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MODELING OF SURFACE ROUGHNESS IN WIRE
ELECTRICAL DISCHARGE MACHINING USING
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In this paper the Artificial Neural Network (ANN) model is developed to predict the surface
roughness in Wire Electrical Discharge Machining (WEDM) of WP7V steel, which is used in
automobile industry. The neural network model is trained with experimental results conducted
using L16 orthogonal array by considering the input parameters such as  pulse duration, open
voltage, wire speed and dielectric flushing pressure at four different levels. The mathematical
relation between the work piece surface roughness and WEDM cutting parameters is also
established by multiple regression analysis method. Predicted values of surface roughness by
NN and regression analysis, are compared with the experimental values and their closeness
with the experimental values. The predicted values in neural network with two hidden layers are
very close to the experimental results than regression values. The complete experimental and
modeling results are presented and analyzed in this paper
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INTRODUCTION
The Wire Electrical Discharge Machining
(WEDM) process has gained momentum for
its practical applicability in the current
manufacturing scenario. The suitability of the
process is greatly exhibited while generating
complicated job in contours, making through
holes, producing straight tapered jobs and so
on. Wire Electrical Discharge Machining is a
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spark erosion process used to produce
complex two and three dimensional shapes
through electrically conductive work pieces by
using a wire electrode. The sparks are
generated between the work piece and a wire
electrode flushed with or immersed in a
dielectric fluid (Tosun et al., 2004). The wire,
which unwinds from a spool, feeds through the
work piece. A power supply delivers high
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frequency pulses of electricity to the wire and
the work piece. The gap between the wire and
work piece is flooded with a localized stream
of deionized water which acts as the dielectric.
Work piece material is eroded ahead of
transporting the wire by spark discharges,
which are identical with those in conventional
EDM (Tosun and Cogun, 2003). When each
pulse of electricity is delivered from the power
supply, the insulating properties of the
dielectric fluid are momentarily broken down.
This allows a small spark to jump the shortest
distance between the wire and work piece. A
small pool of molten metal is formed on the
work piece and the wire at the point of the
spark. A gas bubble forms around the spark
and the molten pools. As the pulse of electricity
ceases and the spark disappears, the gas
bubble collapses. The on-rush of cool
dielectric causes the molten metal to be
ejected from the work piece and the wire,
leaving small craters. This action is repeated
hundreds of thousands of times each second
during WEDM processing. This removes
material from the work piece in shapes
opposite to that of wire (Tosun and Cogun,
2003; and Tosun et al., 2003a). The degree of
accuracy of the work piece dimensions are
obtainable and the fine surface finishes make
WEDM particularly valuable for applications
involving the manufacture of stamping dies,
extrusion dies and prototype parts. Without
WEDM the fabrication of precision work pieces
requires many hours of manual grinding and
polishing (Tosun et al., 2003b and 2004). The
most important performance measures in
WEDM are cutting speed, work piece surface
roughness and cutting width. Discharge
current, discharge capacitance, pulse duration,
pulse frequency, wire speed, wire tension,

average working voltage and dielectric flushing
conditions are the machining parameters
which affect the performance measures (Tosun
et al., 2004). Spedding and Wang (1997)
presented a parametric combination by using
artificial neural networks and they also
characterized the roughness and waviness of
the work piece surface and cutting speed. Lok
and Lee (1997) compared the machining
performance in terms of MRR and surface
finish by the processing of two advanced
ceramics under different cutting conditions
using WEDM. Ramakrishna and
Karunamoorthy (2008) developed an artificial
neural network with Taguchi parameter design.
Caydas et al. (2009) developed an Adaptive
Neuro-Fuzzy Inference System (ANFIS) for
modeling the surface roughness in the WEDM
process. Based on the literature the neural
network is more effective tool to predict the
machining performance parameters for the
given input parameters. The objective of the
present work is to develop the neural network
model to predict the surface roughness for the
given set of conditions. In this work an attempt
is also made to develop mathematical relation
between for the selected parameters and
surface roughness using regression analysis.
The complete experimental and modeling
results are presented and analyzed in this
work.

EXPERIMENTAL RESULTS
The experimental studies were performed on
an AGIECUT 220 WEDM machine tool as
shown in Figure 1. Different settings of pulse
duration (t), open circuit voltage (V), wire speed
A

w
 and flushing pressure (p) were used in the

experimentation. The work piece used is wp7v
steel(0.5%C,7.8%Cr,1.5%V,1.5,%Mo)
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material plate with 220  40  10 mm
dimensions. Zinc coated brass wire with
0.25 mm diameter and tensile strength of
900 N/mm2 was used in the experiments.
Average surface roughness (Ra)
measurements were made by using Phynix

TR-100 portable surface roughness tester with
cut-off length (lC) and traversing length (l) of
20 and 5 mm, respectively. Pulse duration,
open circuit voltage, wire speed and dielectric
flushing pressure were selected as the input
parameters and surface roughness was

Figure 1: Pictorial View of AGIECUT 220

Table 1: Factors and Their Levels

Pulse duration t(µs) 5 10 12 15

Wire speed (Aw) (mm/sec) 100 80 70 60

V (volt) 20 25 35 45

P (bar) 2 2 12 12

Levels

Level 1 Level 2 Level 3 Level 4
Parameters

Table 2: Surface Roughness Obtained from the Experiments

1. 1 1 1 1 2.6

2. 2 2 2 1 2.7

3. 3 3 3 2 3.6

4. 4 4 4 2 3.6

Output Parameters

  V(volts) t(pd)   (µ sec) Aw (mm/s) P    (bar)
Exp. No.

Input Parameters

Surface Roughness (µm)
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selected as the output parameter. Four
measurements were made and their average
was taken as Ra value for a machined work
surface. The input parameters are selected at
four different levels as show in Table 1. In the
present work L16 orthogonal array is selected
for the experimentation and the results
obtained for the L16 experiments is shown in
Table 2.

Four level factorial design and NN
techniques were carried out to predict surface
roughness. The level of the factorial design
used in the present study is shown in Table 1.

METHODOLOGY
Multiple Regression Analysis

After the surface roughness is obtained for all
experiments, a table needs to be filled in order
to obtain several values for the analysis. In
order to obtain regression coefficient
estimates 

0
, 

1
, 

2
 and 

3
, it is necessary to

solve the given simultaneous system of linear
equations.

  Yixxxxn iiii 443322110 

...(1)

  iiiiii xxxxxx 313212
2
1110 

Yixxx iii   1414 ...(2)

  iiiiii xxxxxx 323
2
2221120 

Yixxx iii   2424 ...(3)

  2
3332231130 iiiiii xxxxxx 

Yixxx iii   3434 ...(4)

  iiiiiii xxxxxxx 43342241140 

Yixx ii   4
2
44 ...(5)

After the simultaneous system of linear
equations above is solved the regression
coefficient estimates will be substitute to the
following regression model for surface
roughness

Table 2 (Cont.)

5. 1 2 3 2 3.2

6. 2 1 4 2 4.0

7. 3 4 1 1 4.8

8. 4 3 2 1 3.8

9. 1 3 4 1 3.4

10. 2 4 3 1 2.8

11. 3 1 2 2 4.8

12. 4 2 1 2 4.6

13. 1 4 2 2 4.0

14. 2 3 1 2 5.8

15. 3 2 4 1 4.2

16. 4 1 3 1 4.2

Output Parameters

  V(volts) t(pd)   (µ sec) Aw (mm/s) P    (bar)
Exp. No.

Input Parameters

Surface Roughness (µm)
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iiii xxxxYi 443322110   ...(6)

where; Yi = Surface Roughness (m), x
1i
 =

Gap voltage (v), x
2i
 = Pulse duration (s), x

3i
 =

Wire speed (mm/s), x
4i
 = Flushing pressure

(bar)

Artificial Neural Network

Modeling surface roughness with neural
networks is composed of two phases: training
and testing of the neural networks with
experimental data. Pulse duration, open circuit
voltage, wire speed and dielectric flushing
pressure have been used as the input layer,
while surface roughness was used as the
output layer. Neural Networks (NN) are
biologically inspired, that is, they are
composed of elements that perform in a
manner that is analogous to the most
elementary functions of the biological neurons.
A neural network has a parallel-distributed
architecture with a large number of neurons
and connections. Each connection points from
one node to another and is associated with a
weight (Choudhury and Bartarya, 2003). There
are several applications of neural networks
such as a Back-Propagation Network (BPN)

and a General Regression Neural Network
(GRNN). In general, BPN seems to be the most
utilized neural network. The development of the
Back-Propagation Network (BPN)
(Purushothaman and Srinivasa, 1994)
represents a landmark in the history of neural
networks in the way that it provides a
computationally efficient method for the training
of the multi-layer perception. A multi-layer
perception trained with the back propagation
algorithm may be viewed as a practical way of
performing a non-linear input-output mapping
of a general nature. In the current application,
the objective was to use the network to learn
mapping between input and output patterns.
The components of the input pattern consisted
of the control variables of the machining
operation (pulse duration, open circuit voltage,
wire speed and dielectric flushing pressure),
whereas the output pattern components
represented the measured factors (surface
roughness). The nodes in the hidden layer were
necessary to implement the nonlinear mapping
between the input and output patterns. In the
present work, a 4-input, 5-hidden layer, 1 output
layer back propagation neural network as
shown Figure 2 has been used.

Figure 2: BPN Network Used for Modeling
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RESULTS AND DISCUSSION
The experiments were carried out under
different process conditions. Table 2 shows the
full factorial design matrix. When the
mathematical model is obtained, the value of
predicted surface roughness for each
experiment can be calculated. The regression
coefficients calculated from above Equations
(1-5) are;


0
 = –0.4332,

1
 = 0.0073,

2
 = 0.1182,

3
 =

0.0287 and 
4
 = 0.0781

If surface roughness is represented by Yi,
the regression equation obtained from
regression analysis based on experiments of
the training set can be expressed in Equation
(7). After calculating each of the coefficients
of Equation (6) and substituting the coded
values of the variables for any experimental
condition the linear regression equation for
surface roughness can be obtained in actual
factors as given in Equation (7).

Yi = –0.4332 + 0.0073x
1i
 + 0.1182x

2i
 +

0.0287x
3i
 + 0.0781x

4i
…(7)

This equation indicates that pulse duration
has the most significant effect on surface
roughness. The coefficients of the pulse
duration, open circuit voltage, wire speed
and dielectric flushing pressure are positive.
Surface roughness increases with
increasing pulse duration, open circuit
voltage, wire speed and dielectric flushing
pressure.

These comparisons have been depicted in
terms of percentage error for validation of the
set of experiments. From Table 3 it is evident
that for our set of data the neural network
predicts a surface roughness that is nearer to
the experimental values than the regression
analysis. In the prediction of surface roughness
values the average errors for regression and
NN are found to be 13.97% and 6.07%
respectively.

1. 2.6 3.33 –28.17 2.4421 6.07

2. 2.7 3.3835 –25.31 2.3681 12.29

3. 3.6 4.1869 –16.30 3.3245 7.65

4. 3.6 4.3275 –20.20 3.4256 4.84

5. 3.2 3.3595 -4.94 3.4317 –7.24

6. 4.0 3.7365 6.58 4.3214 –8.04

7. 4.8 4.1574 13.38 4.2553 11.34

8. 3.8 3.9745 –4.59 3.2751 13.81

9. 3.4 3.5125 –3.31 3.1539 7.24

10. 2.8 3.1695 –13.19 2.3973 14.38

11. 4.8 4.4009 8.31 4.2568 11.31

12. 4.6 5.2930 –15.10 4.7200 –2.61

Table 3: Comparison Between Actual and Predicted Surface Roughness

Actual Surface Roughness (µm)Ex. No.
Regression ANN

Predicted Error % Predicted Error %
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CONCLUSION
The prediction of optimal machining conditions
for the required surface finish and dimensional
accuracy plays a very important role in wire
EDM process. The following results can be
drawn from this study:

• Predictions of the Surface Roughness was
made using the multiple regression and the
neural network techniques and the values
obtained by both of the methods were
compared with the experimental values of
the Surface Roughness to decide about the
nearness of the predictions with the
experimental values.

• Increasing pulse duration, open circuit
voltage, flushing pressure and wire speed
increased the surface roughness.

• Within the range of input variables for the
present case (pulse duration t = 5 to 15 s,
open circuit voltage V = 20 to 45 V, wire
speed S = 60 to 100 mm/sec and flushing
pressure p = 2 to 12 bar), the results in
Figure 3 showed that the neural network
comes ahead of regression analysis in
nearness of the predictions to the
experimental values of surface roughness
as the average errors in the surface
roughness in the case of the neural network

13 4.0 3.5735 10.66 3.8251 4.37

14 5.8 4.7020 18.93 5.0245 13.37

15 4.2 3.1919 24.10 3.8959 7.24

16 4.2 3.7605 10.46 4.3215 –2.98

Average Error:    13.97%    Average Error:      6.07%

Table 3 (Cont.)

Actual Surface Roughness (µm)Ex. No.
Regression ANN

Predicted Error % Predicted Error %

Figure 3: Comparison Between Predicted and Experimental Values of Surface Roughness
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are less than those obtained using
regression analysis (average error is 6.07%
for NN as compared to13.97% in the case
of regression predictions).

REFERENCES
1. Caydas U, Hascalik A and Ekici S (2009),

“An Adaptive Neuro-Fuzzy Inference
System (ANFIS) Model for Wire-EDM”,
doi:10.1016/j.eswa.2008.07.019.

2. Choudhury S K and Bartarya G (2003),
“Role of Temperature and Surface Finish
in Predicting Tool Wear Using Neural
Network and Design of Experiments”,
International Journal of Machine Tools
& Manufacture, Vol. 43, pp. 747-753.

3. Lok Y K and Lee T C (1997),
“Processing of Advanced Ceramics
Using the Wire-Cut EDM Process”,
Journal of Materials Processing
Technology, Vol. 63, pp. 839-843.

4. Purushothaman S and Srinivasa Y G
(1994), “A Back Propagation Algorithm
Applied to Tool Wear Monitoring”,
International Journal of Machine Tools
Manufacture, Vol. 34, pp. 625-631.

5. Ramakrishna R and Karunamoorthy L
(2008), “Modeling and Multi-Response

Optimization of Inconel 718 on Machining
of CNC WEDM Process”, Journal of
Materials Processing Technology ,
Vol. 207, pp. 343-349.

6. Spedding T A and Wang Z Q (1997),
“Parametric Optimization and Surface
Characterization of Wire Electrical
Discharge Machining Process”, Precis.
Eng., Vol. 20, pp. 5-15.

7. Tosun N and Cogun C (2003),
“Investigations on Wire Wear in WEDM”,
Journal of Materials Processing
Technology, Vol. 134, pp. 273-278.

8. Tosun N, Cogun C and Pihtili H (2003a),
“The Effect of Cutting Parameters on Wire
Crater Sizes in Wire EDM”, Int. J. Adv.
Manuf. Technol., Vol. 21, pp. 857-865.

9. Tosun N, Cogun C and Inan A (2003b),
“The Effect of Cutting Parameters on
Work Piece Surface Roughness in Wire
EDM”, Machining Science and
Technology, Vol. 7, pp. 209-219.

10. Tosun N, Cogun C and Tosun G (2004),
“A Study on Kerf and Material Removal
Rate in Wire Electrical Discharge
Machining Based on Taguchi Method”,
Journal of Materials Processing
Technology, Vol. 152, pp. 316-322.




