
296

Int. J. Mech. Eng. & Rob. Res. 2013 Amit Gupta et al., 2013

DYNAMIC ANALYSIS OF COMPLIANT BASED
PSEUDO-RIGID-BODY CONSTANT FORCE SLIDER
CRANK MECHANISM USING THE ENVIRONMENT

LIKE ANSYS
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A mathematical dynamic model is derived for the compliant constant-force mechanism, based
on the pseudo-rigid-body model simplification of the device. The compliant constant-force
mechanism is a slider mechanism incorporating large-deflection beams, which outputs near-
constant-force across the range of its designed deflection. The equation of motion is successfully
validated with empirical data. The dynamic model is cast for one out of 28 possible configurations
of compliant constant-force slider crank mechanism, identified by type synthesis techniques
(Howell, 2001). The author derived the dynamic model through Lagrange’s Equation for the
selected configuration of compliant constant-force slider crank mechanism. An unexpected
dynamic trait of the constant-force mechanism is discovered: there exists a range of frequencies
for which the output force of the mechanism accords nearer to constant-force than does the
output force at static levels.

Keywords: Compliant mechanism, Pseudo rigid body slider crank mechanism, Constant force
mechanism

INTRODUCTION
Compliant Joint or Flexure Hinge

A flexure hinge is a thin member that provides
the relative rotation between two adjacent rigid
members through flexing (bending). However,
the clearance between mating parts of rigid
conventional joints causes backlash in
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mechanical assemblies. Further, in all the

above joints there is relative motion causing

friction that leads to wear and increased
clearances. A kinematic chain of such joints

compounds the individual errors from backlash
and wear, resulting in poor accuracy and

repeatability.
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Compliant Mechanisms and The
Pseudo-Rigid-Body Model

The emergence of the pseudo-rigid-body
model in recent years coincides with the
bui lding realization of the aptness of
compliance in engineering. Natural world also
reveals the strength of compliance, such as
the flexible wings of a bee or hummingbird, or
the versatility of the human hand and wrist
(Vogel, 1995). However, nature is difficult to
mimic because of the complex nonlinear
analysis required to understand all but small-
deflection compliance. The pseudo-rigid-body
model is a method of circumventing some of
the obstacles that arise when engineering
compliance into mechanical devices. It
provides a welcome middle ground between
designing merely by trial and error, and
devising exact mathematical formulations.

Compliant Constant-Force
Mechanisms

A constant-force mechanism yields a constant
output force over a range of input
displacements. Compliant constant-force
mechanisms are essentially compliant slider
mechanisms with flexible and rigid segment
dimensions optimized to minimize the
variation in the output force over a designed
range of displacement. Consider the compliant
slider mechanism depicted in Figure. Given
an input displacement x, a compliant
constant-force mechanism will yield the same
force F over the full range of its designed
deflection, plus or minus a small variation.

Figure 1: Compliant Joint

Figure 2: Conventional Joint

Figure 3: Compliant Slider Mechanism

There exist 28 possible configurations of the
compliant constant-force mechanism,
identified by type synthesis techniques (Howell,
2001). Of these, fifteen configurations are
illustrated in Figure (Millar et al., 1996).
Experimental validation of dynamic models of
one of these configurations is performed in this
paper.

The pseudo-rigid-body model
approximates the deflection and force
characteristics of a complaint mechanism’s
flexible members by assigning them torsional
spring and rigid-link counterparts. Applying the
model to the entire compliant mechanism
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using a series of heuristic rules results in a
rigid-link model. Herein lies the power of the
pseudo-rigid-body model: its ability to convert
a difficult-to-analyze compliant mechanism
into a familiar rigid-body mechanism which
can be analyzed using traditional kinematics.
The model does not represent compliant
mechanisms perfectly, but it has been shown
to represent them very well, making it a
powerful design tool. Though the pseudo-rigid-
body model has been shown to be valid for
the static analysis of compliant mechanisms,
very little research has been performed to
explore the usefulness of the pseudo-rigid-
body model in dynamic analysis. If the model
can be shown to approximate well the dynamic
response of compliant mechanisms, then its
usefulness is extended even further.

Dynamic Model

The derivation of a closed-form dynamic model
for constant-force mechanism configuration
“Class 1A-d,” as designated in Figure.

Figure 4: Fifteen Configurations of the
Compliant Constant-Force Mechanism
Flexible Segments are Depicted by a
Single Line, and Rigid Segments are

Depicted by Two Parallel Lines

Figure 5: Compliant Constant-Force
Mechanism, Configuration Class 1A-d

First, the compliant mechanism is modeled
as a rigid-body mechanism with lumped
compliance using the pseudo-rigid-body
model. Converting the mechanism to its rigid-
body counterpart greatly simplifies kinematic
and dynamic analysis by allowing the use of
rigid-body modeling techniques. Lagrange’s
method is then used to obtain an equation of
motion for the mechanism. The constant-force
mechanism has only one degree of freedom,
so only one generalized coordinate and one
instance of Lagrange’s equation are required.
The choice of non-conservative forces
included in the generalized force is explained,
as well as any assumptions made by the
model.

The mechanism is converted to its rigid-
body counterpart by using the pseudo-rigid-
body model rule for a cantilever beam with a
force at the free end as described below.

The flexible segment of length l is replaced
by two rigid links, links 3 and 6, with lengths r

3

and r
6
. Link 3’s length is determined by the

relation for the pseudo-rigid-body link’s
characteristic radius, r

3
 = l, where  is the
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characteristic radius factor. The length of link
6 is then r

6
 = l – r

3
. The compliance of the

flexible segment is represented by a torsional
spring at the new pin (“characteristic pivot”)
joining links 3 and 6. The torsional spring
constant k for a cantilever beam with a force
at the free end is given by K = K

0
EI/l.

When the pseudo-rigid-body angle 
k
 is

zero, the torsional spring is undeflected and
stores no strain energy. It is assumed that no
plastic deformation occurs as the mechanism
cycles and the flexible segment deflects.

Formulating the Lagrangian

Given an input slider displacement x
b
(t), the

dynamic model should indicate the reaction
force F

b
(t) at the slider. The independent

coordinate x
b
(t) could be chosen as the

generalized coordinate for Lagrange’s
equation and would result in a generalized
force corresponding to F

b
(t). Instead 

2
(t) will

be chosen as the generalized coordinate,
corresponding to a generalized force Q2

(t).
Choosing 

2
 as the generalized coordinate

simplifies much of the derivation. Note that
because 

2
 is an angle, the generalized force

Q2
 has units of moment; a relation to transform

between Q2
 and F

b
 will be given at the end.

The Lagrangian L is formed by taking the
difference of the scalar quantities of kinetic
energy T and potential energy V of the system,
L = T – V.

where K
0
 is the stiffness coefficient (a

nondimensionalized torsional spring constant),
E is the modulus of elasticity of the flexible
segment, and I is the moment of inertia of the
flexible segment. The average values of  and
Ko over a wide range of loading conditions
are used:  = 0.85, K

0
 = 2.65

For a more accurate k that changes with
deflection of the flexible segment,  and K

0
 can

be expressed as functions of end-load angle,
but equation gives the average values most
commonly used in pseudo-rigid-body model
calculations.

Figure 6: (a) Compliant Constant-Force
Mechanism, Configuration Class 1A-d,
and (b) Its Pseudo-Rigid-Body Model

(a)

(b)
Figure 7: Reaction Force Fb(t) at the Slider
(Output Port); Independent Generalized
Coordinate 2(t) and Generalized Force

Q2(t)

One way to formulate T is to separate the
motion of the mechanism inertias into both
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translation and rotation. The center of mass of
each link translates along a predefined path
as the mechanism moves, and each link
rotates about its center of mass. The mass of
link 6 can be lumped together with the mass
of the slider since both travel along a linear
path and neither rotates: ms = m6 + mslider.

The first three terms of the kinetic energy
expression represent the translational energy
of the system, and the last two represent the
rotational energy:

     21

2

33

2

22 2
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2
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1
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where m
i
 is the mass, vci is the velocity of the

center of mass, J
ci
 is the mass moment of

inertia, and ·i is the angular velocity of links 2
and 3; r

1
 is the velocity of the slider.

2

2

1
kKV 

The Lagrangian L= T – V must be
expressed in terms of the generalized

coordinate 
2
 and its time derivative 

2  before

forming Lagrange’s equation. The following
equations recast the variables in T and V in

terms of 
2
 and 

2
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It is also useful to give x
b
 as a function of 

2
:

x
b 
= r

1
 + r

6

where,

2
2

2
2

3221 sincos  rrrr 

Lagrange’s Equation

Using Lagrange’s formulation, the equation of
motion for the system is expressed as

2

22


Q

LL

dt

d

















The left side of the equation is a statement
of the principle of conservation of energy, and

Figure 8: Translational and Rotational
Motion of the Mechanism Links

The mass moments of inertia of links 2 and
3 are:

2
1 12

1
iic rmJ 

Assuming the mechanism lies in a plane
perpendicular to gravity, the potential energy
of the system is simply the torsional spring
energy.
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the right side represents the non-conservative
generalized force (Thomson and Dahleh,
1998). When the derivatives of the Lagrangian
are expanded out, the equation of motion for
the system becomes

where

2
22

2
2

3 sin  rr 

The generalized force 
2

Q  consists of a
moment due directly to the force Fb acting on
the slider 

bF , a torque due to Coulomb pin
friction 

c
, and a term to compensate for

unmodeled torque in the mechanism m
:

mcFb
Q   

2

Though more elaborate expressions for the
Coulomb friction term 

c
 are possible, the

following simple relation gives sound results

 22 sin  Cc

Multiplying by 
2
 is a departure from

classical Coulomb friction formulation, but it
gives better results, and is based on the idea
that the classical Coulomb friction coefficient
is likely to be proportional to the angle 

2
.

The values of the Coulomb friction
coefficient C and the unmodeled torque 

um
 are

chosen using experimental data from static
tests, as described in the next section.

Finally, to transform from the torque bF to

the mechanism’s output force F
b
, use the

expression

2







b

F
b x

F b

where,






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2

2
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r
r
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Experimental Setup

To test the validity of the dynamic model, a
constant-force test mechanism Class 1A-d
constant-force mechanisms mounted to the
same ground and sharing the same slider.
Mounting two mechanisms opposite each other
is useful because each cancels the moment
induced by the other, and the issue of friction
between slider and ground is eliminated.

To apply the dynamic model to the pair of
constant-force springs, simply imagine the
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device split down its line of symmetry. The
parameters of one of the halves (i.e., link
lengths, masses, etc.), are used in the dynamic
model equations to solve for the predicted
force F

b
(t) of a single mechanism. The force

expected at the output port of the constant-
force spring pair is then twice F

b
(t). Note that

the value of m
slider

 is half the mass of the shared
slider, not its entire mass.

Each rigid link of the test mechanism is
made of 1.19 mm)-thick steel sheet metal, and
each flexible segment is made of two strips of
0.64 mm-thick steel shim stock. Utility hinges
serve as pins between ground and each rigid
link, and between each rigid link and flexible
segment. Both ground pins mount to a steel
ground plate, and both flexible segments
clamp to the shared slider, another steel plate.

designed to exhibit constant-force for a
maximum of 40% deflection, or a deflection of
x

b
 = 0.40(r

2
 + r

3
), or 4.757 cm. The

mechanism’s total extended length is r
2
 + l , or

13.007 cm.

The device’s nominal constant-force F
nom

doubled for the mechanism pair), as derived
in Howell (2001) is

N
r

k
Fnom 19.502

3

 

The average non-dimensionalized constant-
force  for a 40% deflection Class 1A
constant-force mechanism, tabulated in Millar
et al. (1996), is  = 0.4773.

Figure 9 shows a photograph of the
experimental setup used to validate the
constant-force mechanism dynamic model.
The setup was designed to allow testing of the
mechanism by sinusoidally cycling it (through
compression and expansion) at different
frequencies. Comparing the force data
obtained from these tests with the force
predicted by the dynamic model wil l
authenticate or invalidate the model. The
experimental setup is described here.

Figure 9: Constant-Force Mechanism
for Dynamic Testing Divided Along its Line

of Symmetry

The relevant dimensions, masses
(incorporating the masses of the hinges and
clamps), and properties of the test mechanism
are listed in Table. Parameters used directly
in the dynamic model equations are
emphasized. The variables b, h, and I are the
width, thickness, and area moment of inertia
of the flexible segment’s cross section; E and
m

f
are the modulus of elasticity and mass of

the flexible segment. The test mechanism was

Figure 10: Photograph of Experimental
Setup for Dynamic Testing of Constant-

Force Mechanisms



303

Int. J. Mech. Eng. & Rob. Res. 2013 Amit Gupta et al., 2013

The constant-force test mechanism detailed
in the proceeding section bolts to a thick
aluminum ground, mounted perpendicular to
a large aluminum table. In this manner both
ground pins of the test mechanism are fixed
with respect to the Table 1.

The test mechanism slider is actuated by a
small aluminum block free to move across a
linear bearing. Driving the actuator block is a
velocity-controlled 2-hp motor with a rotor and
crank-arm. The center of the motor shaft and
the point of attachment of the crank-arm to the
actuator block share the same height y from
base table, as depicted in Figure. As such,
assuming constant angular velocity of the
motor and a small crank radius r, the actuator
block drives the mechanism with an
approximately sinusoidal velocity.

The rotor is drilled with a series of tapped
holes, each located at a different radius, for
variable positioning of the crank arm. This allows
for larger or smaller total linear displacements
of the mechanism as the rotor cycles.

Bolted in-line between the actuator block
and test mechanism, a load cell measures

force exerted on the slider. Half of the mass of
the load cel l is lumped with the test
mechanism’s slider. The instrument used is a
strain-gauge force transducer. Force
measurement errors due to unwanted torque
from the load cell’s placement between the
actuator block and slider were found to be less
than 0.311 N, and so deemed to be negligible.

Parameter Value Parameter Value

r2 5.490 cm I = bh3/12 5.420 X 10–13 × m4

l 7.517 cm E 206.8 GPa

r3 = l 6.390 cm m2 13.8 g

r6 = l – r3 1.128 cm mf 10.7 g

b 2.540 cm m3 = mf 9.1 g

h 0.064 cm m6 = mf – m3 1.6 g

mslider 84.7 g K 3.359 N-m

ms = mslider + m6 86.3 g C 0.055 N-m

m –0.235 N-m

Table 1: Test Mechanism Dimensions,
Material Properties, and Masses

(Parameters Used Directly in Dynamic
Model Equations)

Figure 11: Line Diagram of Experimental
Setup

A linear potentiometer measures
mechanism deflection. The potentiometer
housing is mounted to the base table, with its
positioning rod attached to the actuator block.
Since the actuator block, load cell, and slider
are bolted together, the potentiometer
measures the position x

b
(t), a measurement

of the point where mechanism meets the slider,
located with respect to where the mechanism
attaches to ground. Both force and position
data were acquired through a Measurement
and Instrumentation lab of Rawal Institute of
Engineering and Technology Faridabad.

This setup allows for the testing of the
constant-force mechanism prototype over a
range of frequencies, up to about 85 rad/s,
above which there is danger of harming the
setup equipment and/or the mechanism.
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Static Data Processing

Since a static test does not require the motor
to be on, no filtering of electrical noise is
necessary. Also, because a static test consists
of only one cycle, no averaging is required.
Position and force signals for static tests were
both found to be clean, reliable, and free of
noise, so the data was used as collected.

In every plot that displays measured force
data (whether dynamic or static), spacing
between plotted points is the time interval
between samples.

Given a position input x
b
(t), and all physical

parameters correctly defined, the dynamic
model predicts the force expected at the
constant-force mechanism’s output port. A
side-by-side comparison of modeled vs.
measured force from an actual mechanism
shows that the model predicts the dynamic
response of the test mechanism quite
satisfactorily.

Modeled vs. Measured Force

Figures 12 to 14 show position and force plots
of three dynamic tests of increasing frequency,
. For each figure, the predicted force cycle is
calculated directly from the input sinusoid cycle
x

b
 shown in the position plot, using the dynamic

model equations. The measured force cycle
in each figure is the result of force data
processed as described in Section Dynamic
Data Processing. The measured data is
banded by ±3 pooled sample standard
deviations, or ±3 , representing the 99.74%
confidence interval of the measurement.

While the modeled force does not match
the measured force point for point, it does
predict the average force, the peak-to-peak
force difference, and the general shape of the

Dynamic and Static Testing

Both dynamic and static tests can be
performed using the experimental setup
described above. Dynamic tests are
performed by setting the motor controller to run
at a constant velocity, waiting for the system to
reach steady-state, then collecting data at a
sampling rate well above the input sinusoid
frequency. The position of the mechanism
mount is adjusted so that at maximum
expansion the mechanism has a preload.

Static tests are performed by removing the
crank arm from the setup and again preloading
the mechanism, this time using a long bar
clamp. The clamp is slowly screwed tight
compressing the mechanism, and then
unscrewed allowing it to expand back to its
initial position. Depending on whether the test
is dynamic or static, the data is processed
differently.

Dynamic Data Processing

Unlike a static test, a dynamic test must be
performed with the motor running, which
introduces a sizable amount of electrical
interference. To eliminate electrical noise from
the data, both position and force signals are
low-pass fi l tered through an 8th-order
Butterworth filter with a cutoff frequency of 314
rad/s.

As previously explained, for every dynamic
test the input posi tion x

b
(t) is always

constrained to be a sinusoid. The
mechanism’s force output during one cycle,
from its expanded state through compression
and back to expansion, at any frequency. To
cancel measurement errors from cycle to cycle
in a given data set and to condense the data
for ease of viewing, 30 force cycles are
averaged together.
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force profile at any given frequency. These are
important and useful elements to gather from
a dynamic analysis of the system.

Dynamic Characterization of the
Model

Although nonlinearities make it impossible to
express an exact algebraic transfer function
for the system, and no simple magnitude and
phase plot can be shown, two useful plots can
be analyzed. The median force and peak-to-
peak force magnitude difference of the
dynamic model as functions of frequency are
shown in Figure 15. Each frequency assumes
a sinusoidal position input with amplitude
equal to the full 40% designed mechanism
deflection (with a slight “pre-displacement” to
give a preload at full expansion). For good plot
resolution, the dynamic model response is
calculated at 400 separate and equally spaced
frequencies.

The heavy solid line represents the force
predicted by the dynamic model with all
parameters as defined in Table. The next two
lines are purely theoretical; what happens

Figure 12: Predicted and Measured Force
for Sinusoidal Input xb of  = 4 rad/s

Figure 13: Predicted and Measured Force
for Sinusoidal Input xb of  = 42 rad/s

Figure 14: Predicted and Measured Force
for Sinusoidal Input xb of  = 94 rad/s
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Figure 15: Frequency Plots Depicting the
Median Force and Peak-to-Peak

Magnitude Difference Exhibited by the
Constant-Force Mechanism

when the mass of the slider is set to zero, or
the mechanism has no inertia at all (all masses
set to zero). Setting all the inertias to zero
provides a baseline useful for comparison of
the other curves, and setting the end mass to
zero shows the dynamic response of the
constant-force spring isolated as a separate
“module”. The fourth and fifth lines in the figure
show the effect of multiplying the rigid link mass
by four (which represents a possible
improvement to the test mechanism, thickening
the rigid link to ensure it doesn’t flex), and the
effect of reducing the end mass by 75%. Lastly,
the modeled force with Coulomb friction 

C
 and

unmodeled torque 
um

 set to zero is given.

Notice that each curve in the peak-to-peak
force plot first curves down, then sus-tains a
linear range before it starts to increase (all
except for the third curve and last curve). This
dip in magnitude difference is demonstrated
nicely by Figures 12 to 14. Clearly, the force

profile of Figure 13 at  = 42 rad/s has a lower
peak-to-peak force difference than the
proceeding and following figures at  = 4 rad/
s and  = 94 rad/s.

This very interesting and unexpected
discovery of the peak-to-peak force plot is that
there exists a range of frequencies over which
a constant-force mechanism exhibits better
constant-force behavior than at static levels.
This range of frequencies coincides with the
initial magnitude difference drop and most of
the linear portion for each of the cases plotted
in Figure 15. This unexpected finding
significantly improves the likelihood that the
compliant constant-force mechanism could be
viable in industry.

For instance, if a designer were to use the
test mechanism in an application and wanted
to output as close to constant-force as
possible, he or she would run the mechanism
at a frequency of 30 rad/s (see the heavy solid
line of Figure 15). This would result in a
constant-force mechanism with a median force
of 40 N and a force variance of ±3.5 N, much
better than the ±6 N force variance the device
demonstrates statically. Or if a designer
wanted to maximize the range of frequencies
over which the mechanism exhibits “better-
than-static” constant-force, he or she could
minimize the slider mass as much as possible.
Figure 15 shows that the smaller the inertia of
the slider, the higher the frequency before the
force magnitude difference starts to rise.

Depending on what attributes are most
desirable—a wide frequency band with
moderately low peak-to-peak force, a single
frequency with very low peak-to-peak force, or
some other similar effect—the constant-force
mechanism parameters can be optimized to
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achieve the desired results. It was thought that
this better-than-static constant-force
phenomenon was caused in part by inclusion
of ôC and ôum in the dynamic model, and the
last curve of Figure 15 indicates as much. The
peak-to-peak force difference of the dynamic
model with 

C
 and ôum set to zero does not

manifest a dip over the initial range of
frequencies, as do the other curves. Instead, it
curves up sharply. However, the phenomenon
is not strictly due to 

C
 and 

um
 only, as

evidenced by the third curve of Figure 15. This
curve, which represents the dynamic model
with all of the inertias set to zero, does include


C
 and 

um
, and it exhibits no dip in peak-to-

peak force. So, the phenomenon is likely due
to some combination of inertial effects and the
effects modeled by 

C
 and 

um
. A linearization

of the dynamic model about several operating
points may hint at the physical reasons for this
better-than-static constant-force effect, and
may be a fruitful area for further research.

The peak-to-peak force and median force
plots end at 150 rad/s for two reasons: (1) most
everything of interest in the two plots occurs
below this frequency, and (2) there is an upper
limit (not necessarily 150 rad/s) above which
the constant-force mechanism starts to yield
a negative force (i.e., will start to pull instead
of push). This occurs when the force cycle
exceeds a frequency where the peak-to-peak
force equals twice the median force. For the
test device (heavy solid line), this occurs at
about 99 rad/s.

In few applications will it be useful to give a
constant-force mechanism a displacement
input by attaching an actuator or surface directly
to the slider; the two will usually be touching,
but not rigidly connected. When the force

becomes negative, this represents a situation
where the slider breaks contact with the
actuator or surface, possibly to cause an
impact later. Of course these frequencies
would be undesirable in most applications and
should be avoided.

Evaluation of the Dynamic Model

How well does the dynamic model represent
the constant-force mechanism? And, if the
model anticipates the physical system well,
can it be simplified, perhaps by omitting
insignificant terms?

Both questions can be answered by
analyzing how well the modeled force fits the
measured force at each frequency tested. The
modeled force is first compared to the
measured force with the model untouched.
Then various model parameters are set to zero
to test their relative importance to the model.
As a measure of goodness of fit, the error
formula

measured

measuredmolded

F

FF
E




where F
measured

 is the average measured force,
is applied to each data point in a force cycle
and the average error E over the full force cycle
is calculated. For better presentation,
goodness of fit G

fit
is cast as a percentage,

G
fit
 = 100 (1 – E) Figure 16 shows how well

the modeled force fits the measured force, for
each test frequency. The first plot, represented
by small circles, shows the goodness of fit of
the dynamic model with all terms intact. The
succeeding plots each eliminate one or two
model parameters. Even with the complete
model, the fit worsens as frequency increases.
This is probably due to viscous damping, which
was not modeled.
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Observe that the dynamic model represents
the constant-force mechanism very well. Over
the range of frequencies tested, the modeled
force is within about 3% relative error of the
measured force.

With the first question answered, the second
question remains; can the omission of certain
minor terms simplify the model? Not surprising
is that the worst of these is the model with the
end mass set to zero. The end mass
possesses most of the system mass upon
which inertial forces act. What is surprising is
the result of omitting the unmodeled torque term


um
. This is interesting compared to the effect

of ignoring the Coulomb friction term 
C
. The

contribution of 
um

 in comparison to 
C
 is more

predominate than anticipated.

Setting the link masses, m
2
 and m

3
, to zero

represents a fair reduction in the equation of
motion for the mechanism, equation. Doing
this only sacrifices accuracy at higher

frequencies (see Figure 16), so the dynamic
model could be simplified by omitting the link
inertias, but removing these terms does not
point to a simpler model derivation.

Figure 16 seems to be more useful in
illustrating the relative importance of the
dynamic model parameters, rather than as a
tool to simplify the model.

CONCLUSION
The constant-force mechanism dynamic
model, based on the pseudo-rigid-body model
of the mechanism, proves to be a useful,
viable abstraction of the physical system. The
dynamic model of approximates distributed
compliance as a point compliance, while
converting the device into a rigid-body
mechanism; yet, a dynamic model of the
simplified mechanism yields very satisfactory
results. This further validates the usefulness of
the pseudo-rigid-body model as a dynamics
modeling tool, in conjunction with the research
of Lyon et al. (1997).

Not only does the dynamic model effectively
predict the output force of an actual constant-
force mechanism, but it illuminates a very
useful dynamic property of the mechanism:
over certain frequencies it exhibits better
constant-force behavior dynamically than
statically. The knowledge of such a property
makes the constant-force mechanism much
more attractive for application in dynamic
systems.
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