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XY SCANNING MECHANISM:
A DYNAMIC APPROACH
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Flexure mechanisms have immense scope in their use for applications involving high precision
motion. There are many concepts to build high speed or high precision manipulators, but only a
few of them can serve to obtain high speed together with high precision. Mathematical modeling
of simple XY manipulator is carried out XY manipulator uses typical Double Flexural
configurations. Static and dynamic analysis is carried out using MATLAB. Static analysis is
carried out to determine static deflection of motion stage with force. It is observed that force
deflection curve is linear. Dynamic analysis is carried out to determine frequencies and mode
shapes of flexural manipulator. Further, Finite Element software ANSYS is used to carry out
static and dynamic analysis of basic DFM configuration and few XY mechanisms. It is observed
that close matching of FEM results with model developed.
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INTRODUCTION
Several publications talk about the pros and
cons of flexure mechanisms and highlight the
significance of their use in technology required
to provide energy efficient, wear free, higher
resolution and high speed devices. Flexures
have been used as bearings to provide
smooth and guided motion, for example in
precision motion stages; as springs to provide
preload, for example in the brushes of a DC
motor or a camera lens cap; to avoid over-
constraint, as in the case of bellows or helical
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coupling; as clamping devices, for example,
the collet of a lathe, for elastic averaging as in
a windshield wiper, and for energy storage,
such as, in a bow or a catapult. This list
encompasses applications related to the
transmission of force, displacement as well as
energy, thereby making the versatility of
flexures quite evident.

A historical background of flexures is
presented in several texts. Flexure design is
traditionally based on creative thinking and
engineering intuition, analytical tools can aid

Research Paper



141

Int. J. Mech. Eng. & Rob. Res. 2014 Sollapur Shrishail B and Deshmukh Suhas P, 2014

the design conception, evaluation and
optimization process. Consequently, a
systematic study and modeling of these
devices has been an active area of research.
Some of the existing literature deals with
precision mechanisms that use flexures as
replacements for conventional hinges, thus
eliminating friction and backlash. Analysis and
synthesis of these mechanisms is simply an
extension of the theory that has already been
developed for rigid link mechanisms, except
that in this case the range of motion is typically
small. The key aspect of these mechanisms
is flexure hinge design. Unlike these cases
where compliance in the system is limited to
the hinges, other flexure mechanisms exist in
which compliance is distributed over a larger
part of the entire topology. Both these kinds of
mechanisms offer a rich mine of innovative and
elegant design solutions for a wide range of
applications.

Any systematic flexure design exercise has
to be based on performance measures. While
detailed performance measures can be laid
out depending on specific applications, a
general set of measures are highlighted here.
These measures are based on the deviation
of flexures from ideal constraints.

One of the primary applications of flexures
is in the design of motion stages. This thesis
strives to bridge the gap between intuition and
mathematical analysis in flexure mechanism
design. Accordingly, the following list highlights
the specific contributions of this thesis.

1. Dynamic Modeling of double flexural
manipulator is carried to determine its
natural modes and mode shapes using
assumed modes method.

2. Modal analysis and frequency response is
determined for DFM considering actuator
dynamics.

3. Static analysis is carried for DFM.

4. FEM analysis of DFM is carried out and
comparison of results of assumed modes
method and ANSYS results is done.

High precision measuring technologies
such as the Scanning Probe Microscope
(SPM), Atomic Force Microscope (AFM),
electron microscope, X-ray microscope, and
confocal scanning microscope are rapidly
advancing via the development of
semiconductor processing technologies and
biomedical technologies. Most of these
microscopes require a precise multi-axis
scanner for sample scanning, and many
scanners with nanometer-level resolution have
been developed.

The majority of practical nano-positioners
utilize flexure-based structures, such as
compliant mechanisms and notch-flexure-
based mechanisms, due to their smooth and
friction-free motion and high durability without
wear and deterioration. Piezoelectric actuators
and high resolution displacement sensors are
widely used with flexure-based mechanisms
to obtain displacement with nanometer level
resolution. Among the flexure-based
mechanisms, parallelogram mechanisms
restrict all rotational degrees-of-freedom of the
connector (end-effector) and keep the
connector parallel to the base, because of the
equal lengths for its crank and followers (the
members connected to the base). In spite of
rotation of the crank and the follower, the
connector undergoes pure translation along a
circular path. Due to this feature, parallelogram
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mechanisms can be directly used as single
degree-of-freedom nano-positioning modules.
Such nano-positioning modules can be easily
configured as building blocks to build a multi-
degree-of-freedom nano-positioner.
Parallelogram mechanisms have also been
used in many other applications, such as
delta-robots and other low degree-of-freedom
parallel kinematics nano-positioning stages.

Compliant mechanisms transmit motion
and force by deflection of their flexible
members. They are usually made of a
monolithic piece of material and thus involve
no wear, backlash, noise, and lubrication. To
predict more accurately their deflected shape
in larger working range, the analysis of
compliant mechanisms has usually based on
nonlinear numerical techniques such as the
finite element method. To increase the working
range of a compliant mechanism, its members
usually undergo large displacement and
rotation. Unlike structural members whose
deflection is small so that the linear beam
theory holds, compliant members capable of
large displacement and rotation require a
nonlinear analysis to accurately predict their
deformed configuration. Some commonly used
nonlinear analytical methods include the
elliptical integrals, the chain algorithm, and the
Finite Element Method (FEM).Since
positioning systems play a crucial role in many
nanotechnology applications, they have
attracted considerable interest from many
scholars and research bodies in recent years.
A review of the available literature reveals that
positioning devices can broadly be divided
into three categories in terms of the particular
method utilized to drive the stage. These
categories are: (1) stick-slip induced friction

drive stages, (2) clamp release inchworm-
screw stages and (3) elastic deformation
stages.

Assumed Modes Method: Double
Parallelogram Flexure Mechanism:
Using the assumed modes technique, we
would first find the natural frequencies and
mode shapes of the X-stage and later use
these to arrive at the dynamic equations of this
system.

From the Euler-Bernoulli beam theory, each
beam satisfies
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By separation of variables:
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Equation gives us the beam mode shapes
Y corresponding to each natural frequency .
The general solution (for the ith beam) to this
problem is of the form:

  bxCbxCxY ii cossin 21 

hChbxC ii cossin 43  ...(5)

By symmetry, the two beams in the upper
half will have the same mode shapes as their
corresponding counterparts in the lower half.
We therefore analyze the boundary conditions
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for beam 1 and beam 2 as depicted in fig for
the case of free vibrations.

Boundary Conditions (subscript represents
the beam number):
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The above boundary conditions give us
eight equations in the nine unknowns and
solving these boundary condition we get:
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Using matrix notation, they take the form’s
(b) = 0. These equations were then solved
using an optimization algorithm to find the
values of the unknowns.

Using Values Specific to Our Setup
Mass of primary motion stage (Mp) =

0.307 kg

Mass of secondary/intermediate motion
stage (Mi) = 0.070 kg

Beam material density: 7860 kg per cubic
metre

Beam thickness = 0.05 cm

Mass/ unit length (m) = 0.09825 kg/m

Beam Length (L) = 12.5 cm

Width = 2.5 cm

Area of cross section of beam = 1.25 x
10–5 m2

Young’s Modulus (E) = 1.131 x 1011 pa

Results show that the final transfer function
depends primarily on the first two modes of
the system. The contribution from the remaining
modes is not very significant. Hence, using only
the first two modes:

Mode Shapes

Frequency: 3.93 Hz

  bxbxbxxY sinh237.0cos108.0sin237.01 

bxcosh086.0

  bxbxbxxY sinh213.0cos074.0sin213.02 

bxcosh095.0

Frequency: 16.13 Hz

  bxbxbxxY sinh237.0cos108.0sin237.01 

bxcosh086.0

  bxbxbxxY sinh053.0cos071.0sin053.02 

bxcosh03.0

The value Yi(x) can be scaled using a
normalizing constant. It can be easily verified
that this constant has no effect on the final
system transfer function obtained using these
modeshapes. The modeshapes are shown in
Figures 2 and 4.
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Figure 1: Frequency 3.93 Hz via AMM
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Figure 2: Mode Shape 1: Frequency 4.03 Hz via FEM (Ansys)
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Figure 3: Frequecy 16.13 Hz via AMM
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Since the two beams will move together in
the presence of any frequency excitation, the
generalized time coordinate qi(t) for these will
be the same; the mode shapes will differ. From
the assumed modes method theory and using
only mode 1 and 2, displacement ‘y’ for each
beam in its own frame can be expressed as:
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For the case above, the energy equations
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The kinetic energy can be written as:
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The potential energy can be written as:
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Using Lagrange equation with L = K – V;
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This gives the equation of motion for free
vibration:
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For our case
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the equations can be written in the form
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and A, B,C are matrices given by:

Figure 4: Mode Shape 2: Frequency 16.63 Hz via FEM (Ansys)
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Coupled Equations: Flexural Mechanism
and Linear Voice Coil Actuator

Force sensitivity   AmpNK f /78.5

Back EMF constant   msecVKb /77.5

Resistance   OhmR 4.4

Inductance   HenryeL 34.1 

Mass of the coil assembly   KgMca 0249.0

The value of inductance is very low and as
such it affects the transfer function of the
system only at high frequencies (>800 rad/s).
Hence, neglecting inductance and coupling the
above equation with the double parallelogram
equation, we get:
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Figure 5: Collocated Actuation
and Sensing

The mechanism is actuated using a Linear
Voice Coil Actuator (shown above). In the final
assembly, the coil assembly mass of the voice
coil actuator is attached to and moves with the
primary motion stage. Thus, in the
equationsthe effective mass of the primary
stage changes to mass (primary stage) +
mass (coil assembly).

Equations: Voice Coil Actuator

The voltage drop across the actuator can be
written a        inductancebackemfresistance tVtVtVtV 

The values specific to our actuator model
are:

Figure 6: Circuit Diagram for the Voice
Coil Actuator
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The voice coil back emf acts as a resistance
and reduces bode plot amplitude in the lower
frequency zone. The inductance has a similar
effect over the higher frequency range.

Static and Dynamic Analysis of DFM
Static Analysis of Flexural
Mechanism
This flexure unit is also referred to as a
compound parallelogram flexure, folded beam
flexure or crab-leg flexure. Analysis shows that
this flexure allows relative Y translation
between bodies A and B, but is stiff in relative
X displacement and rotation. The parasitic
error along X direction, is considerably smaller
because any length contraction due to beam
deformation is absorbed by a secondary
motion stage. There does exist a rotational
parasitic motion, which may be eliminated by
appropriate location of the Y direction force.

Hence, body A exhibits perfect Y-translation
with respect to body B on the application of a
Y direction force. These statements are true
only in the absence of X direction forces.

The double parallelogram may be employed
to construct XY mechanisms as shown in
Figure. In these cases, cross axis coupling and

Figure 7: Bode Plots of Theoretically Derived Models: 1) Double Parallelogram Flexural
Mechanism, and 2) The Overall Assembly, Including the Voice Coil
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Figure 8: Double Flexure Mechanism
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motion stage yaw should be small and actuator
isolation should also be better than previous
designs.

Beam material density = 7860 kg per cubic
metre

Beam thickness = 0.05 cm

M a s s / u n i t  l e n g t h  ( m) = 0.09825 kg/m

0,11,
12 2

2
2
1

2
3





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
 


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Lbb
t

El
FL

Beam length (L) = 12.5 cm

Width = 2.5 cm

Area of cross section of beam = 1.23 x
10–5 m2

Young’s modulus (E) = 1.31 x 1011 pa

Figure 9: Comparison of Analytical and
FEM-ANSYS Results for Static Analysis

Fig 9: Comparison of Analytical and
FEM-ANSYS results for Static

Analysis

Figure 10: Static Analysis: Finite Element
Results by Application of 1 N Load

at Motion Stage

Figure 11: Static Analysis: Finite Element
Results by Application of 2 N Load

at Motion Stage
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Deflection, angle of rotation and parasitic
motion for double parallelogram flexural unit
is given by following relations,

Mechanism Analysis
This chapter looks at the analytic development
of the dynamic equations of the system using
the assumed modes method. The results are
then compared with those obtained from FEM
(Ansys) and via the open loop experiments on
the setup.

X-Y positioning is achieved using two
double parallelogram mechanisms arranged
as shown below:

By symmetry, we can say that the load is
equally shared by the upper and lower halves
of the structure. This is depicted in Figure 13.

Dynamic Analysis: Double Flexure
Mechanism
Use modal analysis to determine the vibration
characteristics (natural frequencies and mode
shapes) of a structure or a machine
component while it is being designed. It can
also serve as a starting point for another, more

Figure 11 (Cont.)

Each stage operates independently of the
other. Based on this premise, we can model
the X-stage (inside the enclosure) as:

Figure 12: X-Y Positioning Stage with
Two Double Parallelogram Flexure

Mechanisms

Figure 13: a) X-Stage b) Symmetric
Distribution of the Load

Secondary
Motion
Stage

Primary
Motion
Stage

F

F/
X Y

Beam 2
Beam 1

Mode Frequency [Hz]

1 14.3

2 170.19

3 174.75

4 324.53

5 468.33

6 474.22

7 479.39

8 560.71

9 590.08

10 918.42

Table 1: Modal Analysis Result
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detailed, dynamic analysis, such as a transient
dynamic analysis, a harmonic response
analysis, or a spectrum analysis. Summarizing
the modal analysis method of analyzing linear
mechanical systems and the benefits derived:

• Solve the undamped eigenvalue problem,
which identifies the resonant frequencies
and mode shapes (eigenvalues and
eigenvectors), useful in themselves for
understanding basic motions of the system.

• Use the eigenvectors to uncouple or
diagonalizable the original set of coupled
equations, allowing the solution of n-
uncoupled s dof problems instead of solving
a set of n-coupled equations.

• Calculate the contribution of each mode to
the overall response. This also allows one
to reduce the size of the problem by
eliminating modes that cannot be excited
and/or modes that have no outputs at the
desired dof's. Also, high frequency modes
that have little contribution to the system at
lower frequencies can be eliminated or
approximately accounted for, further
reducing the size of the system to be
analyzed.

• Write the system matrix, A, by inspection.
Assemble the input and output matrices, B
and C, using appropriate eigenvector terms.
Frequency domain and forced transient
response problems can be solved at this
point. If complete eigenvectors are available,
initial condition transient problems can also
be solved. For lightly damped systems,
proportional damping can be added, while
still allowing the equations to be uncoupled.

ANSYS V11 Workbench is used here to
carry out modal analysis of flexural unit used

as basic building blocks of XY planar flexural
mechanisms

Modal Analysis of Parallelogram
Single Flexure

Figure 14: Analysis of Single Flexure
Mechanism

Modal Analysis of Double Flexural
Unit
It can be analytically shown that parallelogram
flexure offers small resistance to relative
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motion in the Y direction but is stiff with respect
to relative motion in X and rotation. Hence, it
is a much better approximation for single DOF
flexure as compared to the simple beam
flexure used in the previous case. wo rigid
moving platforms are referred to as the primary
and secondary platforms. Loads f, m and p
are applied at the primary platform. The two
parallelograms are treated as identical, except
for the beam spacing, w1 and w2. Assumptions
similar to the ones stated in the previous
section hold here as well. x1, y1 and 1 are the
absolute displacement coordinates of the
secondary stage, and x2, y2 and 2 are those
of the primary stage, along the directions

indicated in Figure 15. Force displacement
results obtained in the previous section are
applied to the constituent parallelograms in the
present case. Force equilibrium conditions are
obtained by drawing FBDs for each of the
platforms.

Figure 15: Double Flexure Mechanism

Figure 16: Modal AnalysisDouble Flexure
Mechanism

Figure 17: Modal Analysis of Flexure
Mechanism 1

FEM Analysis of Flexural
Mechanisms 1 (Static)
The parallelogram flexure unit is a classic
design that has been employed in many
flexural mechanisms. Due to their finite
stiffness, the additional flexure units do not
over-constrain the mechanism. This symmetric
arrangement should result in several
performance improvements. The motion stage
yaw should be further reduced to due to the
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additional rotational constraints arising from
the parallelogram flexures. On the application
of an X actuation force, the two sides of the
mechanism tend to produce displacements in
Y direction that counter each other, and
therefore reduce the cross-axis coupling
errors. Out of plane stiffness also improves due
to better support of the motion stage.

Figure 18: Modal Analysis of Flexural
Mechanism 1 (Dynamic)

Figure 19: Plot Force via Deflection

Mode Frequency [Hz]

1 12.334

2 33.002

3 169.79

4 170.32

5 173.79

6 194.58

7 348.42

8 451.83

9 467.8

10 469.21

Table 2: Modal Analysis Result

Table 3: Modal Analysis Result
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CONCLUSION
There exist many two-axes planer flexural
mechanisms that allow for small translations
within the plane of the flexure. Most of these
designs incorporate a stacked assembly
where one linear stage in mounted
perpendicular on a second linear stage
resulting in a relatively bulky design.
Nevertheless, in this arrangement the two axes
are entirely decoupled and the actuation of one
axis has no effect on the other. Such an
assembly is commonly referred to as a ‘serial
design’ in robotics terminology. In some clever
serial designs, the above-mentioned stacking
is achieved within a plane.

The disadvantage of serial designs is that
the actuator for the second stage has to be
mounted on the moving member of the first
stage. This not only makes the design
unnecessarily complex but also limits the
system dynamic performance, for example,
speed of response. Ideally, it is desirable to
mount the actuators for both the axes on
ground, i.e., the fixed base.

Furthermore, if one tries to increase the
degrees of freedom of a flexural mechanism
using the serial approach, the design becomes
increasingly cumbersome and bulky. Therefore,
instead of taking this path designers usually
develop assemblies that are based on closed-
chain parallel designs (as opposed to serial
designs). In this kind of designs however,
parasitic coupling between the degrees of
freedom and cross-sensitivity of actuators
become performance limiting factors. These two
factors are explained in the next section. There
are situations where such parallel designs are
used, but accuracy is compromised for economy
in size. There are other situations where any

degree of errors is unacceptable either at the
motion stage itself or at the points of actuator
force application. It would be desirable to have
mechanisms that have the compactness of
parallel designs while axes decoupling and
actuator isolation of serial designs.

In this disclosure we shall present a group
of flexural mechanisms that are based on
parallel elasto-kinematics. It is worthwhile to
mention here that the motion of compliant
mechanisms is not completely characterized
by kinematics; it is strongly dependent on
elastic deformations as well. Hence, the study
of motion of flexural mechanisms is commonly
referred to as elasto-kinematics. Mechanisms
presented here make unique use of known
flexural units and novel geometric symmetry
to minimize or even completely eliminate
actuator cross-sensitivity, and parasitic
coupling between the two axes.

FUTURE SCOPE
The designs presented in this document are
very fundamental and can be used over a wide
range of macro, meso or micro scale precision
machines where decoupled multiple degrees
of freedom are required. Potential applications
can be found in optical instruments, Micro and
Nano Electro Mechanical Systems, precision
metrology, etc. A few specific applications are
mentioned here.

High Precision Two or More Axis Motion
Stage: In certain high precision microscope
that is used for observing the interaction
between protein and DNA molecules, the stage
that holds the specimen needs to be panned
with sub-micron precision. The 2 DOF planer
designs presented in this document are ideal
candidates for such applications.
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Micro-Electro Mechanical (MEM) Motion
Stages for Actuators and Bearings: These
designs are of very significant consequence
to MEMS technology where structures need
to be etched on Silicon wafers. Planer designs
that provide multiple DOF can have an
unprecedented impact on MEMS actuators,
bearings and guides.
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