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Reliability is one of the important parameters, which contributes to customer satisfaction. So
every aspect of design and manufacturing, quality engineering and control directly influences
the reliability of a product. As the importance of reliability is growing in the market scenario, and
as the cost of maintaining the equipment is increasing, it would necessitate every organization
to focus its interest to increase the reliability of their equipment as well as their products. Before
going for the reliability improving acts, it is necessary and good to measure the current
performance. As there are many more difficulties in analyzing complex systems, which have
repairable components, focus of the project work is concentrated on it. In the present work
attempts is made to collecting data, identifying the data type and evaluate the reliability of some
systems. We have used for power-law for evaluate the reliability of some systems. The effort is
put evaluate complex system reliability from the component reliabilities that have been evaluated
by analyzing field failure data. The analysis of reliability measurement is mainly focused on
repairable units, for which different maintenance polices are available. By using ‘Bottom-Up’
approach it has been tried to evaluate the system reliability of complex repairable systems with
help of component reliabilities. For all these problems and difficulties, a program in C-language
is written.
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INTRODUCTION
In today’s technological world nearly everyone
depends upon the continued functioning of a
wide array of complex machinery and
equipment for their everyday health, safety,
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mobility and economic welfare. We expect our
cars, computers, electrical appliances, lights,
televisions, etc., to function whenever we need
them-day after day, year after year. When they
fail the results can be catastrophic: injury, loss
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of life and/or costly lawsuits can occur. More
often, repeated failure leads to annoyance,
inconvenience and a lasting customer
dissatisfaction that can play havoc with the
responsible company’s marketplace position.

It takes a long time for a company to build
up a reputation for reliability, and only a short
time to be branded as “unreliable” after
shipping a flawed product. Continual
assessment of new product reliability and
ongoing control of the reliability of everything
shipped are critical necessities in today’s
competitive business arena.

BASIC TERMS AND MODELS
USED FOR RELIABILITY
EVALUATION
Reliability theory developed apart from the
mainstream of probability and statistics, and
was used primarily as a tool to help nineteenth
century maritime and life insurance companies
compute profitable rates to charge their
customers. Even today, the terms “failure rate”
and “hazard rate” are often used
interchangeably.

The following sections will define some of
the concepts, terms, and models we need to
describe, estimate and predict reliability

Reliability or Survival Function

The Reliability Function R(t), also known as
the Survival Function S(t), is defined by:

R(t) = S(t) = The probability a unit survives
beyond time t.

Since a unit either fails, or survives, and one
of these two mutually exclusive alternatives
must occur, we have

R(t) = 1 – F(t), F(t) = 1 – R(t)

Calculations using R(t) often occur when
building up from single components to
subsystems with many components. For
example, if one microprocessor comes from
a population with reliability function R

m
(t) and

two of them are used for the CPU in a system,
then the system CPU has a reliability function
given by

   tRtR mcpu
2

Survival is the Complementary
Event to Failure

A different approach is used for modeling the
rate of occurrence of failure incidences for a
repairable system. In this chapter, these rates
are called repair rates (not to be confused with
the length of time for a repair, which is not
discussed in this chapter). Time is measured
by system power-on-hours from initial turn-on
at time zero, to the end of system life. Failures
occur at given system ages and the system is
repaired to a state that may be the same as
new, or better, or worse. The frequency of
repairs may be increasing, decreasing, or
staying at a roughly constant rate. 

Let N(t) be a counting function that keeps
track of the cumulative number of failures a
given system has had from time zero to time t.
N(t) is a step function that jumps up one every
time a failure occurs and stays at the new level
until the next failure. 

Every system will have its own observed
N(t) function over time. If we observed the N(t)
curves for a large number of similar systems
and “averaged” these curves, we would have
an estimate of M(t) = the expected number
(average number) of cumulative failures by
time t for these systems.
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A non-repairable population is one for which
individual items that fail are removed
permanently from the population. While the
system may be repaired by replacing failed
units from either a similar or a different
population, the members of the original
population dwindle over time until all have
eventually failed.  We begin with models and
definitions for non-repairable populations.
Repair rates for repairable populations will be
defined in a later section. 

The theoretical population models used to
describe unit lifetimes are known as Lifetime
Distribution Models. The population is
generally considered to be all of the possible
unit lifetimes for all of the units that could be
manufactured based on a particular design
and choice of materials and manufacturing
process. A random sample of size n from this
population is the collection of failure times
observed for a randomly selected group of n
units.

A lifetime distribution model can be any
probability density function (or PDF) f(t)
defined over the range of time from t = 0 to t
= infinity. The corresponding cumulative

distribution function (or CDF) F(t) is a very
useful function, as it gives the probability that
a randomly selected unit will fail by time t.
The Figure 1 is shows the relationship
between f(t) and F(t) and gives three
descriptions of F(t).

1. F(t) = The area under the PDF f(t) to the left
of t.

2. F(t) = The probability that a single randomly
chosen new unit will fail by time t.

3. F(t) = The proportion of the entire population
that fails by time t.

The Figure 1 also shows a shaded area
under f(t) between the two times t

1
 and t

2
. This

area is [F(t
2
) – F(t

1
)] and represents the

proportion of the population that fails between
times t

1
 and t

2
 (or the probability that a brand

new randomly chosen unit will survive to time
t
1
 but fail before time t

2
).

Note that the PDF f(t) has only non-negative
values and eventually either becomes 0 as t
increases, or decreases towards 0. The CDF
F(t) is monotonically increasing and goes from
0 to 1 as t approaches infinity. In other words,
the total area under the curve is always 1.

The 2-parameter Weibull distribution is an
example of a popular F(t). It has the CDF and
PDF equations given by:
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where  is the ‘shape’ parameter and  is a
scale parameter called the characteristic life. 

Censoring

When not all units on test fail we have censored
data:

Figure 1: The Relation Between Function
(f(t)) and Time
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Consider a situation in which we are
reliability testing n (non repairable) units taken
randomly from a population. We are
investigating the population to determine if its
failure rate is acceptable. In the typical test
scenario, we have a fixed time T to run the units
to see if they survive or fail. The data obtained
are called Censored Type 1 data.

Censored Type 1 Data

During the T hours of test we observe r failures
(where r can be any number from 0 to n). The
(exact) failure times are t

1
, t

2
, ..., t

r
 and there

are (n – r) units that survived the entire T-hour
test without failing. Note that T is fixed in
advance and r is random, since we don’t know
how many failures will occur until the test is run.
Note also that we assume the exact times of
failure are recorded when there are failures. 

This type of censoring is also called “right
censored” data since the times of failure to the
right (i.e., larger than T) are missing.

Another (much less common) way to test is
to decide in advance that you want to see
exactly r failure times and then test until they
occur. For example, you might put 100 units
on test and decide you want to see at least
half of them fail. Then r = 50, but T is unknown
until the 50th fail occurs. This is called Censored
Type 2 data.

Censored Type 2 Data

We observe t
1
, t

2
, ..., t

r
, where r is specified in

advance. The test ends at time T = t
r
, and

(n - r) units have survived. Again we assume it
is possible to observe the exact time of failure
for failed units.

Type 2 censoring has the significant
advantage that you know in advance how many

failure times your test will yield—this helps
enormously when planning adequate tests.
However, an open-ended random test time is
generally impractical from a management point
of view and this type of testing is rarely seen.

Readout or Interval Data

Sometimes exact times of failure are not
known; only an interval of time in which the
failure occurred is recorded. This kind of data
is called Readout or Interval data and the
situation was shown in the Figure 2.

Figure 2: Basics for Analysing Failure Data

PLOTTING RELIABILITY
DATA
Graphical plots of reliability data are quick,
useful visual tests of whether a particular model
is consistent with the observed data. The basic
idea behind virtually all graphical plotting
techniques is the following:  Points calculated
from the data are placed on specially
constructed graph paper and, as long as they
line up approximately on a straight line, the
analyst can conclude that the data are
consistent with the particular model the paper
is designed to test.

If the reliability data consist of (possibly
multicensored) failure data from a non
repairable population (or a repairable
population for which only time to the first failure
is considered) then the models are life
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distribution models such as the exponential,
Weibull or lognormal. If the data consist of
repair times for a repairable system, then the
model might be the NHPP Power Law and the
plot would be a Duane Plot. The kinds of plots
we will consider for failure data from non-
repairable populations are: 

• Probability (CDF) plots

• Hazard and Cum Hazard plots

Probability Plotting

Probability plots are simple visual ways of
summarizing reliability data by plotting CDF
estimates vs. time on specially constructed
probability paper.

Commercial papers are available for all
the typical life distribution models. One axis
(some papers use the y-axis and others the
x-axis, so you have to check carefully) is
labeled “Time” and the other axis is labeled
“Cum Percent” or “Percentile”. There are
rules, independent of the model or type of
paper, for calculating plotting positions from
the reliability data. These only depend on the
type of censoring in the data and whether
exact times of failure are recorded or only
readout times. 

When the points are plotted, the analyst fits
a straight line through them (either by eye, or
with the aid of a least squares fitting program).
Every straight line on, say, Weibull paper
uniquely corresponds to a particular Weibull
life distribution model and the same is true for
lognormal or exponential paper. If the points
follow the line reasonably well, then the model
is consistent with the data. If it was your
previously chosen model, there is no reason
to question the choice. Depending on the type
of paper, there will be a simple way to find the

parameter estimates that correspond to the
fitted straight line.

Plotting Positions: Censored Data (Type 1
or Type 2).

At the time t
i
 of the ith failure, we need an

estimate of the CDF (or the Cum. Population
Percent Failure). The simplest and most
obvious estimate is just 100  i/n (with a total
of n units on test). This, however, is generally
an overestimate (i.e., biased). Various texts
recommend corrections such as 100  (i –
0.5)/n or 100  i/(n + 1). Here, we recommend
what are known as (approximate) median rank
estimates: Corresponding to the time t

i
 of the

ith failure, use a CDF or Percentile estimate of
100  (i – 0.3)/(n + 0.4).

Plotting Positions: Readout DataLet the
readout times be T

1
, T

2
, ..., T

k
 and let the

corresponding new failures recorded at each
readout be r

1
, r

2
, ..., r

k
. Again, there are n units on

test. Corresponding to the readout time T
j
, use

a CDF or Percentile estimate of
n

r
j

i i 


1
100

.

Plotting Positions: Multicensored Data

Hazard and Cum Hazard Plotting

Just commercial probability paper is available
for most life distribution models for probability
plotting of reliability data, there are also special
Cum Hazard Plotting papers available for
many life distribution models. These papers
plot estimates for the Cum Hazard H(t

i
) vs. the

time t
i
 of the ith failure. As with probability plots,

the plotting positions are calculated
independently of the model or paper used and
a reasonable straight-line fit to the points
confirms that the chosen model and the data
are consistent. 
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Evaluation of Reliability from the
“Bottom-Up” (Component Failure
Mode to System Failure Rate)

This section deals with models and methods
that apply to non-repairable components and
systems. Models for failure rates (and not
repair rates) are described.

We use the Series Model to go from
components to assemblies and systems.
These models assume independence and
“first failure mode to reach failure causes both
the component and the system to fail”.

If some components are “in parallel”, so that
the system can survive one (or possibly more)
component failures, we have the parallel or
redundant model. If an assembly has n
identical components, at least r of which must
be working for the system to work, we have
what is known as the r out of n model.

The standby model uses redundancy like
the parallel model, except that the redundant
unit is in an off-state (not exercised) until called
upon to replace a failed unit. Complex systems
can be evaluated using the various models as
building blocks.

SERIES MODEL
The series model is used to go from individual
components to the entire system, assuming
the system fails when the first component fails
and all components fail or survive
independently of one another

The Series Model is used to build up from
components to sub-assemblies and systems.
It only applies to non-replaceable populations
(or first failures of populations of systems). The
assumptions and formulas for the Series
Model are identical to those for the Competing

Risk Model, with the k failure modes within a
component replaced by the n components
within a system.

The following 3 assumptions are needed:

1. Each component operates or fails
independently of every other one, at least
until the first component failure occurs.

2. The system fails when the first component
failure occurs.

Each of the n (possibly different)
components in the system has a known life
distribution model F

i
(t).

Add failure rates and multiply reliabilities in
the Series Model.

When the Series Model assumptions hold
we have: with the subscript S referring to the
entire system and the subscript i referring to
the ith component.

Note that the above holds for any arbitrary
component life distribution models, as long as
“independence” and “first component failure
causes the system to fail” both hold.

The analogy to a series circuit is useful. The
entire system has n components in series. The
system fails when current no longer flows and
each component operates or fails
independently of all the others. The schematic
below shows a system with 5 components in
series “replaced” by an “equivalent” (as far as
reliability is concerned) system with only one
component).

   



n

i
iS tRtR

1

    



n

i
iS tFtF

1

11
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   



n

i
iS thth

1

• The system operates as long as at least one
component is still operating. System failure
occurs at the time of the last component
failure.

The CDF for each component is known

Multiply component CDF’s to get the system
CDF for a parallel model

For a parallel model, the CDF F
s
(t) for the

system is just the product of the CDF’s F
i
(t) for

the components or

   



n

i
iS tFtF

1

R
S
(t) and h

S
(t) can be evaluated using basic

definitions, once we have F
S
(t).

The schematic below represents a parallel
system with 5 components and the (reliability)
equivalent 1 component system with a CDF
F

s
 equal to the product of the 5 component

CDF’s.

Figure 3: Series System Reduced
to Equivalent One Component System

Parallel or Redundant Model

The parallel model assumes all n components
that make up a system operate independently
and the system works as long as at least one
component still works.

The opposite of a series model, for which
the first component failure causes the system
to fail, is a parallel model for which all the
components have to fail before the system fails.
If there are n components, any (n – 1) of them
may be considered redundant to the remaining
one (even if the components are all different).
When the system is turned on, all the
components operate until they fail. The system
reaches failure at the time of the last
component failure. 

The assumptions for a parallel model are:

• All components operate independently of
one another, as far as reliability is
concerned. 

Figure 4: Parallel System and Equivalent
Single Component

STANDBY MODEL
The Standby Model evaluates improved
reliability when backup replacements are
switched on when failures occur.
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A Standby Model refers to the case in which
a key component (or assembly) has an
identical backup component in an “off” state
until needed. When the original component
fails, a switch turns on the “standby” backup
component and the system continues to
operate.

In the simple case, assume the non-standby
part of the system has CDF F(t) and there are
(n – 1) identical backup units that will operate
in sequence until the last one fails. At that point,
the system finally fails. 

The total system lifetime is the sum of n
identically distributed random lifetimes, each
having CDF F(t).

Identical backup Standby model leads to
convolution formulas

In other w ords, T
n
 = t

1
 + t

2
 + ... + t

n
, where

each tihas CDF F(t) and Tn has a CDF we
denote by F

n
(t). This can be evaluated using

convolution formulas:

      
t

duutfuFtF
0

2

       

t

nn duutfuFtF
0

1

where f(t) is the PDF F'(t)

In general, convolutions are solved numerically.
However, for the special case when F(t) is the
exponential model, the above integrations can
be solved in closed form.

Exponential standby systems lead to a gamm
Special Case: The Exponential (or Gamma)
Standby Model:

If F(t) has the exponential CDF (i.e., F(t) = 1
– e–lt), then

  tt etetF    12

  ttetf   2
2

, and

   !1

12






n

et
tf

tn

n



and the PDF f
n
(t) is the well-known gamma

distribution.

Standby units are an effective way of
increasing reliability and reducing failure rates,
especially during the early stages of product
life. Their improvement effect is similar to, but
greater than, that of parallel redundancy. The
drawback, from a practical standpoint, is the
expense of extra components that are not
needed for functionality. Exponential standby
systems lead to a gamma lifetime model.

COMPLEX SYSTEMS
Often the reliability of complex systems can
be evaluated by successive applications of
Series and/or Parallel model formulas.

Many complex systems can be
diagrammed as combinations of Series
components, parallel components, R out of N
components and Standby components. By
using the formulas for these models,
subsystems or sections of the original system
can be replaced by an “equivalent” single
component with a known CDF or Reliability
function. Proceeding like this, it may be
possible to eventually reduce the entire system
to one component with a known CDF. 

Below is an example of a complex system
composed of both components in parallel and
components in series is reduced first to a
series system and finally to a one-component
system.
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CASE STUDY
In our project work, the thermal power plant is
considered as “Repairable complex system”.
As the thermal power plant is electricity, which
is a continuously produced product, it would
be somewhat difficult to define the failure. But,
as the aim of any thermalpower plant is to
produce the continues flow of good quality of
electricity, any violation to it can be
considered as the “Failure” for the system.
But it is very difficult to continuously monitor
the quality of the product and also it is a
cumbersome process, it can’t be defined as
failure. The fact that fluctuations in the quality
of electricity is inevitable, will also add value
to the above statement. So the failure of the

Figure 5: Complex System Reduced to
Equivalent One component System

Table 1: Tripping Data of Each Unit

System
Sub

System
Component Sub

Component
 

Sub
Component

Component
Sub

System System

Reliability Values

Power Plant Unit-1 Boiler Tube

Failures 0.1 166 0.49265 0.09133 0.00854 0.03543

Boiler

Leakages 0.1 11 0.3632

Ash Hopper 1

Furnace 0.1 456 0.51044

Turbine Turbine 1 1.00

Economiser 1

Generator Potential

Transformers 0.2 82233.35 0.762684 0.215

Bushes 1

Brushes 0.2 2199007 0.869

Rotor 1

Stator 1

Transmission Grid Failure 0.99 0.435

Rely 0.1 6 0.4795

Current

Transformers 0.1 4835632480 0.9167
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system is considered as the obstacle in the
production of the electricity. The maintenance
taken by maintenance personnel may be
obstacle to the production of the electricity.
But as it is inevitable to maintain longer life
without this obstacle. It is necessary to have
measurement technique of reliability so that
effective analysis and evaluation of the
policies can be made to obtain economical
solution. While evaluating the system
reliability, the past field failure data and the
structure of various subsystems need to be
studied, so the failure data hare is the tripping
data of each unit (Table 1). After identification
of basic components, subsystems and

systems, the next system is to get the field
data. The contribution of each major and
critical sub components, which cause the
failure of the system as a whole.

CONCLUSION
We can achieved after calculating the reliability
of each component with respect to the system
and then using the pareto analysis, cause and
effect diagrams. This may result in quick
improvement in the reliability of the system,
which may be best result obtainable by any
organization. To obtain the effective reliability
improvement plan with less cost, by adding
few lines to the program, the cost effective best

Table 1 (Cont.)

System
Sub

System
Component Sub

Component
 

Sub
Component

Component
Sub

System System

Reliability Values

Unit-2 Boiler Tube

Failures 0.1 271 0.5662 0.16 0.02712

Boiler

Leakages 1.0

Ash Hopper 0.1 257556.15 0.6285

Furnace 0.1 46 0.4478

Turbine Turbine 1 1.00

Economiser 0.1 6 1

Generator Generator

Conditions 0.1 36 0.324 0.1712

Potential

Transformers 0.762684

Bushes 0.3 16910.28 0.7972

Brushes 0.2 2199007 0.869

Rotor 1

Stator 1

Transmission Grid Failure 0.99 0.99

Rely 1

Current

Transformers 1



91

Int. J. Mech. Eng. & Rob. Res. 2013 G Gurumahesh et al., 2013

maintenance policy is achievable. We can
predict the reliability of system based on
component reliability it can be assessed
effectively the component that causes the next
failure, so that the inventory can be maintained
less, which reduces the cost. The accurate
results may be obtained when the field data is
complete and easily assessable.
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