</td>
<td>18</td>
<td>20</td>
<td>0</td>
<td>562</td>
</tr>
<tr>
<td>6</td>
<td>49</td>
<td>75</td>
<td>18</td>
<td></td>
<td></td>
<td>158</td>
<td>175</td>
<td>77</td>
<td>20</td>
<td>16</td>
<td>01</td>
<td>589</td>
</tr>
<tr>
<td>7</td>
<td>63</td>
<td>86</td>
<td>19</td>
<td></td>
<td></td>
<td>170</td>
<td>189</td>
<td>82</td>
<td>10</td>
<td>18</td>
<td>01</td>
<td>638</td>
</tr>
</tbody>
</table>

Figure 9: Different Average Daily Traffic Flow Levels

Typical hourly patterns of traffic flow show a number of distinguishable peaks in the morning followed by a new peak in the late evening. Hourly pattern of traffic flow is shown in Figure 10.
Table 4: Hourly Traffic Census Survey Form

S. No.	Types of Vehicles	Hours →	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	No. of Vehicles
--------	-------------------	---------	---	---	---	---	---	---	---	---	---	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	
1	Cars		0	0	2	3	4	4	2	6	13	11	14	10	8	7	7	6	9	16	15	13	13	14	10	2	
2	Pick Ups		3	3	2	4	4	6	10	13	20	18	14	15	12	10	11	8	15	19	17	17	16	15	11	6	
3	Trucks		0	0	0	1	0	0	0	1	5	3	3	4	2	1	0	2	1	1	0	0	0	1	0	0	
4	Motor Cycle		0	2	1	2	4	8	19	23	27	32	19	20	14	15	12	13	18	27	20	18	15	14	3	1	
5	Bicycle		0	0	1	3	10	15	18	20	25	30	20	21	18	16	13	14	20	32	26	20	19	19	17	5	
6	Cycle Rickshaw		2	1	2	4	6	12	15	14	19	17	12	12	9	7	8	7	14	19	14	17	12	7	4	0	
7	Heavy/Mini Buses		0	0	0	0	3	2	4	5	5	4	3	3	3	2	3	6	7	6	7	4	3	2	0		
8	Small/Large Bullock Cart and Hand Cart		0	0	0	5	3	3	2	1	1	0	0	2	0	0	0	2	0	1	0	0	0	0	0		
9	Agriculture Tractors		0	0	0	0	0	0	0	2	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0		
Total No. of Vehicle			5	6	8	17	33	51	69	85	115	117	86	85	69	59	53	53	85	122	99	92	79	73	47	14	

Figure 10: Traffic Flow Variation
CONCLUSION
The cycle rickshaw is a local means of transport and also known as pedicab, cyclo, or trishaw in different part of the world. Cycle rickshaws are human-powered, i.e., are pulled by a person on foot, a type of tricycle designed to carry passengers in addition to the driver.

Energy to diver the cycle-rickshaw is provided by human being who works as an engine. The muscle power, basically those of buttocks, upper leg and lower leg transmitted to the pedal-cranks, which ultimately driver the rear wheels. The cracking mechanism is used for conversion of muscle power into the useful torque. Rickshaw puller propels the vehicle at his choice of speed and accordingly adjusts the pedal force and repetitive rhythm of muscles. To increase the power conversion of the cycle-Rickshaw puller and therefore to minimize the energy expenditure of rickshaw puller while pulling heavy load measuring approximately 250 kg, it is felt necessary to optimize wheel diameter and speed ratio of cycle-rickshaw.

In view of above, the experimentation is carried out on proper road track with detailed study of road track having slop up as well as down, slope shown on the layout which is enough to record consumption of energy of Rickshaw puller, reading of various parameters like blood pressure, pulse rate recorded while moving the rickshaw in forward as well as in opposite direction.

Since, this road track is representing every possible road condition, the concern track is considered for design of experimentation work (Cho et al., 1999; and Martin and Spirduso, 2001).

REFERENCES