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SIMULATION AND PARAMETER OPTIMIZATION
OF GMAW PROCESS USING NEURAL NETWORKS

AND PARTICLE SWARM OPTIMIZATION
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To improve the corrosion resistant properties of carbon steel usually cladding process is used.
It is a process of depositing a thick layer of corrosion resistant material over carbon steel plate.
Most of the engineering applications require high strength and corrosion resistant materials for
long term reliability and performance. By cladding these properties can be achieved with minimum
cost. The main problem faced on cladding is the selection of optimum combinations of process
parameters for achieving quality clad and hence good clad bead geometry. This paper highlights
an experimental study to predict various input process parameters (welding current, welding
speed, gun angle, contact tip to work distance  and  pinch) to get  optimum dilution  in stainless
steel cladding of low carbon structural steel plates using Gas Metal Arc Welding (GMAW).
Experiments were conducted based on central composite rotatable design with full replication
technique and mathematical models were developed using multiple regression method. The
developed models have been checked for adequacy and significance. Using Artificial Neural
Network (ANN) the parameters were predicted and percentage of error calculated between
predicted and actual values. The parameters were optimized using particle swarm optimization
(PSO) algorithm.

Keywords: Mathematical model, Cladding, GMAW, ANN, Clad bead geometry, Corrosion, PSO

INTRODUCTION
Prevention of corrosion is a major problem in
Industries. Even though it cannot be eliminated
completely it can be reduced to some extent.

ISSN 2278 – 0149 www.ijmerr.com
Vol. 2, No. 1, January 2013

© 2013 IJMERR. All Rights Reserved

Int. J. Mech. Eng. & Rob. Res. 2013

1 Department of Mechanical Engineering, Valia Koonambaikulathamma College of Engineering and Technology, Kerala, 692574, India.
2 SVS College of Engineering, Coimbatore, Tamil Nadu 642109, India.
3 Department of Mechanical Engineering, IGNOU, Delhi 110068, India.

A corrosion resistant protective layer is made
over the less corrosion resistant substrate by
a process called cladding. This technique is
used to improve life of engineering
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components but also reduce their cost This
process is mainly now a day’s used in
industries such as chemical, textiles, nuclear
steam power plants, food processing and
petro chemical industries (Palani and
Murugan, 2006).

Most accepted method of employed in weld
cladding is GMAW. It has got the following
advantages (Kannan and Murugan, 2006).

• High reliability

• All position capability

• Ease to use

• Law cost

• High Productivity

• Suitable for both ferrous and non ferrous
metals

• High deposition rate

• Cleanliness and ease of mechanization

The mechanical strength of clad metal is
highly influenced by the composition of metal
but also by clad bead shape. This is an
indication of bead geometry. Figure 1 shows
the clad bead geometry. It mainly depends on
wire feed rate, welding speed, arc voltage etc.
Therefore it is necessary to study the
relationship between in process parameters
and bead parameters to study clad bead
geometry. Using mathematical models it can
be achieved. This paper highlights the study
carried out to develop mathematical and ANN
models to predict clad bead geometry, in
stainless steel cladding deposited by GMAW.
The experiments were conducted based on
four factor five level central composite
rotatable designs with full replication technique
(Gunaraj and Murugan, 2005). The developed

models have been checked for their adequacy
and significance. Again using ANN, the bead
parameters were predicted. These predicted
and actual parameters were compared. The
parameters were optimized using PSO
algorithm. The parameters were presented in
Graphical form.

Figure 1: Clad Bead Geometry

Percentage Dilution (D) = [B/(A + B)]  100

EXPERIMENTAL TECHNIQUE
The following machines and consumables
were used for the purpose of conducting
experiment.

• A constant current gas metal arc welding
machine (Invrtee V 350-PRO advanced
process with 5-425 amps output range)

• Welding manipulator

• Wire feeder (LF-74 Model)

• Filler material Stainless Steel wire of 1.2 mm
diameter (ER-308 L)

• Gas cylinder containing a mixture of 98%
argon and 2% of oxygen

• Mild steel plate (grade IS-2062)

Test plates of size 300  200  20 mm were
cut from mild steel plate of grade IS-2062 and
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one of the surfaces is cleaned to remove oxide
and dirt before cladding. ER-308 L stainless
steel wire of 1.2 mm diameter was used for
depositing the clad beads through the feeder.
Argon gas at a constant flow rate of 16 litres
per minute was used for shielding. The
properties of base metal and filler wire are
shown in Table 1. The important and most
difficult parameter found from trial run is wire

feed rate. The wire feed rate is proportional to
current. Wire feed rate must be greater than
critical wire feed rate to achieve pulsed metal
transfer. The relationship found from trial run
is shown in Equation (1). The formula derived
is shown in Figure 2.

Wire feed rate = 0.96742857 * Current
+ 79.1 ...(1)

Table 1: Chemical Composition of Base Metal and Filler Wire

Elements, Weight%

Materials C SI Mn P S Al Cr Mo Ni

IS 2062 0.150 0.160 0.870 0.015 0.016 0.031 – – –

ER308L 0.03 0.57 1.76 0.021 0.008 – 19.52 0.75 10.02

Figure 2: Relationship Between Current
and Wire Feed Rate

The selection of the welding electrode wire
based on the matching the mechanical
properties and physical characteristics of the
base metal, weld size and existing electrode
inventory (Kim et al., 2003). A candidate
material for cladding which has excellent
corrosion resistance and weldability is
stainless steel. These have chloride stress
corrosion cracking resistance and strength
significantly greater than other materials.
These have good surface appearance, good
radiographic standard quality and minimum

Figure 3: Experimental Design Procedure
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electrode wastage. Experimental design
procedure used for this study is shown in Figure
3 and importance steps are briefly explained.

PLAN OF INVESTIGATION
The research work was planned to be carried
out in the following steps (Cochran and Coxz,
1987).

• Identification of factors and responses.

• Finding limits of process variables.

• Development of design matrix.

• Conducting experiments as per design
matrix.

• Recording the responses.

• Development of mathematical models.

• Checking the adequacy of developed
models.

• Conducting conformity tests.

Identification of factors and responses

DATA COLLECTION
The following independently controllable
process parameters were found to be affecting
output parameters. These are wire feed rate
(W), welding speed (S), welding gun angle (T),
contact tip to work to distance (N) and pinch
(Ac). The responses chosen were clad bead
width (W), height of reinforcement (R), Depth
of Penetration (P) and percentage of dilution
(D). The responses were chosen based on the
impact of parameters on final composite
model.

The basic difference between welding and
cladding is the percentage of dilution. The
properties of the cladding is the significantly
influenced by dilution obtained. Hence control

of dilution is important in cladding where a low
dilution is highly desirable. When dilution is
quite low, the final deposit composition will be
closer to that of filler material and hence
corrosion resistant properties of cladding will
be greatly improved. The chosen factors have
been selected on the basis to get minimal
dilution and optimal clad bead geometry.

No significant research work has been
conducted in these areas using these process
parameters and so these parameters were
used for experimental study.

Working ranges of all selected factors are
fixed by conducting trial run. This was carried
out by varying one of factors while keeping the
rest of them as constant values. Working
range of each process parameters was
decided upon by inspecting the bead for
smooth appearance without any visible
defects. The upper limit of given factor was
coded as –2. The coded value of intermediate
values were calculated using the Equation (2).

  
 minmax

minmax22

XX

XXX
Xi 


 ...(2)

where X
i
 is the required coded value of

parameter X is any value of parameter from
X

min
 – X

max
. X

min
 is the lower limit of parameters

and Xmax is the upper limit parameters (Kim
et al., 2003).

The chosen level of the parameters with their
units and notation are given in Table 2.

Design matrix chosen to conduct the
experiments was central composite rotatable
design. The design matrix comprises of full
replication of 25(= 32), Factorial designs. All
welding parameters in the intermediate levels
(o) Constitute the central points and
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combination of each welding parameters at
either is highest value (+2) or lowest (–2) with
other parameters of intermediate levels (0)
constitute star points. 32 experimental trails
were conducted that make the estimation of
linear quadratic and two way interactive effects
of process parameters on clad geometry
(Cochran and Coxz, 1987).

The experiments were conducted at SVS
College of Engineering, Coimbatore,
Tamilnadu, 642109, India. In this work Thirty
two experimental run were allowed for the
estimation of linear quadratic and two-way
interactive effects of corresponding each
treatment combination of parameters on bead
geometry as shown Table 3 at random. At each

Welding Current A 1 200 225 250 275 300

Welding Speed mm/min S 150 158 166 174 182

Contact tip to Work Distance m m N 10 14 18 22 26

Welding gun Angle Degree T 70 80 90 100 110

Pinch – Ac –10 -5 0 5 10

Table 2: Welding Parameters and Their Levels

Factor Levels
Parameters Unit Notation

–2 –1 0 1 2

Table 3: Design Matrix

Note: I – Welding current; S – Welding speed; N – Contact tip to work distance; T – Welding gun angle; Ac – Pinch.

1 –1 –1 –1 –1 1

2 1 –1 –1 –1 –1

3 –1 1 –1 –1 –1

4 1 1 –1 –1 1

5 –1 –1 1 –1 –1

6 1 –1 1 –1 1

7 –1 1 1 –1 1

8 1 1 1 –1 –1

9 –1 –1 –1 1 –1

10 1 –1 –1 1 1

11 –1 1 –1 1 1

12 1 1 –1 1 –1

13 –1 –1 1 1 1

14 1 –1 1 1 –1

15 –1 1 1 1 –1

16 1 1 1 1 1

Trial Number
Design Matrix

I S N T Ac

17 –2 0 0 0 0

18 2 0 0 0 0

19 0 –2 0 0 0

20 0 2 0 0 0

21 0 0 –2 0 0

22 0 0 2 0 0

23 0 0 0 –2 0

24 0 0 0 2 0

25 0 0 0 0 –2

26 0 0 0 0 2

27 0 0 0 0 0

28 0 0 0 0 0

29 0 0 0 0 0

30 0 0 0 0 0

31 0 0 0 0 0

32 0 0 0 0 0

Trial Number
Design Matrix

I S N T Ac
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run settings for all parameters were disturbed
and reset for next deposit. This is very essential
to introduce variability caused by errors in
experimental set up.In order to measure clad
bead geometry of transverse section of each
weld overlays were cut using band saw from
mid length. Position of the weld and end faces
were machined and grinded. The specimen
and faces were polished and etched using a
5% nital solution to display bead dimensions.
The clad bead profiles were traced using a
reflective type optical profile projector at a
magnification of X10, in M/s Roots Industries
Ltd. Coimbatore. Then the bead dimension
such as depth of penetration height of
reinforcement and clad bead width were
measured (Serdar and Abdullah, 2008). The
traced bead profiles were scanned in order to
find various clad parameters and the
percentage of dilution with help of AUTO CAD
software. This is shown in Figure 4.

The measured clad bead dimension and
percentage of dilution is shown in Table 4.

Figure 4: Traced Profiles (Specimen No. 2)

Note: 02A represents profile of the specimen (front side) and 02B
represents profile of the specimen (rear side).

Table 4: Design Matrix and Observed Values of Clad Bead Geometry

Trial No.
Design Matrix Bead Parameters

W (mm)      P (mm)     R (mm)      D (%)I    S   N    T    Ac

1 –1 –1 –1 –1 1 6.9743 1.673450 6.02620 10.720910

2 1 –1 –1 –1 –1 7.6549 1.971500 5.88735 12.167460

3 –1 1 –1 –1 –1 6.3456 1.698600 5.45190 12.745520

4 1 1 –1 –1 1 7.7635 1.739615 6.06840 10.610780

5 –1 –1 1 –1 –1 7.2683 2.443000 5.72055 16.673030

6 1 –1 1 –1 1 9.4383 2.490500 5.91690 15.966920

7 –1 1 1 –1 –1 6.0823 2.467200 5.49205 16.589400

8 1 1 1 –1 –1 8.4666 2.073650 5.94670 14.984940

9 –1 –1 –1 1 –1 6.3029 1.580900 5.90590 10.274900

10 1 –1 –1 1 1 7.0136 1.566200 5.98330 9.707297

11 –1 1 –1 1 1 6.2956 1.586050 5.51050 11.116930

12 1 1 –1 1 –1 7.7410 1.846600 5.87520 11.427300

13 –1 –1 1 1 1 7.3231 2.164750 5.72095 15.290970
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REGRESSION ANALYSIS
The response function representing any of the
clad bead geometry can be expressed as
(Ghosh et al., 1998; Gunaraj and Murugan,
1999; and Montgomery, 2003),

Y = f(A, B, C, D, E) ...(3)

where,

Y = Response variable

A = Welding current (I) in amps

B = Welding speed (S) in mm/min

C = Contact tip to Work distance (N) in mm

D = Welding gun angle (T) in degrees

E = Pinch (Ac)

The second order surface response model
equals can be expressed as below

Y = 
0
 + 

1
A + 

2
B + 

3
C + 

4
D + 

5
E +


11

A2 + 
22

B2 + 
33

C2 + 
44

D2 + 
55

E2 + 
12

AB
+ 

13
AC + 

14
AD + 

15
AE + 

23
BC + 

24
BD +


25

BE + 
34

CD + 
35

CE + 
45

DE ...(4)

where, 
0
 is the free term of the regression

equation, the coefficient 
1
, 

2
, 

3
, 

4
 and 

5
 is

are linear terms, the coefficients 
11

, 
22

, 
33

,


44
 and 

55
 quadratic terms, and the

Table 4 (Cont.)

Trial No.
Design Matrix Bead Parameters

W (mm)      P (mm)     R (mm)      D (%)I    S   N    T    Ac

14 1 –1 1 1 –1 9.6171 2.694950 6.37445 18.540770

15 –1 1 1 1 –1 6.6335 2.308900 5.55400 17.231380

16 1 1 1 1 1 10.5140 2.729800 5.46450 20.875500

17 –2 0 0 0 0 6.5557 1.990450 5.80585 13.657620

18 2 0 0 0 0 7.4772 2.573700 6.65505 15.741210

19 0 –2 0 0 0 7.5886 2.504550 6.40690 15.778160

20 0 2 0 0 0 7.5014 2.184200 5.67820 16.823490

21 0 0 –2 0 0 6.1421 1.375200 6.09760 8.941799

22 0 0 2 0 0 8.5647 3.185360 5.63655 22.947210

23 0 0 0 –2 0 7.9575 2.201800 5.82810 15.749410

24 0 0 0 2 0 7.7085 1.858850 6.07515 13.272850

25 0 0 0 0 –2 7.8365 2.357700 5.74915 16.632870

26 0 0 0 0 2 8.2082 2.365800 5.99005 16.380430

27 0 0 0 0 0 7.9371 2.136200 6.01530 15.183740

28 0 0 0 0 0 8.4371 2.171450 5.69895 14.827580

29 0 0 0 0 0 9.3230 3.142500 5.57595 22.843200

30 0 0 0 0 0 9.2205 3.287200 5.61485 23.633400

31 0 0 0 0 0 10.0590 2.866050 5.62095 21.552640

32. 0 0 0 0 0 8.9953 2.720680 5.70520 19.608110

Note: W – Width; P – Penetration; R – Reinforcement; D – Dilution.
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coefficients 
12

, 
13

, 
14

, 
15

, etc., are the
interaction terms. The coefficients were
calculated using Quality America six sigma
software (DOE-PC IV). After determining the
coefficients, the mathematical models were
developed. The developed mathematical
models are given as follows.

Clad Bead Width (W), mm = 8.923 + 0.701A
+ 0.388B + 0.587C + 0.040D + 0.088E –
0.423A2 – 0.291B2 – 0.338C2 – 0.219D2 –
0.171E2 + 0.205AB + 0.405AC + 0.105AD +
0.070AE – 0.134BC + 0.225BD + 0.098BE +
0.26CD + 0.086CE + 0.012DE ...(5)

Depth of Penetration (P), mm = 2.735 +
0.098A – 0.032B + 0.389C – 0.032D –
0.008E – 0.124A2 – 0.109B2 – 0.125C2 –
0.187D2 – 0.104E2 – 0.33AB + 0.001AC +
0.075AD + 0.005AE – 0.018BC + 0.066BD +
0.087BE + 0.058CD + 0.054CE – 0.036DE

...(6)

Height of Reinforcement (R), mm = 5.752 +
0.160A – 0.151B – 0.060C + 0.016D –
0.002E + 0.084A2 + 0.037B2 – 0.0006C2 +
0.015D2 – 0.006E2 + 0.035AB + 0.018AC –

0.008AD – 0.048AE – 0.024BC – 0.062BD –
0.003BE + 0.012CD – 0.092CE – 0.095DE

...(7)

Percentage Dilution (D), % = 19.705 +
0.325A + 0.347B + 3.141C – 0.039D –
0.153E – 1.324A2 – 0.923B2 – 1.012C2 –
1.371D2 – 0.872E2 – 0.200AB + 0.346AC +
0.602AD + 0.203AE + 0.011BC + 0.465BD +
0.548BE + 0.715CD + 0.360CE + 0.137DE

...(8)

Checking the Adequacy of the
Developed Models

The adequacy of the developed model was
tested using the analysis of variance (ANOVA)
technique. As per this technique, if the F-ratio
values of the developed models do not exceed
the standard tabulated values for a desired
level of confidence (95%) and the calculated
R-ratio values of the developed model exceed
the standard values for a desired level of
confidence (95%) then the models are said to
be adequate within the confidence limit
(Kannan, 2010). These conditions were
satisfied for the developed models. The values
are shown in Table 5.

W 36.889 20 6.233 11 3.513 6 2.721 5 1.076 3.390 Adequate

P 7.810 20 0.404 11 0.142 6 0.261 5 0.454 7.472 Adequate

R 1.921 20 0.572 11 0.444 6 0.128 5 2.885 3.747 Adequate

D 506.074 20 21.739 11 6.289 6 15.45 5 0.339 8.189 Adequate

Table 5: Analysis of variance for Testing Adequacy of the Model

1st Order
TermsParameter

2nd Order
Terms

Lack of Fit Error Terms
F-ratio R-ratio

Whether
Model is

AdequateSS DF SS DF SS DF SS DF

Note: SS – Sum of squares; DF – Degree of freedom; F-Ratio (6, 5, 0.5) = 3.40451; R-Ratio (20, 5, 0.05) = 3.20665.

Artificial Neural Networks (ANN)

Neural network consists of many non-linear
computational elements operating in parallel.

Basically it consists of neurons; it represents
our biological nervous system. The basic unit
of ANN is the neuron. The neurons are
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and Dilip, 2007; and Hakan, 2007). In this
study feedback propagation algorithm was
used with a single hidden layer improved with
numerical optimization technique called
Levenbery Marguent approximation algorithm
(LM) (Lee and Um, 2000). The architecture
used in this study is 5-11-4 with 5
corresponding to input value 11 to the number
of hidden layer and 4 corresponding to output.
The topology of architecture of feed forward
three Layers back propagations network is
illustrated in Figure 5.

MAT LAB 7 was used for tracing the
network for the prediction of clad bead
geometry. Statistical mathematical model
was used compare results produced by the
work. For normalizing the data the goal is to
examine the statistical distribution of values
of each net input and outputs are roughly
uniform in addition the value should scaled to
match range of input neurons (Ananya and
Asif, 2007).

connected to each other by link and are known
as synapses which are associated to a weight
factor. An artificial neuron receives signals
from other neurons through the connection
between them. Each connection strength has
a synaptic connection strength which is
represented by a weight of that connection
strength. This artificial neuron receives a
weighted sum of outputs of all neurons to which
it is connected. The weighted sum is then
compared with the threshold for an ANN and if
it exceeds this threshold ANN fires. When it
fires it goes to higher excitation state and a
signal is send down to other connected
neurons. The output of a typical neuron is
obtained as a result of non-linear function of
weighted sum. It is an adaptable system that
can learn relationship through repeated
presentation of data and is capable of
generalizing a new previously unseen data.
One of the most popular learning algorithms
is the back propagation algorithm (Praikshit

Figure 5: Neural Network Architecture
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This is basically range 0 to 1 in practice it
is found to between 01 and 9 (Deepak and
Rajat, 2007). In this paper data base are
normalized using the Equation (9).

 
 minmax

min

25.1
1.0

XX

XX
Xnorm 


 ...(9)

X
norm

 = Normalized value between 0 and 1

X = Value to be normalized

X
min

 = Minimum value in the data set range
the particular data set rage which is to be
normalized.

X
max

 = Maximum value in the particular data
set range which is to be normalized.

The Levenberg-Marquardt approximation
algorithm was found to be the best fit for
application because it can reduce the MSE to
a significantly small value and can provide
better accuracy of prediction. So neural
network model with feed forward back
propagation algorithm and Levenberg-
Marqudt approximation algorithm was trained
with data collected for the experiment. Error
was calculated using the Equation (10). Table
6 shows predicted test data using ANN.

 
valuePredicted

valuePredictedvalueActual
Error

100


...(10)

Table 6: Comparison of Actual and Predicted Values of the Clad Bead Parameters Using
Neural Network Data (Test)

Trial No

Actual Bead Parameters Predicted Bead Parameters Error

W
(mm)

W
(mm)

W
(mm)

P
(mm)

R
(mm)

D
(%)

P
(mm)

P
(mm)

R
(mm)

R
(mm)

D
(%)

D
(%)

1 6.9743 1.6735 6.0262 10.7210 6.1945 1.8500 5.9611 12.3670 0.7798 –0.1770 0.0651 –1.6460

2 7.6549 1.9715 5.8873 12.1670 7.1815 2.1507 6.5553 10.2680 0.4734 –0.1790 –0.6680 1.8990

3 6.3456 1.6986 5.4519 12.7460 7.4954 1.5339 5.4923 9.3808 –1.1500 0.1647 –0.0400 3.3652

4 7.7635 1.7396 6.0684 10.6110 6.4936 1.8540 6.5573 9.4799 1.2699 –0.1140 –0.4890 1.1311

5 7.2683 2.4430 5.7206 16.6730 7.3354 2.6576 5.5657 19.1040 –0.0670 –0.2150 0.1549 –2.431

6 9.4383 2.4905 5.9169 15.9670 7.6066 2.1045 6.4342 18.4900 1.8317 0.3860 –0.5170 –2.523

7 6.0823 2.4672 5.4920 16.5890 8.0417 2.1722 5.5126 16.8740 –1.9590 0.2950 –0.0210 –0.285

8 8.4666 2.0737 5.9467 14.9850 8.3236 2.2349 5.9031 16.9720 0.1430 –0.1610 0.0436 –1.987

9 6.3029 1.5809 5.9059 10.2750 8.2381 1.7955 5.6022 11.2190 –1.9350 –0.2150 0.3037 –0.944

10 7.0136 1.5662 5.9833 9.7073 7.5899 2.4579 6.5420 13.4150 –0.5760 –0.8920 –0.5590 –3.708

11 6.2956 1.5860 5.5105 11.1170 7.7318 1.7647 5.8676 10.7100 –1.4360 –0.1790 –0.3570 0.407

Particle Swarm Optimization

In particle swarm optimization algorithm
PBest is the location of the best solution of a
particle achieved so far. Best is the best
location of the best solution that any neighbour
achieved so far. Initially random numbers are
generated for each particle and these values
are considered as PBest and weights.

Velocity is calculated using the Equation (6),
and added with the present weights in each
link of the neural network. For each particle
the newly calculated weights are compared
with PBest weights and the minimum error
produced by weights are stored in PBest.
Initial velocity V is assumed to be 1 and GBest
is the weights of minimum error produced
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particle. New weights are calculated using
Equation (7).

Velocity[] = wVelocity[] + C
1
rand

1
(PBest[]-

present[]) + C
2
rand

2
(GBest[]-present[])

...(11)

Present [] = Present [] + Velocity []
...(12)

where C
1
 and C

2
 are two positive constants

named learning factors.rand1 and rand
2
 are

two random functions ranging from [0, 1] w is
an inertia weight to control over the impact of
previous history of velocities on current
velocities. The operator w plays the role of a
balancing the global search and the local
search; and was proposed to decrease
linearly with time from a value of 1.4 to 5. As
such global search starts with a large weight
and then decreases with time to favour local
search over global search. When the number
of iterations is equal to the total number of
particles, the goal is compared with the error

produced by GBest weights. If the error
produced by GBest weights are less than or
equal to goal weights in GBest are used for
testing and prediction. Otherwise weights of
minimum error are stored in GBest and
iterations are repeated until goal is reached.
Optimization procedure shown in Figure 6.
rand

1
 and rand

2
 are two random functions in

the range [0, 1] where C
1
 and C

2
 are two

positive constants named learning factors
taken as 2 and ‘w’ is the inertial weight taken
as 0.5. The parameters used for PSO
optimization are shown in Table 7.

Figure 6: Procedure for Proposed PSO
to Optimize GMAW Process Parameters

Population Size 30

Dimension Size 5

Inertia Weight 0.4-0.9

Velocity Factors C
1
, C

2
1.4

Number of Iteration Allowed 100

Table 7: Parameters for PSO Optimization

Method for developing PSO model

• Initiate each particle.

• Calculate fitness value of each particle. If
the fitness value is better than the best
fitness value (PBest) in history. Set the
current value as new PBest.

• Calculate GBest.

• For each particle calculate the particle
velocity.

Numerical Illustration
for Developed PSO Model

The numerical illustration for the developed
model to f ind optimal parameters for
percentage of dilution as summarised below.

Welding current

I = I
min

 + (I
max

 – I
min

) – rand()
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Welding speed

S = S
min

 + (S
max

 – S
min

) – rand()

Contact tip to work distance

N = N
min

 + (N
max

 – N
min

) – rand()

Welding gun angle

T = T
min

 + (T
max

 – T
min

) – rand()

Pinch

P = P
min

 + (P
max

 – P
min

) – rand()

These values are substituted in Equation (8)
and Dilution is obtained.

X(1) = A = Welding current (I) in amps

X(2) = B = Welding Speed (S) in mm/min

X(3) = C = Contact to work piece distance
(N) in mm

X(4) = D = Welding gun angle (T) in degree

X(5) = E = Pinch (Ac)

Objective function for percentage of dilution
which must be minimized was derived from
Equations (5-8). The constants of welding
parameters are given Table 2.

Subjected to bounds

200  X(1)  300

150  X(2)  182

10  X(3)  26

70  X(4)  110

–10  X(5)  10

Objective Function

f(x) = 19.75 + 0.325*x(1) + 0.347*x(2) +
3.141*x(3) – 0.039*x(4) – 0.153*x(5) –
1.324*x(1)^2 – 0.923*x(2)^2 – 1.012*x(3)^2
– 1.371*x(4)^2 – 0.872*x(5)^2 –
0.200*x(1)*x(2) + 0.346*x(1)*x(3) +

0.602*x(1)*x(4) + 0.203*x(1)*x(5) +
0.011*x(2)*x(3) + 0.465*x(2)*x(4) +
0.548*x(2)*x(5) + 0.715*x (3)*x(4) +
0.360*x(3)*x (5) + 0.137*x(4)*x(5) ...(13)

(This is the percentage of dilution)

Constraint Equations

W = (8.923 + 0.701*x(1) + 0.388*x(2) +
0.587*x(3) + 0.040*x(4) + 0.088*x(5) –
0.423*x(1)^2 – 0.291*x(2)^2 – 0.338*x(3)^2
– 0.219*x(4)^2 – 0.171*x(5)^2 +
0.205*x(1)*x(2) + 0.405*x(1)*x(3) +
0.105*x(1)*x(4) + 0.070*x(1)*x(5) –
0.134*x(2)*x(3) + 0.2225*x(2)*x(4) +
0.098*x(2)*x(5) + 0.26*x(3)*x(4) +
0.086*x(3)*x (5) + 0.12*x(4)*x (5)) – 3

...(14)

(Clad bead width (W) mm lower limit),

P = (2.735 + 0.098*x(1) – 0.032*x(2) +
0.389*x(3) – 0.032*x(4) – 0.008*x(5) –
0.124*x(1)^2 – 0.109*x(2)^2 – 0.125*x(3)^2
– 0.187*x(4)^2 – 0.104*x(5)^2 –
0.33*x(1)*x(2) + 0.001*x(1)*x(3) +
0.075*x(1)*x(4) + 0.005*x(1)*x(5) –
0.018*x(2)*x(3) + 0.066*x(2)*x(4) +
0.087*x(2)*x(5) + 0.058*x(3)*x(4) +
0.054*x(3)*x(5) – 0.036*x(4)*x(5)) – 3

...(15)

(Depth of penetration (P) upper limit),

P = (2.735 + 0.098*x(1) – 0.032*x(2) +
0.389*x(3) – 0.032*x(4) – 0.008*x(5) –
0.124*x(1)^2 – 0.109*x(2)^2 – 0.125*x(3)^2
– 0.187*x(4)^2 – 0.104*x(5)^2 –
0.33*x(1)*x(2) + 0.001*x(1)*x(3) +
0.075*x(1)*x(4) + 0.005*x(1)*x(5) –
0.018*x(2)*x(3) + 0.066*x(2)*x(4) +
0.087*x(2)*x(5) + 0.058*x(3)*x(4) +
0.054*x(3)*x(5) – 0.036*x(4)*x(5)) + 2

...(16)
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(Depth of penetration (P) lower limit),

W = (8.923 + 0.701*x(1) + 0.388*x(2) +
0.587*x(3) + 0.040*x(4) + 0.088*x(5) –
0.423*x(1)^2 – 0.291*x(2)^2 – 0.338*x(3)^2
– 0.219*x(4)^2 – 0.171*x(5)^2 +
0.205*x(1)*x(2) + 0.405*x(1)*x(3) +
0.105*x(1)*x(4) + 0.070*x(1)*x(5) –
0.134*x(2)*x(3) + 0.225*x(2)*x(4) +
0.098*x(2)*x(5) + 0.26*x(3)*x(4) +
0.086*x(3)*x(5) + 0.012*x(4)*x(5)) – 10

...(17)

(Clad bead width (W) upper limit),

R = (5.752 + 0.160*x(1) – 0.151*x(2) –
0.060*x(3) + 0.016*x(4) – 0.002*x(5) +
0.084*x(1)^2 + 0.037*x(2)^2 – 0.0006*x(3)^2
+ 0.015*x(4)^2 – 0.006*x(5)^2 +
0.035*x(1)*x(2) + 0.018*x(1)*x(3) –
0.008*x(1)*x(4) – 0.048*x(1)*x(5) –
0.024*x(2)*x(3) – 0.062*x(2)*x(4) –
0.003*x(2)*x(5) + 0.012*x(3)*x(4) –
0.092*x(3)*x(5) – 0.095*x(4)*x(5)) – 6

...(18)

(Height of reinforcement (R) lower limit),

R = (5.752 + 0.160*x(1) – 0.151*x(2) –
0.060*x(3) + 0.016*x(4) – 0.002*x(5) +
0.084*x(1)^2 + 0.037*x(2)^2 – 0.0006*x(3)^2
+ 0.015*x(4)^2 – 0.006*x(5)^2 +
0.035*x(1)*x(2) + 0.018*x(1)*x(3) –
0.008*x(1)*x(4) – 0.048*x(1)*x(5) –
0.024*x(2)*x(3) – 0.062*x(2)*x(4) –
0.003*x(2)*x(5) + 0.012*x(3)*x(4) –
0.092*x(3)*x(5) – 0.095*x(4)*x(5)) + 6

...(19)

(Heights of reinforcement (R) upper limit),

f(x) – 23 ...(20)

–f(x) + 8 ...(21)

(Dilution Upper and lower limit),

x(1), x(2), x(3), x(4), x(5)  2 ...(22)

x(1), x(2), x(3), x(4), x(5)  –2 ...(23)

Calculation of Pbest Value

The minimum percentage of dilution for each
individual solution is considered as PBest
value. This is the best value for the particular
solution only.

Calculation of Gbest Value

The minimum dilution for initial solution or the
whole iteration is considered as Gbest value.
Table 8 shows PBest values and Table 9 shows
velocity of particle. A program on MATLAB 7
is created and run to get optimal dilution. Figure
7 shows convergence of PSO for optimal
dilution.

Table 8: PBest Value

I S T N Ac

0.6241 1,1490 –1.9241 –0.3936 –0.5707

0.6213 1,1414 –1.9139 –0.4406 –0.5562

–0.7617 1,2651 –1.8204 –0.3466 0.5956

1.1993 0.4661 –1.4140 0.4173 –0.1746

0.6213 1.1368 –1.9224 –0.4496 –0.5725

1.2525 1,5324 –0.1270 –0.9208 0.6041

0.6188 1,1379 –1.9242 –0.4524 –0.5750

0.6196 1,1364 –1.9284 –0.4547 –0.5780

0.6230 1,1385 –1.9187 –0.4487 –0.5717

0.6223 1,1368 –1.9227 –0.4507 –0.5761

0.6182 1,1378 –1.9227 –0.4507 –0.5761

0.6182 1.1378 –1.9221 –0.4511 –0.5754

0.6256 1,1393 –1.9129 –0.4459 –0.5675

0.6230 1.1385 –1.9187 –0.4487 –0.5717

Table 9: Velocity of Particles

I S T N Ac

–0.0766 –0.0000 0.0000 0.0000 0.0000
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RESULTS AND DISCUSSION
Experiments were conducted using GMAW to
produce cladding on austenitic stainless steel
material. From the experimental results a
mathematical model was developed using
regression model. Further to enhance scope
of work ANN model was developed by using
feed forward back propagation algorithm.

In this study a feedback propagation neural
network model to predict clad bead geometry
was developed. To ensure accuracy of model
developed to predict width, depth of
penetration, reinforcement and dilution the
experimental and predicted results using the
developed model are compared. The
percentage of error which gives the deviation
of the predicted model and actual model were
calculated and presented in Table 6.

The comparison of actual data and
predicated data of clad bead width, depth of
penetration height of reinforcement and
percentage of dilution are shown from Figures
8 to 11. It can be seen that final results obtained
by experimental method and predicted model
are very close.

It can be see that ANN models can be
effectively used to model cladding parameters.

Table 9 (Cont.)

I S T N Ac

–0.0737 –0.0000 0.0000 0.0000 0.0000

–0.0278 –0.0953 –0.0960 –0.3871 –0.3927

0.0369 –0.0000 –0.6304 –0.5643 –0.6966

–0.0611 –0.1051 –0.1121 –0.4074 –0.4324

–0.0732 –0.0000 0.0000 0.0000 0.0000

–0.0000 –0.0000 0.0000 0.0000 0,0000

–0.0195 –0,0000 0.0000 0.0000 0,0000

–00517 –0,0940 –0.1307 –0.3794 –0.4224

–0.0296 –0.0000 0.0000 0.0000 0.0000

–0.0344 –0,0000 0.0000 0.0000 0,0000

–0.0766 –0.1135 –0.0974 –0.4006 –0.4197

–0.0211 –0.0000 0.0000 0.0000 0,0000

Welding Current (I) 0.6196 265  A

Welding Speed (S) –1.1364 174 mm/min

Contact Tip to Work
Distance (N) –1.9284 10 mm

Welding Gun Angle (T) –0.4547 88 degree

Pinch (Ac) –0.5780 –6

Table 10: Optimal Process Parameters

Parameters Range (Coded
Value)

Actual

Dilution obtained is 8.2% and optimal
process parameters shown in Table 10.

 Figure 7: Convergence of PSO
for Optimal Dilution

 Figure 8: Observed and Predicted Bead
Width Using ANN Model
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These predicated values can be directly used
in automatic cladding in the forms of programs
and for real time quality control and for the
entire cladding process control application to
improve bead geometry.

The objectives are optimized satisfactorily
by PSO algorithm and the percentage of error
was found to be very small.

CONCLUSION
• A neural network model has been

developed from the experimental data to
achieve desired clad bead geometry.
Neural network models are capable of
making prediction of clad bead geometry
with reasonable accuracy.

• The developed models are able to predict
process parameters required to achieve the
desired clad bead geometry of stainless
steel cladding deposited by GMAW and
prediction of ANN models are within the
limits of ±1% accuracy.

• In this study the following steps were applied
for prediction of stainless steel clad bead
geometry using GMAW; (a) Data collection
using experimental studies, (b) Analysing
and processing of data, (c) Training the
neural network, (d) Test of trained neural
network, and (e) Use of trained neural net
work for prediction of data.

• The percentage of error for bead width,
penetration, reinforcement and dilution are
very small. To conclude the main quality
indicator of neural network is its
generalised ability to predict accurately the
output of unseen verification of data.

• The aim of the study was to show the
possibility of the use of neural networks for
calculation of clad bead geometry of
stainless steel cladding deposited by
GMAW method. The results showed that
neural network models can be used as an
alternative tool according to the present
conventional calculation methods.

 Figure 9: Observed and Predicted
Penetration Using ANN Model

 Figure 10: Observed and Predicted
Reinforcement Using ANN Model

 Figure 11: Observed and Predicted
Dilution Using ANN Model
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• In this study parameter optimization of weld
bead geometry in GMAW process on
316 L material was done. Bead on plate
weld runs were performed as per central
composite rotatable design. The results
were fed to the ANN algorithm for
establishing a relationship between input
and output parameters. The results were
then embedded into PSO algorithm which
optimized the process parameters.
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