Int. J. Mech. Eng. & Rob. Res. 2013 ‘:\3; Infemtioncl Joumal of Mechanical Engineering and Robofics Research

ISSN 2278 — 0149 www.ijmerr.com
Vol. 2, No. 1, January 2013
© 2013 IJMERR. All Rights Reserved

Research Paper

ANALYSIS OF UNSTEADY HEAT CONDUCTION
THROUGH SHORT FIN WITH APPLICABILITY OF
QUASI THEORY

Tejpratap Singh'*, Sanjeev Shrivastava' and Harbans Singh Ber?

*Corresponding Author: Tejpratap Singh, < tejpratap50@yahoo.com

The paper is based on the analysis of unsteady heat conduction through short fin with applicability
of quasi theory. “The area exposed to the surrounding is frequently increased by the attachment
of protrusions to the surfaces, and the arrangement provides a means by which heat transfer
rate can be substantially improved. The protrusions are called fins”. The fins are commonly
used on small power developing machine as engine used for motor cycle as well as small
capacity compressor. Earlier, Work under steady state conduction had been carried out
extensively. Unsteady heat conduction analysis for the fins is being done for calculation of heat
transfer. Unsteady Closed form solutions had been derived earlier by various researchers. Exact
solutions are given for the unsteady temperature in flux-base fins with the method of Green’s
Functions (GF) in the form of infinite series for three different tip conditions. The time of
convergence is improved by replacing the series part by closed form solution. The present
study supplies a new approach to calculate the thermal performance of the short fin. For the
short fin case, exact fin solution and a quasi-steady solution is presented. Numerical values are
presented and the conditions under which the quasi-steady solution is accurate are determined.
Dimensionless temperature distribution is presented for both quasi steady theory and exact fin
theory.
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INTRODUCTION and operation of heat exchange apparatus.
The laws which are governing heat Heattransferis the study of the rate at which
transmission are very important to the  energy is transferred across a surface of
engineers in the design, construction, testing  interest due to temperature gradients at the
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surface, and temperature difference between
the different surfaces. This variation in
temperature is governed by the principle of
energy conservation which when appliedto a
control volume or a control mass, states that
the sum of the flow of energy and heat across
the system, the work done on the system and
the energy stored and converted within the
system is zero. The mechanical engineer deal
with problems of heat transfer in the field of
internal combustion engines, steam
generation, refrigeration and heating and
ventilation. To estimate the cost, the feasibility
and size of the equipment necessary to transfer
a specified amount of heat in a given time, a
detailed heat transfer analysis must be made.
The dimensions of boilers, heaters,
refrigerators and heat exchangers depend not
only on the amount of heat to be transmitted
but rather on the rate at which heat is to be
transferred under given conditions. Thermal
system contains matter or substance and this
substance may change by transformation or
by exchange of mass with the surroundings.
To perform a thermal analysis of a system, we
need to use thermodynamics, which allows for
quantitative description of the substance. This
is done by defining the boundaries of the
system, applying the conservation principles
and examining how the system participates in
thermal energy exchange and conversion.

The unsteady response of fins is important
in a wide range of engineering devices
including heat exchangers, clutches, motors
and so on. Heat conduction is increasingly
importantin various areas, namely in the earth
sciences, and in many other evolving areas of
thermal analysis. Acommon example of heat
conduction is heating an object in an oven or

furnace. The material remains stationary
throughout, neglecting thermal expansion as
the heat diffuses inward to increase its
temperature. The importance of such
conditions leads to analyze the temperature
field by employing sophisticated mathematical
and advanced numerical tools. The section
considers the various solution methodologies
used to obtain the temperature field. The
objective of conduction analysis is to
determine the temperature field in a body and
how the temperature varies within the portion
of the body. The temperature field usually
depends on boundary conditions, initial
condition, material properties and geometry
of the body. Why one need to know
temperature field. To compute the heat flux at
any location, compute thermal stress,
expansion deflection, design insulation
thickness, heat treatment method, these all
analysis leads to know the temperature field.
The solution of conduction problem involves
the functional dependence of temperature on
space and time coordinate. Obtaining a
solution means determining a temperature
distribution which is consistent with the
conditions on the boundaries and also
consistent with any specified constraints
internal to the region.

Many researchers have contributed in
unsteady heat conduction through fins.

Donaldson and Shouman (1972) studied
the transient temperature distribution in a
convecting straight fin of constant area for two
distinct cases, namely, a step change in base
temperature, and a step change in base heat
flow rate. The tip of the fin is insulated. The
authors developed the equations for the
transient temperature distribution and the heat
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flow rate for the two aforementioned cases,
and present their results graphically. Also
included is a summary of their experimental
work to verify their results for the case of a step
function in heat flow rate.

Chapman (1959) who studied the transient
behaviour of an annular fin of uniform thickness
subjected to a sudden step change in the base
temperature. His interest in circular annular fins
temmed from the numerous applications of
these type of fins, especially on cylinders of
air cooled internal combustion engines.
Chapman (1959) developed equations that
give the temperature distribution within the fin,
the heat removed from the source and the heat
dissipated to the surroundings, all as functions
of time. These equations in graphical form are
very useful for the design engineers.

Suryanarayana (1975 and 1976) also
studied the transient response of straight fins
of constant cross-sectional area. However,
rather than using the separation of variables
technique followed by Donaldson and
Shouman, he utilized the Laplace transforms
in order to develop the solutions for small and
large values of time, when the base of the fin
is subjected to a step change in temperature
or heat flux. The tip of the fin is insulated in
addition, the use of the Laplace transforms
made it easier for Suryanarayana to develop
solutions for the case of a fin subjected to a
sinusoidal temperature or heat flux atits base.

Suryanarayana (1976) has provided an
analysis of the heat transfer that takes place
from one fluid to another separated by a solid
boundary with fins on one side.

Azizand Na (1980) considered the transient
response of a semi-infinite fin of uniform

thickness, initially at the ambient temperature,
subjected to a step change in temperature at
its base, with fin cooling governed by a power-
law type dependence on temperature
difference. The choice of a semi-infinite
geometry enabled the transformation of the
governing nonlinear partial differential
equations into a sequence of similarity type
linear perturbation equations. Azizand Na also
discussed the applicability of the results to
finite fins.

Mao and Rooke (1994) also used the
Laplace transform method to study straight
fins with three different transients: a step
change in base temperature; a step change
in base heat flux and a step change in fluid
temperature. Transient fins of constant cross-
section have also been studied with the
method of Green’s functions (Beck et al.,
1992, pp. 60-64), a flexible and powerful
approach that are applicable to any
combination of end conditions on the fin.

Aziz and Kraus (1995) present a variety of
analytical results for transient fins, developed
by separation of variable and Laplace
transform techniques. Results discussed
include rectangular fins with three different
base conditions, rectangular fins with power
law convective heat loss and radial fins, along
with several specific examples. Aziz and Kraus
also present a comprehensive literature
review. The material on transient fins of
constant cross-section is also included in a
book by Kraus et al. (2001, Chap.16).

Kim (1976) developed an approximate
solution to the transient heat transfer in
straight fins of constant cross-sectional area
and constant physical and thermal properties.

271



Int. J. Mech. Eng. & Rob. Res. 2013

Tejpratap Singh et al., 2013

The author utilized the Kantorovich method
in the variation formulation to provide a simple
expression of the exact form of the solution.
In some fin applications, Newton’s law of
cooling is not applicable, and a power-law
type dependence of convective heat flux on
temperature better describes the cooling
process. Such cases include cooling of fins
due to film boiling, natural convection,
nucleate boiling, and radiation to space at
absolute zero.

The work discussed so far has focused on
the transient response of fins of simple
geometry such as circular annular fins and
straight fins. In addition, several simplifying
assumptions were utilized such as uniform
thickness, constant cross-sectional area,
semi-infinite length, insulated tip and small fin
thickness-to-length ratio to ensure one
dimensional heat conduction. Recently, work
has included fins of various shapes and cross-
sections, two and three dimensional heat
transfer, and practical applications of finned
heat exchangers.

Campo and Salazar (1996) explored the
analogy between the transient conductionin a
planar slab for short times and the steady state
conduction in a straight fin of uniform cross-
section. They made use of a hybrid
computational method, known as the
Transversal Method Of Lines (TMOL), to arrive
at approximate analytical solutions of the
unsteady-state heat conduction equation for
short times in a plane having a uniform initial
temperature and subjected to a Drichlet
boundary condition. The resulting solutions are
suitable for obtaining quality short-time
temperature distributions within the slab when
itis subjected to a Dirichlet boundary condition,

or a Robin boundary condition for which the
convective heat transfer coefficient is very
large and/or the thermal conductivity of the slab
material is very small.

In an application type study, Saha and
Acharya (2003) conducted a detailed
parametric analysis of the unsteady three-
dimensional flow and heat transfer in a pin-fin
heat exchanger. The work was motivated by
the desire to enhance the perform-of compact
heat exchangers, which are designed to
provide high heat transfer surface area per unit
volume and to alter the fluid dynamics to
enhance mixing. There have been several
numerical studies of transient fins combined
with complicating factors, such as natural
convection (Hsu and Chen, 1991; and
Benmadda and Lacroix, 1996), spatial arrays
of fins (Tafti et al., 1999; and Saha and
Acharya, 2004) and phase change materials
(Tutar and Akkoca, 2004).

There are few publications on transient
experiments for determining heat transfer
coefficients in fins. Mutlu and Al-Shemmeri
(1993) studied a longitudinal array of straight
fins suddenly heated at the base. The
instantaneous heat transfer coefficient was
found at one point on the fin as a ratio of the
measured temperature to the measure heat
flux. There are several papers on inverse
technique for determination of heat transfer
coefficients from temperatures measured in
compact bodies suddenly placed in a
Convection environment (Stolz, 1960; and
Osman and Beck, 1990). In these studies, the
heat transfer coefficient is found from a
systematic comparison between the transient
data and a mathematical model of the heat
conduction in the body of interest.
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EXACT UNSTEADY
SOLUTIONS OF FINS FOR
THREE DIFFERENT TIP
CONDITIONS

Consider a straight fin initially in equilibrium
with the surrounding fluid environment at
temperature T_. The fin has a constant cross-
sectional area, but may be of any shape (pin,
rectangular, etc.). Fortime t> 0 a steady heat
flux is applied to the base of the fin. The
temperature in the fin satisfies the following
equations.

A m(r-1)= 1 7 0<xsL (1)
Att=0, T(x,0)-T,=0 Q)
Atx=0, k2 =g, .(3)
Atx=1L, kZZ—I+h2(T—Te)=O ..(4)

Quantity m is the fin parameter given by
— hA,

kv
general condition that represents one of three
different tip conditions for the fin. For a tip
condition of the first kind, setting k, =0 and h,
= 1 represents a specified end temperature
(at T=T,). For a tip condition of the second
kind, setting k, = k and h, = 0 represents an
insulated end condition. For a tip condition of
the third kind, setting k, = k represents
convection at x = L. Usually the convective
coefficient at the end of the fin is taken as same
as that along the sides of the fin (i.e., h,= hin
general). Here, the results will be written out
for three tip conditions. For the temperature-
end condition (first kind),

m

. The boundary conditionatx=_Lisa

= cos(B, x/L)

L
T(x t)-T, =290 ZM g
n

K
<f-exp[-(m? 2+ g2)ati 2]

Where B = (n—1/2)x,

.(5)

For the insulated end condition (second
kind),

2
_e—m at]
+2q°L

T(x t)-T,
x0T, o

zw cos(f3, x/L)

m? 2 n=t m? % + g2

<f-exp|-(m? 2+ g2)ati 2]

..(6)

Where B = nz and for convective end
condition.

r oGl [ pE+BY | cos(B,x/L)
T(X, t) T, =2 k 2n_1[ﬁ3+822+82] m2L2+ﬁ,$
x[1—exp[—(m2L2+ﬁ§)at/L2]] (7)

Where fsatisfies g tang =B,
And where B, = h,L/k.

Each solution contains a series that should
be considered in two parts: a transient part
with an exponential factor and a steady part
with no exponential factor. Each of the transient
series contains an exponential factor with
argument (m?12+p2) at/L?, which defines the
rate of decay of the unsteady. The decay rate
depends on fin effects (through n?L?) and also
on the tip condition (through p2).

The series solution for the unsteady
temperature in a flux-base fin is developed by
the method of Green’s functions.

First, a transformation (Ozisik, 1993) is used
to remove the fin term from the heat conduction
equation. Let

..(8)

T-T,=We
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and then transform Equations (1)-(4) to give:

w1 ow .

W=;E,O<X<L (9)

Att=0, W(x,0)=0 ...(10)
ow m2at

Atx =0, —ka—x=%e ..(11)

Atx=L, kStenW =0 .(12)

This transformed problem may be solved
by the method of Green’s functions in the form
(Beck et al., 1992, p. 165).

a t

t'=

W (x, t) G%e™ G(x t|x=0t)dt ..(13)
0

The Green’s function associated with
function Wis that for a plane wall, given by Cole
(2008).

G(x t]x, t’):%ﬁ)‘o(o)

Xn (X) Xn (X') o Phalt-t)L?

N, (8,)

o0
2
n=1

The firstterm (for n=0) is needed only for a
type 2 (insulated) boundary at x = L. Eigen
functions X , Eigen values 3, and norms N_
are determined by the boundary conditions on
the fin. For the flux-base fins of interest here,
the Eigen functions are:

.(14)

X

X, n)=cos[ﬁ”T] ..(15)

And the eigen values and norms are given
in Table 1. The number system in Table 1 for
the three cases listed is X2Jwhere J=1, 2, or
3 to represent tip conditions of the first kind
(temperature), second kind (insulated) or third
kind (convection), respectively. After the time
integral in Equation (13) is evaluated, the

transformation in Equation (8) can be reversed
to find temperature T in the form:

-mPat
QL L (1_6 )+QOL = cos(f, x/L)

T(x t)-T, = AN—A
(e 1)-T, k N, mPL?

k &=t P |2 4 2

<fi-exp[-(m? 2+ p2)ati?] ...(16)

Again, the first term is only used when the
fin tip is insulated (see Kraus et al., 2001,
p. 765) for an independent derivation of the
insulated-tip case). The above expression,
with the eigen values and norms are givenin
Table 1, is limited to fins with a specified heat
flux at the base (x = 0). However, the same
approach could be used for fins with other
base conditions with the appropriate plane
wall Green’s function. The plane-wall Green’s
functions for the temperature-base fin (type 1
boundary at x = 0) and the fin with the base
temperature applied through a contact
conductance (type 3 boundary at x = 0) are
available elsewhere (see Beck et al., 1992).

Table 1: Eigen Values for Three Different
Tip Conditions
r
Case N, B, or Eigen Condition
X21 2 (- %)72’
X22 2;n=0 nr
1;,n=0

2(p?+B2

X23 52+ B2 1 B, Btan(B) =B,

Improvement of Series
Convergence

It has long been known that classic solutions
for the temperature in a body heated on a
boundary contain a slowly converging steady-
state series (Ozisik, 1993). In this section, the
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convergence of the transient solution is
improved by replacing the steady series by a
fully summed form. Although the steady-fin
solutions are well known, a unified solution is
presented with the method of Green’s
functions.

The steady temperature satisfies the
following equations.

FT_hA = 11,

gy T-T)=0;0<x<L (17)
oT

Atx=0, -kZ-~q, ..(18)

Atx=L, kS 4, (T-T,)=0 .(19)

Again, the boundary condition at x = L
represents three kinds of tip conditions. Using
the method of Green’s functions, the steady-
fin temperature has the form Cole (2004).

e :% GX2J(X' X' = O)

T (x)- ...(20)

The symbol for Green’s function G,,,
denotes a Cartesian coordinate system
symbol X, boundary of the second kind at x =
0 (symbol 2), and boundary of type Jat x=L
(symbol J) for J = 1, 2, or 3. This numbering
system is used to catalog the many GF
available on the Library web site
(www.greensfunction.unl.edu). Table below
shows the eigen values for three different tip
conditions.

Green’s function G, for the steady-fin is
given by Cole (2008).

R (e—m(ZL—|x—x’|) + e—m(ZL—x—x’))
D

GXZJ(X’ X’) =

n (e—mlx—x’l n e—m(x+x’))/D

Where D=2m (1 - R.e®™)

Coefficient R is determined by the tip
condition:

-1

R= 1
mL-B,
mL-B,

type 1at x=1L
type 2 at x=L

type 3 at x=L

Where 82 = hZL/k.

The above GF may be evaluated at x' =0
and substituted into

The above temperature expression,
Equation (20), to give

(22)

Where coefficient Ris given in the previous
page.

Alternately, steady-fin solutions may be
obtained from computer program TFIN
described previously (Cole, 2004) that
produce analytical expressions for the steady
temperature in fins under a variety of boundary
conditions. Program TFIN is also available for
download at the Green’s Function Library
(Cole, 2008).

Next the closed-form steady solutions given
above are used in the transient-fin solutions
given earlier to replace the slowly converging
series by replacing the series steady term with
non series steady term as obtained in the
Equation (22). The improved-convergence
form of the transient temperature in flux-base
fins are given by:

For the temperature tip condition (first
kind),
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+2—q°L

= cos(f, x/L)
k ZM m2L2n+ B?

<lexp| 22+ g2)ati?]  ..(23)
Where g = (n—-1/2)x

For the insulated end condition (second
kind),

T(X t)_T ~ QL !e—m(ZL—x)+e—mx !_ QL e—mzat

ok mL(1—e’2’"L) ko ml?

%L
k

Ty
exp| 22+ g2)ati?]  ..(24)

Where B = nz and for convective tip
condition (third kind)

mL-B,
gL \mL+B,

k
mL|1-

e—m(ZL—x) n e—mx]

2
|

1+ g2)ati?]

T(x, t)-T, = —
— B2

mL+B,

0

st

n=1

X [exp [— (m2

Where S satisfies B tang = B, and where
B,=h,Lik

cos ,B,,x/L
m? 1% + g2

Ba+B3
p%+B2+B,

|

..(25)

It is instructive to examine these three
temperature solutions as a group. Each
contains a steady term and each contains an
additional term, a non-series transient.
However, the insulated-tip solution uniquely
contains another term, a non-series transient.

Quasi Steady Solution for Short
Fins

The short fin is of interest for our particular
application. The exact temperature expression

for this case contains two terms: a series
steady term and a series transient term. The
series contains an exponential factor with
argument m’L? + [ 2 By comparing these
arguments, it is clear that as time increases
the series term will decay more rapidly. This
suggests that a quasi-steady solution may be
constructed of the form

To(x, t) = T5(x) + T(t)

Here T*is the steady solution term and T*
is the transient solution term. Both the term
contain series term. In quasi steady approach,
series steady term is being transformed in to
a non series term which transforms the
expression in to an easily computed algebraic
expression. Based on the above discussion
of exponential arguments, the quasi-steady
solution should be accurate for later time. The
numerical results given in the next section are
presented with the following dimensionless
variables:

E=X=x/Lt=dt=at/l?

%L/

-JBi L Bi =
“

where 6= Dimensionless temperature

"(Ya)

k

&= Dimensionless location
7= Dimensionless time

M = Fin parameter

Bi = Biot number

With these parameters, the dimensionless
quasi-steady temperature for short fin is given
by putting the above values in the Equation
(25):
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Mf[M B,)e M + 2M§(M+Bz)]
M[M+82 )—(M-B,)e ]

And the dimensionless exact fin
temperature for short fin is given by:

0=

cos (B,¢)
(M2 + ﬂf)

3 +tan ﬂ,,)
22" 1( (1+tan B, )+,Htanﬂ,,

exp [— (M2 +/3,f).§J ...(26)

+tan ,H,,)
o 22” 1[ﬂn (1+tan B, )+ﬂtanﬁn]
<[1-exp|- (M2 + g2)c]| ..(27)
Where g satisfies gtang = B, with

dimension less parameter here g = nr.

RESULTS AND DISCUSSION

Accuracy of Quasi Steady Solution

The quasi-steady solution is compared with
the exact transient solution to determine the

conditions under which the quasi-steady
solution is accurate. Different dimensionless
parameter were considered (M, r and
location) for obtaining the temperature
distribution curves. While variation of one
parameter was considered the other variables
were kept constant as indicated in the graphs.
Based on the analysis, quasi-steady solution
has been proposed as an accurate solution at
large dimensionless times, which is
independent of geometry of the problem.

Accuracy of Quasi Steady Solution
for M = 1 at Dimensionless
Locations 0.0, 0.5 and 1.0

Figures 1, 2 and 3 shows the (dimensionless)
temperature versus time at three different
positions on the fin, all for M = 1.0. For all
values of dimensionless time the quasi-steady
theory estimates the exact values at x/L =0
and x/L =1.0. For all locations the agreement
improves as time increases.

Figure 1: Temperature History in a Fin of Constant Cross Section for Both Quasi Steady
Theory and Exact Theory for M = 1 at Location x/L = X = 0.0

Temperature history for M=1 & dimensionless location X = x/L =0

035 T T I T

COMPARISON OF QUASI STEADY THEORY & EXACT FIN THEORY FOR M=1& X=0

l l l I [

W*

o

dimensionless temperature
=4 s

008 [ ' ‘ [
0

+ quasi steady theory
— exact fin theory

| | | | l

02 03 04

dimensionless time

05 06 07 0.8 09 1
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Figure 2: Temperature History in a Fin of Constant Cross Section for Both Quasi Steady
Theory and Exact Theory for M = 1 at Locationx/L =X =0.5

Temperature history for M=1 & dimensionless location X = x/L =0.5
COMPARISON OF QUASI STEADY THEORY & EXACT FIN THEORY FOR M=1 & X=0.5

0.005 | | : \ ‘ | | \ ‘
° *+ quasi steady theory| -
go‘oos —exactfintheory |
®©
o —~
) -0.01
Q
€00t i
[0
Y
‘D —
@ 0.02
9
C-0.025 m
9
2 o i
0
.§-0.035 |
)
0.04 ,
0,045 ' I I { \ ! | { |
0 01 02 03 04 05 0.6 07 08 0.9 1

dimensionless time

Figure 3: Temperature History in a Fin of Constant Cross Section for Both Quasi Steady
Theory and Exact Theory for M = 1 at Location x/L =X = 1.0

Temperature history for M=1 & dimensionless location X = x/L =1

COMPARISON OF QUASI STEADY THEQORY & EXACT FIN THEORY FOR M=1 & X=1

002 \ \ | \ \ \ \ \ |

+ quasi steady theory
—exact fin theory .

. dimensionle
= & =
= 2 s

=3
=

01 02 03 04 05 06 07 08 0.9 1
dimensionless time

 Figures 1, 2 and 3 shows the at three different positions on the fin, all for
(dimensionless) temperature versus time M=1.
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* The quasi-steady theory estimates the exact
values at x/L =0.0,0.5and 1.0.

* For all locations the agreement improves
as time increases.

Accuracy of Quasi Steady Solution
For £ = X = 0 at Fin Parameter
M=0.2,1.0and 5.0

Figures 4, 5 and 6 shows temperature versus
timeatX=0forM=0.2,1.0and 5.0. AtM =
5.0 the fin transient ends quickly so that this fin
reaches steady-state at about 7=0.1. As M
decreases the temperature distribution takes
longer and longer to reach steady-state. Fin
parameter M may be interpreted as a ratio of
thermal resistances. Specifically, M? is the
thermal resistance along the fin length divided
by the convective thermal resistance from the
surface of the fin. Thus when M is small, the
convective thermal resistance from the surface
of the fin is large compared to the thermal

resistance along the fin, producing a long, slow
transient.

Specific values of the dimensionless
temperature in the quasi-steady theory for
several values of dimensionless time and
several values of fin parameter M, all at
different values of x/L (dimensionless location).
Dimensionless temperature calculated is then
incorporated and analyzed with help of graphs
for both the theories. Followings are the results
incorporated from the graphs.

* Figures 4, 5 and 6 shows temperature
versus time at X=0 for M= 0.2, 1.0 and
5.0.

+ At M =5 the fin transient ends quickly so
that this fin reaches steady-state at about ¢
=0.1.

* As M decreases the temperature
distribution takes longer and longer to reach
steady-state.

Figure 4: Temperature History in a Fin of Constant Cross-Section for Both Quasi Steady
Theory and Exact Fin Theory at Locationx/L=X=0forM=0.2

Temperature history for X = x/L =0 & fin parameter M =0.2
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Figure 5: Temperature History in a Fin of Constant Cross-Section for Both Quasi Steady
Theory and Exact Fin Theory at Locationx/L=X=0forM = 1.0

Temperature history for X = x/L = 0 & fin parameter M =1
COMPARISON OF QUASI STEADY THEORY & EXACT FIN THEORY FOR X=0 & M=1
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Figure 6: Temperature History in a Fin of Constant Cross-Section for Both Quasi Steady
Theory and Exact Fin Theory at Locationx/L=X=0forM=5.0

Temperature history for X = x/L = 0 & fin parameter M =5
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* Fin parameter M may be interpretedasa + Thus when M is small, the convective
ratio of thermal resistances. thermal resistance from the surface of the

280



Int. J. Mech. Eng. & Rob. Res. 2013

Tejpratap Singh et al., 2013

fin is large compared to the thermal
resistance along the fin, producing a long,
slow unsteady state.

CONCLUSION

A unified theory has been presented for
unsteady heat transfer in flux-base fins for three
tip conditions. The method may be easily
extended to fins with other base conditions. A
quasi steady theory has been applied to a case
of straight fin with short length tip in the form of
a simple, non-series expression for steady
term.

* The quasi-steady theory is simple and
efficient for computing numerical values
compared to the exact series solution.

* A comparison with an exact series solution
for the unsteady condition fin shows that the
quasi-steady theory is accurate within
dimensionless times for all values of the fin
parameter M.

* The results show that the quasi-steady fin
model is a simple way to find heat transfer
coefficients for larger dimensionless times.

» Complicated exact unsteady solutions can
be simplified for temperature distribution
analysis through Green'’s function method.

* A unified theory is obtained for unsteady
heat transfer in flux-base fins for three tip
conditions.

Based on the analysis, the following
conclusions have been obtained.

* For M> 1 the accurate range extends to all
dimensionless times except 7= 0.

« The accuracy increases for large
dimensionless times, where the sensitivity
to heat transfer coefficient is largest.

* ForM=0.2,1.0and 5.0. For 7= 0 the quasi-
steady theory overestimates the exact
values at £= X'=0 and estimates the exact
values at £= X=1.0. For all locations the
agreementimproves as time increases.

*+ AtM=5and ¢=X=0thefintransient ends
quickly so that this fin reaches steady-state
at about 7 = 0.2. As M decreases, the
temperature distribution takes longer and
longer to reach steady-state.

*+ When M is small, the convective thermal
resistance of the fin surface is large
compared to the thermal resistance along
the fin, producing a long, slow transient.

e ForM<1and M>1. There is no error for
dimensionless time 7> 0. the region of small
error extends to earlier time.

* The quasi-steady and exact temperatures
agrees closely except at early time (7= 0).

SCOPE FOR FUTURE WORK

* It is suggested that the quasi-steady
approach could be successfully applied to
other fin geometries with different tip
conditions or other fins for which exact
solutions are difficult to be obtained.

* The results show that the quasi-steady fin
approach can be a simple way to find heat
transfer coefficient associated with heat
loss.

* The heat transfer coefficients obtained by
this method are intended for future use as
an external boundary condition for more
elaborate thermal models. %
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APPENDIX
Nomenclatures
Greek

A, Surface area of fin for convection (m?) a Thermal diffusivity (m?s)
Bi  Biot number, h (VIA)/K B, Eigen value [Equation (14)]
B, Biot number, hL/k 0 Dimensionless temperature
G Green’s function & X Dimensionless x-coordinate
h Heat transfer coefficient (W m=2K-") 7,dt Dimensionless time
k Thermal conductivity (W m~'K-") Superscripts
L Length of fin (m) q Quasi-steady
N, Norm [Equation (14)] (m) s Steady state
m  Fin parameter, (m™)
M Dimensionless fin parameter = mL
q, Heatflux (Wm=)
Q Input heat (W)
T  Temperature (K)
t Time (s)
V  Fin volume (m?3)
W  Transformed temperature [Equation (13)]
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