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MULTI OBJECTIVE OPTIMIZATION OF TOOL LIFE
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In many production contexts it is still necessary to rely on engineering judgment to optimize a
multi-response problem, therefore uncertainty seems to prevail during the decision making
process. Therefore, development of efficient multi response phenomena is required. The present
project deals with the optimization of tool life and machining cost while performing machining on
CNC Milling machine. The experiments are conducted through Design of Experiments (DOE).
The experiment has been carried out by using solid carbide flat end mill as cutting tool and
stainless steel (S.S-304) as work piece. The approach is carried out using 3-level full factorial
method and is performed using Minitab V15 package. The input parameters are taken as cutting
speed, feed and depth of cut while the responses are tool life and machining cost. The
experimental results display that the cutting speed and depth of cut are the significant parameters
that influence the tool life.

Keywords: Design of Experiments (DOE), Full factorial method, Tool life, Prediction,
Regression analysis

INTRODUCTION
Today’s manufacturing industries are very
much concerned about the quality of their
products. The machinability of AISI 304
stainless steel is difficult since it has high
strength, low thermal conductivity, high ductility
and high work hardening tendency. Poor
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surface finish, high force, and high tool wear
are also observed when machining the
material. Tool life is defined as the time interval
for which tool works satisfactorily between two
successive grinding and re-sharpening of the
tool. The life of tool is affected by many factors
such as: cutting speed, depth of cut, chip
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thickness, tool geometry, material or the cutting
fluid and rigidity of machine. Physical and
chemical properties of work material influence
tool life by affecting form stability and rate of
wear of tools. The nose radius tends to affect
tool life.

Cutting Speed has the great influence on
tool life. As the cutting speed increases the
temperature also rises. The heat is more
concentrated on the tool than on the work
piece and the hardness of tool matrix changes
so the relative increase in the hardness of the
work accelerates the abrading action. The
criterion of wear is dependent on cutting speed
because the predominant wear may be wear
for flank or crater if cutting speed is increased.
It has been found that at cutting speed greater
than 100 m/min in carbide turning of steel,
crater wear may become predominant.

The relation between the cutting speed to
tool life is expressed by the formula.

V.Tn = C

where,V – Cutting speed in m per min.

T – Tool Life in minutes.

n – Exponent depends on the tool and
the work piece.

C – Constant this is numerically equal
to cutting speed that gives a tool life of one
minute.

The uncut chip thickness or the cutting feed
has a direct influence on the quali ty,
productivity, and efficiency of machining. It is
believed that the tool life decreases (and, thus,
tool wear increases) with increasing cutting
feed. Such a conclusion follows from the
generally adopted equation for tool life.

48.06.14

61036.48

dfv
LifeTool




If the cutting speed v and the depth of cut d
are both constant, then the tool life decreases
when the cutting feed f is increased.

When the depth of cut increases and the
uncut chip thickness is kept the same, the
specific contact stresses at the tool-chip
interfaces, the chip compression ratio (defined
as the ratio of the chip and the uncut chip
thicknesses and the average contact
temperature remain unchanged. Therefore, an
increase in the depth of cut should not change
the tool wear rate if the machining is carried
out at the optimum cutting regime.

MATERIALS AND METHODS
In this project a work piece made of stain less
steel SS-304 (as per AISI) is used. 300 series
stainless steel having approximately (not
exactly) 18% chromium and 8% nickel.  The
term “18-8” is used interchangeably to
characterize fittings made of 302, 302HQ,
303, 304, 305, 384, XM7, and other variables
of these grades with close chemical
compositions.  There is little overall difference
in corrosion resistance among the “18-8”
types, but slight differences in chemical
composition do make certain grades more
resistant than others do against particular
chemicals or atmospheres.  “18-8” has
superior corrosion resistance to 400 series
stainless, is generally nonmagnetic, and is
hardenable only by cold working.

Type 304 (18-8) is an austenitic steel
possessing a minimum of 18% chromium and
8% nickel, combined with a maximum of
0.08% carbon. It is nonmagnetic steel which
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cannot be hardened by heat treatment, but
instead must be cold worked to obtain higher
tensile strengths (Table 1).

The 18% minimum chromium content
provides corrosion and oxidation resistance.
The alloy’s metallurgical characteristics are
established primarily by the nickel content (8%
mm), which also extends resistance to
corrosion caused by reducing chemicals.
Carbon, a necessity of mixed benefit, is held
at a level (0.08% max) that is satisfactory for
most service applications in manufacturing.

The stainless alloy resists most oxidizing
acids and can withstand all ordinary rusting.
However, it will tarnish. It is immune to
foodstuffs, sterilizing solutions, most of the
organic chemicals and dyestuffs, and a wide
variety of inorganic chemicals. Type 304, or
one of its modifications, is the material
specified more than 50% of the time whenever
a stainless steel is used.

Because of its ability to withstand the
corrosive action of various acids found in fruits,
meats, milk, and vegetables, Type 304 is used
for sinks, tabletops, coffee urns, stoves,
refrigerators, milk and cream dispensers, and
steam tables. It is also used in numerous other
utensils such as cooking appliances, pots, pans,
and flatware. In the marine environment, because
of it slightly higher strength and wear resistance
than type 316 it is also used for nuts, bolts, screws,
and other fasteners.  It is also used for springs,
cogs, and other components where both wear
and corrosion resistance is needed.

Work Piece Specification
The size of work piece used in the machining
is 170 × 50 × 12

Length of each machining cut is 50 mm

Composition Percentage (%)

Carbon 0-0.07

Manganese 0-2.0

Silicon 0-1.0

Phosphorous 0-0.05

Sulphur 0-0.02

Chromium 17.5-19.5

Nickel 8-10.5

Iron Balance

Table 1: Chemical Composition of AISI
304 Stainless Steel

Property Value

Density 8.00 gm/cm3

Melting Point 1450 °C

Modulus of Elasticity 193 Gpa

Electrical Resistivity 0.072 × 10–6U.m

Thermal Conductivity 16.2 W/Mk

Thermal Expansion 17.2 × 10–6/K

BHN 123

VHN 129

Table 2: Properties of AISI 304 Stainless
Steel

Tools and Equipment Used

Solid Carbide Flat End Mill of 10 mm diameter.

CNC Vertical Machining Center – AGNI
BMV 45 T20

Process Variables Used in the
Experimentation

The level of cutting parameter ranges and the
initial parameter values are chosen from the
manufacturer’s data book recommended for
the tested material. These cutting parameters
are shown in Table 3.

Design of Experiments (DOE)

Design of Experiment is an experimental or
analytical method that is commonly used to
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statistically signify the relationship between
input parameters to output responses. DOE
has wide applications especially in the field of
science and engineering for the purpose of
process optimization and development,
process management and validation tests.
DOE is essentially an experimental based
modeling and is a designed experimental
approach which is far superior to unplanned
approach whereby a systematic way will be
used to plan the experiment, collect the data
and analyze the data. A mathematical model
has been developed by using analysis
techniques such as ANOVA and regression
analysis whereby the mathematical model
shows the relationship between the input
parameters and the output responses. Among
the most prominently used DOE techniques
are Response Surface Methodology with
Central Composite Design, Taguchi’s method
and Factorial Design. In DOE, synergy
between mathematical and statistical
techniques such as Regression, Analysis of
Variance (ANOVA), Non-Linear Optimization
and Desirability functions helps to optimize the
quality characteristics considered in a DOE
under a cost effective process. ANOVA helps
to identify each factor effect versus the
objective function.

Experimental design was first introduced in
the 1920s by R A Fischer working at the
agricultural field station at Rothamsted in
England. Fischer concerned with arranging

trials of fertilizers on plots to protect against
the underlying effect of moisture, gradient,
nature of soils, etc. Fischer developed the
basic principles of factorial design and the
associated data analysis known as ANOVA
during research in improving the yield of
agricultural crops.

Factorial Method

Factorial designs allow for the simultaneous
study of the effects that several factors may
have on a process. When performing an
experiment, varying the levels of the factors
simultaneously rather than one at a time is
efficient in terms of time and cost, and also
allows for the study of interactions between
the factors. Interactions are the driving force
in many processes. Without the use of
factorial experiments, important interactions
may remain undetected. DOE is used
because it saves time and cost in terms of
experimentation. DOE function in such
manner that the number of experiments or
the number of runs is determined before the
actual experimentation is done. This way,
time and cost can be saved as we do not
have to repeat unnecessary experiment
runs. Most usually, experiments will have
error occurring. Some of them might be
predictable while some errors are just out of
control. DOE allows us to handle these
errors while still continuing with the analysis.
DOE is excellent when it comes to prediction
linear behavior.

S. No. Cutting Parameter Units Level 1 Level 2 Level 3

1. Cutting Speed m/min 50 75 100

2. Feed mm/rev 0.10 0.20 0.30

3. Depth of Cut m m 0.30 0.40 0.50

Table 3: Process Parameters Used in the Experimentation
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Measurement of Tool Life

Tool Life is the time elapsed between two
successive grindings of a cutting tool. Tool life
may be measured in the following ways.

• Number of pieces machined between tool
sharpening.

• Time of actual operation, viz, the time the
tool is in contact with the job.

• Total time of operation.

• Equivalent cutting speed.

• Volume of material removed between tool
sharpening.

In practice it is more profitable to assess
the tool life in terms of the volume of metal
removed because the wear is related to the
area of the chip passing over the tool surface.
The volume of metal removed from the work
piece between tool sharpening for a definite
depth of cut, feed and cutting speed can be
determined by Taylor’s tool life equation.

The proposed relationship between the
machining response (tool life) and machining
independent variables can be represented by
the following:

T = C(V l f m d n)e

where T is the tool life in minutes, V, f, and d
are the cutting speeds (m/min), feed rates
(mm/rev), and depths of cut (mm) respectively,
C, l, m, n are constants and e is a random
error.

Taylors Extended Tool life
Equation

kdfTV nnn  21

where

T = Tool life in min

1. 75 0.3 0.3

2. 75 0.3 0.5

3. 100 0.3 0.3

4. 100 0.3 0.5

5. 100 0.1 0.5

6. 100 0.1 0.4

7. 50 0.1 0.4

8. 50 0.1 0.3

9. 75 0.3 0.4

10. 75 0.1 0.5

11. 50 0.2 0.5

12. 75 0.2 0.5

13. 50 0.3 0.4

14. 50 0.1 0.5

15. 100 0.1 0.3

16. 50 0.2 0.4

17. 100 0.2 0.3

18. 50 0.3 0.3

19. 100 0.3 0.4

20. 75 0.1 0.3

21. 50 0.3 0.5

22. 100 0.2 0.4

23. 75 0.1 0.4

24. 100 0.2 0.5

25. 75 0.2 0.3

26. 50 0.2 0.3

27. 75 0.2 0.4

Table 4: Design of Experiments

S.
No.

Cutting Speed
(m/min)

Feed
(mm/rev)

Depth of
Cut (mm)

Different types of designs available in

Factorial Method are,

• Two-level full factorial designs.

• Two-level fractional factorial designs.

• Plackett-Burman designs.

• General full factorial designs.
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f = feed in mm per revolution

d = depth of cut in mm

n = Tool constant for solid carbide – 0.25
(from tool manufacturer’s data book)

n
1
 = feed exponent constant – 0.5 (from tool

manufacturer’s data book)

n
2
 = depth of cut exponent constant – 0.20

(from tool manufacturer’s data book)

k = constant – 47 (from tool manufacturer’s
data book)

 
n

n

n

n
n

n

dfv

k
TLifeTool

21
/1

/1




By replacing the values in the above
equation,

3.024

447

dfv
LifeTool 

Calculation of Tool Life While
Manufacturing Each Part

Material need to remove = 1 mm

Length of cut in one pass = 50 mm

Spindle speed is = 2000 rpm

Feed is = 0.15 mm/rev

Depth of cut is = 0.25 mm

Cutting speed = 50 m/min

for, Cutting speed = 75 m/min

Feed = 0.3 mm/rev

Depth of cut = 0.3 mm

3.024

4

3.03.075

47


LifeTool

Tool Life = 4.489 min

Calculation of Machining Cost/
Piece and Tooling Cost/Piece for
the Selected Part

Cost of tool is = Rs. 995

Total cost being used by machine in one
hour = VMC machine hour rate = Rs. 500

The cycle time for the part for each set of
cutting parameters is obtained by performing
machining.

Number of parts being made by one tool =

26.24
185.0

489.4


timecycle

lifetool

Machining cost of one part is being given

by = 
60

ratehourVMCtimeCycle 

60

500185.0 
  = Rs. 1.541/-

Tooling cost of one part is being given by =

toolonebyemadeworkpiecesofNo

tooloneofCost

.

Tooling Cost = 
24

995
 = Rs. 41.458/-

Total cost being obtained for producing one
part = Tooling cost + Machining cost

= 41.458 + 1.541

= Rs. 42.991/-

Analysis of Variance

In statistics, analysis of variance (ANOVA) is
a collection of statistical models, and their
associated procedures, in which the
observed variance in a particular variable is
partitioned into components attributable to
different sources of variation. In its simplest
form, ANOVA provides a statistical test of
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whether or not the means of several groups are
all equal, and therefore generalizes t-test to
more than two groups. Doing multiple two-
sample t-tests would result in an increased
chance of committing a type I error. For this
reason, ANOVAs are useful in comparing
three, or more means.

ANOVA is used in the analysis of
comparative experiments, those in which only
the difference in outcomes is of interest. The
statistical significance of the experiment is
determined by a ratio of two variances. This
ratio is independent of several possible
alterations to the experimental observations:
Adding a constant to all observations does not
alter significance. Multiplying all observations
by a constant does not alter significance. So
ANOVA statistical significance results are
independent of constant bias and scaling
errors as well as the units used in expressing
observations.

Response Surface Methodology

In statistics, Response Surface Methodology
(RSM) explores the relationships between
several explanatory variables and one or
more response variables. The method was
introduced by G E P Box and K B Wilson in
1951. The main idea of RSM is to use a
sequence of designed experiments to obtain
an optimal response. Box and Wilson suggest
using a second-degree polynomial model to
do this. They acknowledge that this model is
only an approximation, but use it because such
a model is easy to estimate and apply, even
when little is known about the process.

Response surface methodology uses
statistical models, and therefore practitioners
need to be aware that even the best statistical

model is an approximation to reality. In
practice, both the models and the parameter
values are unknown, and subject to uncertainty
on top of ignorance. Of course, an estimated
optimum point need not be optimum in reality,
because of the errors of the estimates and of
the inadequacies of the model.

Nonetheless, response surface
methodology has an effective track-record of
helping researchers improve products and
services: For example, Box’s original
response-surface modeling enabled chemical
engineers to improve a process that had been
stuck at a saddle-point for years. The engineers
had not been able to afford to fit a cubic three-
level design to estimate a quadratic model,
and their biased linear-models estimated the
gradient to be zero. Box’s design reduced the
costs of experimentation so that a quadratic
model could be fit, which led to a (long-sought)
ascent direction.

Mathematical Model of Response
Surface Methodology

The Response Surface is described by a
second order polynomial equation of the
form,





ji

jiij

k

i
iii

k

i
ii xxxxY  20

where, Y is the corresponding response (1,
2, ..., S) are coded levels of S quantitative
process variables. The terms are the second
order regression coefficients. Second term
is attributable to linear effect. Third term
corresponds to the higher-order effects;
Fourth term includes the interactive effects.
The last term indicates the experimental
error.
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Different Terms and Graphs in
Response Surface Methodology

Regression Table

P-values: p-values (P) to determine which of
the effects in the model are statistically
significant.

• If the p-value is less than or equal to a (0.05),
conclude that the effect is significant.

• If the p-value is greater than a, conclude that
the effect is not significant.

Coefficients: Coefficients are used to
construct an equation representing the

relationship between the response and the
factors.

R-squared: R and adjusted R represent the
proportion of variation in the response that is
explained by the model.

• R (R-Sq) describes the amount of variation
in the observed responses that is explained
by the model.

• Predicted R reflects how well the model will
predict future data.

• Adjusted R is a modified R that has been

adjusted for the number of terms in the
model. If we include unnecessary terms, R
can be artificially high. Unlike R, adjusted R
may get smaller when we add terms to the
model.

Analysis of Variance Table: P-values (P)
are used in analysis of variance table to

determine which of the effects in the model
are statistically significant. The interaction
effects in the model are observed first
because a significant interaction will influence
the main effects.

Estimated Coefficients Using Uncoded
Units

• Minitab displays the coefficients in uncoded
units in addition to coded units if the two
units differ.

• For each term in the model, there is a
coefficient. These coefficients are useful to
construct an equation representing the
relationship between the response and the
factors.

Graphs

Histogram of Residuals: Histogram of the
residuals shows the distribution of the
residuals for all observations.

Normal Plot of Residuals: Graph is plotted
between the residuals versus their expected
values when the distribution is normal. The
residuals from the analysis should be normally
distributed. In practice, for balanced or nearly
balanced designs or for data with a large
number of observations, moderate departures
from normality do not seriously affect the
results. The normal probability plot of the
residuals should roughly follow a straight line.

Residuals vs. Fits: Graph is plotted between
the residuals versus the fitted values. The
residuals should be scattered randomly about
zero.

Residuals vs. Order: This graph plots the
residuals in the order of the corresponding
observations. The plot is useful when the order
of the observations may influence the results,
which can occur when data are collected in a
time sequence or in some other sequence.
This plot can be particularly helpful in a
designed experiment in which the runs are not
randomized.
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S. No. Cutting Speed (m/min) Feed (mm/rev) Depth of Cut (mm) Tool Life (min)

1. 75 0.3 0.3 4.489

2. 75 0.3 0.5 2.983

3. 100 0.3 0.3 1.42

4. 100 0.3 0.5 0.944

5. 100 0.1 0.5 8.496

6. 100 0.1 0.4 10.156

7. 50 0.1 0.4 162.5

8. 50 0.1 0.3 204.55

9. 75 0.3 0.4 3.566

10. 75 0.1 0.5 26.85

11. 50 0.2 0.5 33.98

12. 75 0.2 0.5 6.712

13. 50 0.3 0.4 18.05

14. 50 0.1 0.5 135.93

15. 100 0.1 0.3 12.78

16. 50 0.2 0.4 40.62

17. 100 0.2 0.3 3.196

18. 50 0.3 0.3 22.72

19. 100 0.3 0.4 1.128

20. 75 0.1 0.3 40.406

21. 50 0.3 0.5 15.104

22. 100 0.2 0.4 2.539

23. 75 0.1 0.4 32.09

24. 100 0.2 0.5 2.124

25. 75 0.2 0.3 10.101

26. 50 0.2 0.3 51.13

27. 75 0.2 0.4 8.02

Table 5: Calculated Tool Life Under Given Set of Cutting Conditions

1. 75 0.3 0.3 0.1850 1.5410 41.250 42.991

2. 75 0.3 0.5 0.1100 0.9166 36.849 37.766

3. 100 0.3 0.3 0.1388 1.1566 98.843 100.660

4. 100 0.3 0.5 0.0833 0.6941 90.454 91.148

5. 100 0.1 0.5 0.2500 2.0830 26.264 28.347

Table 6: Total Cost Obtained for Given Set of Cutting Conditions

S.
No.

Cutting Speed
m/min

Feed mm/
rev

Depth of
Cut mm

Cycle Time
min

Machining
Cost Rs.

Tooling Cost
Rs. Total Cost Rs.
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RESULTS AND DISCUSSION
Above experimental data is inputted into the
Minitab software and analysis of factorial design
is being done. The following mathematical

relationship and graphs are being generated by
software which gives important results.

Analysis of variance (ANOVA) is as shown.
It shows the value of p < 0.05 for all linear,

6. 100 0.1 0.4 0.3125 2.6041 30.1510 32.755

7. 50 0.1 0.4 0.6250 5.2083 3.8257 9.034

8. 50 0.1 0.3 0.8330 6.9410 4.0440 10.985

9. 75 0.3 0.4 0.1388 1.1566 38.2680 39.425

10. 75 0.1 0.5 0.3330 2.7750 12.2830 15.058

11. 50 0.2 0.5 0.2500 2.0830 7.3100 9.393

12. 75 0.2 0.5 0.1660 1.3830 24.8750 26.258

13. 50 0.3 0.4 0.3125 2.6004 17.1590 19.759

14. 50 0.1 0.5 0.5000 4.1660 3.6580 7.824

15. 100 0.1 0.3 0.4165 3.4700 32.0640 35.534

16. 50 0.2 0.4 0.3125 2.6040 7.6500 10.254

17. 100 0.2 0.3 0.2080 1.7330 33.1660 34.899

18. 50 0.3 0.3 0.2770 7.3083 12.1130 19.442

19. 100 0.3 0.4 0.1040 0.8660 90.4540 91.320

20. 75 0.1 0.3 0.5500 4.5830 9.5050 14.088

21. 50 0.3 0.5 0.1660 1.3830 10.9340 12.317

22. 100 0.2 0.4 0.1560 1.3000 62.1870 63.487

23. 75 0.1 0.4 0.4166 3.4710 12.9740 16.391

24. 100 0.2 0.5 0.1250 1.0410 58.5290 59.570

25. 75 0.2 0.3 0.2770 2.3083 27.6380 29.946

26. 50 0.2 0.3 0.4160 3.4660 8.0840 11.550

27. 75 0.2 0.4 0.2083 1.7358 26.1140 27.850

Table 6 (Cont.)

S.
No.

Cutting Speed
m/min

Feed mm/
rev

Depth of
Cut mm

Cycle Time
min

Machining
Cost Rs.

Tooling Cost
Rs. Total Cost Rs.

Source DF Seq SS Adj SS Adj MS F P

Regression 9 63715.0 63715.0 7079.44 20.26 0.000

Linear 3 41284.6 21687.5 7229.17 20.69 0.000

Square 3 6657.6 6657.6 2219.19 6.35 0.040

Interaction 3 15772.8 15772.8 5257.60 15.04 0.000

Residual Error 17 5941.1 5941.1 349.47

Total 26 69656.0

Table 7: Analysis of Variance for Tool Life
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square and interactions terms, i.e., all these
effects are significant on the tool life.

S = 18.6942

R-Sq = 95.47%

R-Sq(pred) = 91.45%

R-Sq(adj) = 86.96%

adequately significant at a 95% confidence
level.

Graphs

Normal Probability for Tool Life: The normal
probability plot, shows a clear pattern (as the
points are almost in a straight line) indicating
that all the factors and their interaction given
in are affecting the tool life. In addition, the
errors are normally distributed and the
regression model is well fitted with the
observed values.Predictor Coefficient P-Value

Constant 881.94 0.000

X
1 

(mm/min) –11.48 0.000

X
2
 (mm/rev) –2477.80 0.000

X
3 

(mm) 530.48 0.420

X
1

2 0.04 0.004

X
2

2 2151.77 0.012

X
3

2 147.65 0.849

X
1
X

2
13.970 0.000

X
1
X

3
2.920 0.194

X
2
X

3
640.520 0.252

Table 8: Statistical Analysis
of All Terms for Tool Life

Mathematical Relationship
Between Input Parameters and
Tool Life

The mathematical relationship for correlating
the Tool life and the considered process
variables has been obtained as follows:

Tool Life = 881.94 – 11.48 * X
1
 – 2477.80 *

X
2
 – 530.48 * X

3
 + 0.04 * X

1
2 + 2151.77 * X

2
2 +

147.65 * X
3
2 + 13.97 * X

1
 * X

2
 + 2.920 * X

1
 * X

3

+ 640.520 * X
2
 * X

3

The second-order polynomial models were
developed for Tool life. The fit summary
indicates that the quadratic model is
statistically significant for analysis of Tool life.

The value of R2 is 95.47%, which indicates
that the developed regression model is

Pattern Indicates

Not a Straight Line Non Normality

Curve in the Tails Skewness

A Point Far Away from the Line Outlier

Changing Slope Unidentified Variable

Table 9: Pattern Curvature for Normal
Probability Plot

Figure 1: Normal Probability for Tool Life

Minitab provides three types of residuals:

• Regular residual: Observed Value-
Predicted Value.

• Standardized residual: Regular Residual/
Standard Deviation of Regular Residual.
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The standardization eliminates the effect of
the location of the data point with respect
to the predictors or factors.

• Studentized deleted residual: for the ith data
point, the formula follows the same
expression as the standardized residual.
However, the ith fitted value and the
standard deviation are calculated for the
studentized deleted residual by deleting the
ith case in the analysis. Compared to the
standardized residual, the studentized
deleted residual becomes larger in the
presence of an unusual data point.

Pattern Indicates

Fanning or uneven
spreading of residuals
across fitted values Non-constant variance

Curvilinear A missing higher order term

A point far away from zero An outlier

Table 10: Pattern Indication for
Standardized Residual Vs Fitted Values

Source DF Seq SS Adj SS Adj MS F P

Regression 9 17452.0 17452.00 1939.113 2.82 0.000

Linear 3 14651.9 754.32 251.439 5.42 0.008

Square 3 543.4 543.43 181.142 3.91 0.027

Interaction 3 2256.7 2256.73 752.243 4.23 0.000

Residual error 17 788.2 788.17 46.363

Total 26 18240.2

Table 11: Analysis of Variance for Total Cost

Figure indicates that the maximum variation
of 0 to 200, which shows the high correlation
that, exists between fitted values and observed
values.

The nearness of the both the experimental
and predicted tool life curves indicates that the

experimental and predicted tool life values are
approximately equal.

Figure 2: Standardized Residual vs. Fitted
Value for Tool Life

Figure 3: Comparison Between
Experimental and Predicted Values



267

Int. J. Mech. Eng. & Rob. Res. 2013 D S Sai Ravi Kiran and S Phani Kumar, 2013

S = 6.80902

R-Sq = 95.68%

R-Sq(pred) = 91.37%

R-Sq(adj) = 93.39%

The mathematical  relationship for
correlating the Total Cost and the considered
process variables has been obtained as
follows:

Total Cost = 82.143 + 2.391 * X
1
 381.486 *

X
2
 + 108.538 * X

3
 + 0.013 * X

1
2 + 435.700 *

X
2
2 + 182.100 * X

3
2 + 5.427 * X

1
 * X

2
 + 0.681 *

X
1
 * X

3
 – 104.000 * X

2
 * X

3
.

The second-order polynomial models were
developed for Total Cost. The fit summary
indicates that the quadratic model is
statistically significant for analysis of Total Cost.

The value of R2 is 95.68%, which indicates
that the developed regression model is
adequately significant at a 95% confidence
level.

The normal probability plot, shows a clear
pattern (as the points are almost in a straight
line) indicating that all the factors and their

interaction given in are affecting the total cost.
In addition, the errors are normally distributed
and the regression model is well fitted with the
observed values.

Predictor Coefficient P-Value

Constant 82.1430 0.048

X
1 

(mm/min) –2.3190 0.006

X
2 

(mm/rev) –381.4860 0.020

X
3 

(mm) 108.5380 0.049

X
1

2 0.0130 0.009

X
2

2 435.7000 0.035

X
3

2 –182.1000 0.021

X
1
X

2
5.4270 0.000

X
1
X

3
0.6810 0.099

X
2
X

3
–104.0000 0.004

Table 12: Statistical Analysis of All Terms
for Total Cost

Figure 4: Normal Probability Plot
for Total Cost

Figure 5: Standardized Residual vs. Fitted
Values for Total Cost

Figure indicates that the maximum variation
of 0 to 100, which shows the high correlation
that, exists between fitted values and observed
values.

The nearness of the both the experimental
and predicted total cost curves indicates that



268

Int. J. Mech. Eng. & Rob. Res. 2013 D S Sai Ravi Kiran and S Phani Kumar, 2013

the experimental and predicted total cost
values are approximately equal.

Optimization Plot

A Minitab Response Optimizer tool shows how
different experimental settings affect the
predicted responses for factorial, response
surface, and mixture designs. Minitab
calculates an optimal solution and draws the
plot. The optimal solution serves as the starting
point for the plot. This optimization plot allows
to interactively changing the input variable
settings to perform sensitivity analyses and
possibly improve the initial solution.

From the optimization plot it can be said
that the maximum tool life is 170.19 min and
the least total cost is Rs. 12.22 obtained when
the cutting speed = 50 m/min, feed = 0.3 mm/
rev, and depth of cut = 0.3 mm.

Also from the optimization plot it can be
concluded that depth of cut and cutting speed
are the most influencing parameters.

CONCLUSION
The experimental results demonstrate that the
cutting speed and depth of cut are the main
parameters that Influence the tool life of end
mill cutters of CNC milling machine.

The tool life can be improved simultaneous
through DOE approach instead of using
Engineering judgment.

Experimental results show that in milling
operations, use of low depth of cut, low cutting
speed and low feed rate are recommended
to obtain better Tool life for the specific range.

FUTURE SCOPE
Tool rake angle, axial depth of cut and
temperature at the tool tip can be taken as
additional factors that influence the tool life with
addition to cutting speed, feed and depth of
cut.

Surface finish, material removal rate, tool
flank wear etc can also be taken as responses
in addition to tool life and total cost.

SAS software can be used for generating
Design of Experiments instead of Minitab
V15.
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