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GENETIC ALGORITHM FOR PROJECT
SCHEDULING AND RESOURCE ALLOCATION

UNDER UNCERTAINTY
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This paper provide a solution approach for planning, scheduling and managing project efforts
where there is significant uncertainty in the duration, resource requirements and outcomes of
individual tasks. Our approach yields a nonlinear (GA) optimization model for allocation of
resources and available time to tasks. This formulation represents a significantly different view
of project planning from the one implied by traditional project scheduling, and focuses attention
on important resource allocation decisions faced by project managers. The model can be used
to maximize any of several possible performance measures for the project as a whole. We
include a small computational example that focuses on maximizing the probability of successful
completion of a project whose tasks have uncertain outcomes. The resource allocation problem
formulated here has importance and direct application to the management of a wide variety of
project-structured efforts where there is significant uncertainty.
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INTRODUCTION
In Engineering and business, projects are
subjected to a multitude of uncontrollable
factors that affect their successful completion
and are difficult to be predicted precisely or
with certainty in the planning phase. Weather
variations, workers’ productivity variation,
resources availability, failures of equipment,
customer’s acceptance or refusal at different
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phases of a project, extent of maturity of
adopted technology and budget uncertainty
are few examples of these uncontrollable
factors. Uncertainty manifests itself in the
estimation of activities durations, in estimating
cost, in determining resource requirements, in
the precedence order of different activities and
even in the outcome of some activities:
whether these activities will be successfully
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accomplished or they will be failures entailing
consideration of different courses of action
and/or rework. Problems of project planning
and management in case of lack of
information and uncertainty have attracted the
attention of researchers since long time ago.
Project Evaluation and Review Technique,
known as PERT was the fi rst model
(Goldberg, 1989) that considers the
randomness of activity durations. The Three-
valued estimation of activity duration
(optimistic, most likely and pessimistic) is
one of the powerful features of PERT, since it
is easy to collect them from experienced
staffs. PERT evaluates the mean and
variance of each activity duration in terms of
the three values by assuming the Beta
distribution as the probability distribution for
all different activities. PERT uses the same
technique of the Critical Path Method CPM
(Forward and Backward Passes) in
evaluating the project completion time,
defining the critical path(s) and the floats (total
and free) for each activity, all based on the
mean activity duration.

PERT applies the Central Limit theorem
and considers the project completion time as
a random variable distributed according to
normal distribution. The probability of
successfully completing a project at that time
defined by PERT or less is nearly 50%, which
means that there is a risk of failing to complete
the project with nearly 50% probability. Having
a determinately defined critical path(s)
contradicts the assumption of the randomness
of activities durations. This and other facts,
stated later, call for further investigations for
building models more realistic than PERT (Van
Slyke, 1963; Hillier and Lieberman, 1995; and

Feng et al., 1997). It is worthwhile to state here
the limitations of PERT that motivated the
development of other more realistic models:

• Assuming Beta distribution to model the
duration of all project activities without any
regard to the different natures of different
activities.

• Determination of the project completion time
using averages of durations of activities
with no account for their variances.

• Getting determinately defined critical
path(s) is in contradiction with the
assumption of randomness of durations of
activities. Under Uncertainty any path could
be critical but of course with different
probability.

• The assumption of Normality of the project
completion time is approximately valid only
in case of having large number of activities.
The normal distribution with its unlimited
ends is not the proper model.

• PERT is not capable of model ing
uncertainties in the order of precedence and
in outcomes of activities.

• Time-Cost tradeoffs under uncertainty in an
attempt to enhance the probability of project
successful completion cannot be performed
by using PERT.

• The activities are assumed independent
and hence the project variance is taken as
the sum of variances of activities on the
critical path. Correlations between activities
are ignored in PERT.

• The precedence relationships between
activities are limited only by one discipline-
the start to f inish discipline. Other
precedence relationships such as: finish to
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start, start to start and finish to finish could
not be included in PERT model.

Building mathematical models that are
capable of overcoming all limitations of PERT
is an extremely difficult, if not impossible task.
The advent and fast progress of building
computational models enables researchers to
introduce Simulation Modeling as more
reliable models to tackle such problems. Monte
Carlo Simulation was first introduced since
sixties of the last century (Van Slyke, 1963).
Monte Carlo Simulation enabled planners to
use different probability distributions for
durations of different activities, to introduce
what is called criticality index for different paths
and different activities and to fit probability
distributions to project completion time based
on statistics obtained from several simulation
runs. Monte Carlo Simulation has the common
drawback of all simulation techniques, i.e., the
statistical nature of the results and moreover it
is not capable to perform constrained
resource-based scheduling and time-cost
optimization analysis. Discrete-event
Simulation (Hong et al., 2004) is more
powerful technique and may allow the use of
other models of uncertainties such as fuzzy
models of activity duration.

Because of non-linearity, commonly
noticed, in Time-Cost Optimization (TCO) and
resource al location problems, l inear
programming cannot be used. Recently,
Genetic Algorithms (GA) as search engines
are widely used in solving TCO problems,
constrained resource allocation and resource
leveling problems Goldberg (1989), Feng
et al. (1997) and Tarek (1999).

The present work is mainly concerned with
the evaluation of the probability of success of

projects under uncertainty. This problem was
considered before by Turnquist and Linda
(2002). They proposed Weibull distribution to
model activity duration because of the
universality of this distribution. Also in Turnquist
and Linda (2002), a modification was
introduced in Weibull distribution in order to
account for the effect of increasing resources
levels on the activity duration. The Modified
Weibull distribution takes the following form
Turnquist and Linda (2002):
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K and E are the two newly introduced
parameters that defining resource multiplier
and the elasticity of the activity duration to be
compressed as more resources are applied
to it respectively. The effect of allocating more
resources (K times the normal resource level)
to activities is shown in Figure 1.

Figure 1: Weibull Density Function f(d)
with Different Resource Multiplier K

The concept of elasticity (E < = 1) as a
measure of the capability to compress the activity
duration by allocating more resources of a
certain type is clearly illustrated in Figure 2.
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Figure 2: Weibull Density Function f(d)
with Two Different Values of Elasticity
Under the Same Resource Multiplier

Activities with zero elasticity to a specified
resource would not respond to any increase

in level of that resource. This could be
explained by unavailability of space needed
by more resource to operate such as for
example welding in confined spaces in
shipbuilding. It should be emphasized that an
activity could have different elasticity’s with

different types of resources. Later, this point
will be pursued analytically.

PROBLEM FORMULATION

Notations and Symbols

a
i
: Optimistic evaluation of duration of ith

activity

b
i
: Pessimistic estimation of duration of ith

activity

d
i
: Duration of ith activity

d
oi
: Minimum duration of ith activity

E
qi
: Elasticity of ith activity to the application

of resource q

K
qi
: Resource multiplier applied to ith activity

K
i
: Resultant resource multiplier applied to

ith activity

L
qi
: Upper limit of resource type q multiplier to

be applied to activity i

m
i
: Most likely estimation of duration of ith

activity

N: Number of activities

pred
j
: Set of predecessors to jth activity

Q: Number of resources types

R
qu

: Available amount of qth resource in the uth

period

S
i
: Start of ith activity

T: Project completion time

U
q
: Number of contiguous periods of resource

q availability


i
, 

i
: Weibull parameters of duration of ith

activity


uq

: Start of uth period of qth resource

Given a project with N activities (i = 1, 2,
…, N). The precedence order of the activities
is given. Activity duration di is random and
distributed according to Modified Weibull
distribution given in (1). There are Q types of
resources (manpower, cash, equipment, …,
etc.) available to finish the project in a
predefined completion time T. Resources
availability along the project time is limited by
the allowable resource levels at different
periods. The length of these periods and
associated with them allowable levels of
resources differ from resource to another.
Therefore, the project time is subdivided into
a number of equal or non-equal contiguous
periods (u

q
 = 1, 2, …, U

q
) as regards to each

resource type q. It is required to determine the
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time window d
i
 granted to complete each

activity aiming at maximizing the probability
that the project could be completed in time T
or to minimize the probability of failure to
complete the project in time T and to determine
start times of each activity S

i
 and resource

multipliers K
qi
 so that the consumption of

resources of different types will not exceed the
allocated amounts of these resources.

Decision Variables

As already discussed, decision variables to
be determined in the formulated problem are:

d
i
: Allowable time window to complete

works on ith activity

S
i
: Start time of ith activity

K
qi
: qth Resource multiplier representing the

intensity of resource allocation necessary and
sufficient to complete works on ith activity in
the predetermined time window d

i
 wi th

maximum possible probability of success.

The resultant resources multiplier K
i
 is

proposed, in the present work, to be the
geometric mean of all multipliers K

qi
 as follows:

QQ
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E
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qiKK

1
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
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 



...(2)

Objective Function

The Success Probability PAS
i
(d

i
, K

i
) of

completing the ith activity in time window d
i
 can

be evaluated as follows:
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Since all activities of the project should be
completed successfully in order to succeed to
finish the project in the target time T, then the
probability of the project success PPS(T) is
obtained as the product of probabilities of
success of all activities:

 



N

i
ii KdPASPPS

1

, ...(4)

It should be noted here that if there could
be optional precedence order as in case of
GERT networks, the probability of project
success will be determined in a different way
taking into account the different options of
project completion paths.

Constraints

There are three types of constraints imposed
on the decision variables:

Completion Constraint

Let(N + 1)th—a dummy activity with zero
duration and zero resource requirement to act
as an end activity, then

S
N + 1

< = T ...(5)

Precedence Order Constraints

iij dSS  jpredi 

(i = 1, 2, ..., N) (j = 2, 3, ..., N + 1)
...(6)

Resources Availability Constraints

Resources of different types are necessary to
complete project works in the predefined
project time T. As already stated before,
resource of type q is to be made available with
predefined quantity R

qu
 in the uth period. The

sum of quantities of the qth resource required
by all activities in period u should be equal to
or less than R

qu
. In order to calculate the
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amount of consumed resources in different
periods, a resource histogram should be firstly
constructed for each resource type. The level
of resource q, denoted by r

qi
 is taken constant

along the extension of the ith activity duration
d

i
, i.e., the resource q is assumed to be

uniformly consumed by the ith activity. A
resource histogram is an arrangement of
rectangles with heights r

qi
 and with widths d

i

for all activities preserving the precedence
order of the activities. A typical resource
histogram is depicted in Figure 3 subdivided
as regards to the availability of qth resource
into four equal contiguous intervals.

The resource level r
qi
 can be evaluated as

follows:

iqiqiqi dAKr 
iii dStS 

r
qi
 = 0 Otherwise ...(7)

where, A
qi
 is the nominal requirement of ith

activity from resource type q. For example how
many man days nominally required to complete
ith activity?

It is clear from Figure 3 that within the limits
of a period u, project activities may be
classified into three categories as regards to

their contribution in the resource demand
during period u.

Category 1: Activities completely embedded
inside the period, i.e., their starts is equal to
or larger than period start uq and their finish is
equal to or less than period finish 

uq
+ 1.

This category contributes with the full value
of the required resource K

qi
A

qi
.

Category 2: Activities partially lie inside the
period

1
qq uiu S  1

quii dS 

quiS   and 1
qq uiiu dS 

This category contributes with a part of the
value of the required resource,

qiqiiu AK
q



10 
qiu

Category 3: Activities lie completely outside
the period,

quii dS 

Or

1
quiS 

0
qiu

Based on the above classification, the
resources constraints may be expressed in the
following form:





N

i
quqiqiiu RAK

q
1



10 
qiu ...(8)

It should be noted that there is a given upper
limit L

qi
 for the resource multiplier K

qi
.

Figure 3: Resource q Histogram
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K
qi
 < = L

qi
...(9)

qiu  is a newly factor introduced in our work.

It will be called Contribution factor of ith activity

in the uth period. Factors qiu  are not amenable

to simple computations because of the step
functions expressing resources distributions
as seen in Figure 3. In an attempt to circumvent
these difficulties in Turnquist and Linda (2002),
authors proposed a sophisticated approach

to compute factors qiu . In this approach, the

step functions expressing the distribution of
resources are converted into continuous
differentiable functions of time written here in
a simpler expression than that in the referred
work as follows:

  
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As we said; the constant w is introduced in
order to counteract the effect of the two singular
points at t = S

i
 and t = S

i
 + d

i
 and render the

variation of functions r
qi
 gradual rather than

abrupt at these points. Figures 4a and 4b
illustrate the effect of the constant w.

Figure 4a: w = 0.1

Figure 4b: w = 0.01

In Figure 4, two plots of the function 0.5
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1
tantan   for two values of w(w

= 0.1 and w = 0.01) (S
i
 = 20, d

i
 = 20). It is

noticed that the function
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






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w
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1
tantan5.0   has the value of

unity as the time t being inside the range s
i
 < =

t < = s
i
 + d

i
 while it drops to zero outside this

range. The constant w determines the nature
of the change of the function at the start and
finish of the activity. As w decreases (w < 0.03),
the change tends to be rather sharp (4b) while,
for bigger values of w the change of the function
at start and finish of the activity is rather gradual
(4a). This explains the role of the constant w in
formula (10). As resource consumption rate r

qi

is already expressed in the form of a
continuous differentiable function, the
consumption of resource q during the uth

interval can be evaluated by integrating r
qi
 on

time over the uth interval and then summing up
for all project activities. Proceeding in this way,
the resource constraint in (8) will take the form:
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  uqqu  ,1  are the times of the start and end of

uth interval of resource q

Evaluate the integral I in (11),
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Substituting in (11) we find,


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Comparing (8) and (12) we find for factors

qiu  measuring the contribution of the activity i
in the consumption of the resources in the
interval U:
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It should be noted that, irrespective of the
attractiveness of the above approach
proposed in Turnquist and Linda (2002), it
suffers from computational difficulties of
having overflow in calculating hyperbolic and

exponential functions. Therefore, another
approach is proposed in the present work
dealing with the step functions. The approach
is clearly presented in the following flow chart
in Figure 5. The flow chart may be
implemented by means of VBA under Excel.

Formulation Summary

Maximize

 



N

i
ii KdPASPPS

1

,

Subject to:

TSN 1

iij dSS  jPredi 





N

i
quqiqiiu qq

RAK
1



10 
qiu

(i, j = 1, 2, …, N)

(q = 1, 2, …, Q)

(U
q
 = 1, 2, …, NU

q
) ...(14)

The problem, formulated in (14), is a
nonlinear program. The non-linearity is severe
and clearly noticed in the objective function and
the resource constraints. Solution of such
problems with these types of non-linearity is
far from being amenable to standard packages
of optimization software. Therefore in the
present work, Genetic Algorithm approach, as
one of the most powerful computational
modeling techniques, will be adopted.

A GENETIC ALGORITHM
(GA) MODEL
The solution of the problem formulated above
is obtained by evaluating the set of decision
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Figure 5: The Flow Chart

variables d
i
, S

i
, K

qi
(i = 1, 2, …, N), (q = 1, 2, …,

Q) that maximize the Objective function (4) and
satisfying the constraints (5), (6), (8). GA

approach is a search technique searches for
an optimum or near optimum solution(s) in a
space of solutions. The space of solutions is
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initially built of a population of chromosomes
representing solutions to the problem
randomly generated. The space of solutions
is evolved by means of the three Genetic
Operators namely Crossover Operator,
Copying Operator and Mutation Operator. The
evolution of the search space and its
constituents Chromosomes is governed by a
law similar to the Law of Natural Selection in
biology, i.e., survival of only the fittest (Goldberg,
1989). A fitness function is applied in order to
discard solutions (chromosomes) having lower
fitness and keeping only chromosomes with
higher fitness. The process of evolution
continues until no further improvements could
be attained.

Chromosome Structure and Initial
Population

Each chromosome consists of N(Q + 2) genes
such that the first N genes carry values 

i

responsible for finding activity durations, the
second N genes carry values 

i
 responsible

for finding starting times of activities and the
rest NQ genes carry values 

qi
 responsible for

finding the resource multipliers. The quantities


i
, 

i
 and 

qi
 are random numbers ranging from

0 to 1 and uniformly distributed. Next, a method
will be developed in order to transfer these
random numbers 

i
, 

i
 and 

qi
 into decision

variables d
i
, S

i
, k

qi
 respectively.

The Inverse Problem of Project
Scheduling

Traditionally, the direct problem of project
scheduling is to find a project completion time
T having durations of all project activities and
activities precedence order. On the contrary,
in the formulated in this work problem, the
project completion time T is given with the
precedence order of the activities and required

to determine the allowable durations of the
activities. This Inverse problem will be solved
in the following steps:

• Since the minimum possible duration of
activities d

oi
 are given, the minimum

possible completion time T
min

 can be
obtained by the direct approach by Critical
Path Method (CPM).

• The random quantities 
i
 occupying the first

N genes in a chromosome are used as
transitional activity durations in a CPM to
evaluate a transitional project completion
time Temp. Note that the precedence order
is preserved in evaluating Temp.

• The inverse problem is now ready to be
solved to find activity durations that result in
a completion time T given in the formulated
problem. The solution is proposed in the
following expression:

 
Temp

TTdd oii
1

min


 ...(15)

Starting Times of Activities
In order to find the values of the second set of
decision variables, we proceed as follows:

• Having already determined durations d
i

apply CPM to determine the earliest start
ES

i
 and free float FF

i
 of each activity.

• The random quantities 
i
 occupying the

second set of N genes in a chromosome
are used to determine the starting time of
activities by the following expression:

iiii FFESS  ...(16)

Resource Multipliers

The random quantities 
qi
 occupying the last

NQ genes are used to evaluate the resource
multipliers as follows:
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qiqiqi LK  ...(17)

The Fitness Function

The optimum or near optimum solution will be
found as one of the feasible solution that has
the maximum value of, a designed for the
purpose, Fitness Function. The feasibility of a
solution is realized by satisfying all the
constraints in (14). In the framework of GA
approach, the infeasible solutions should be
penalized by introducing a big negative value
depending on the amount of deviation from the
right hand side of the unsatisfied constraint.
Therefore, the Fitness Function FIT for every
chromosome will take the form:
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
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
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Q

q

Nu

u

N

i
qiqiiuqu

q

q

qq
AKR

1 1 1

0,min 

...(18)

Determination of Weibull
Parameters i, i

Selection of Weibull distribution—as the law
of probability distribution of the activity
durations as random variable—is justified by
its universality as several well-known
distributions could be derived from Weibull
distribution as special cases by changing the
value of the shape parameter . Two methods
are proposed here to calculate 

i
 and 

i

depending on the input data.

Given Mean  and Standard
Deviation  of Activity Duration












 1
1od ...(19)







































2

22 1
1

2
1


 ...(20)

d
o
 is the minimum duration.

Dividing (20) by the square of (19) and
performing simple manipulation we get:

 
1

1
1

2
1

2

2

2






































 od

...(21)

Equation in (21) is in one unknown  and
can be solved easily using one of the tools of
Excel – The Goal Seek. Substituting in (19),
we find .

In practice, mean and specially variance of
different activities durations are mostly
unavailable because of lack of statistics and
also uniqueness of projects. The three valued
estimations a, m; b of an activity duration which
is commonly used in PERT could be collected
more easily than mean and variance in special
sessions with experienced personnel as
optimistic, most likely and pessimistic
estimations.

Given a, m, b Estimations
of Activity Duration

The optimistic estimation a will be taken as
the minimum duration d

o
. The most likely

estimation m is that duration at which the
Weibull pdf attains its maximum value. The
pessimistic estimation b will be equated to a
(1-R) percentile (0 < = R < = 1). Therefore,
from the differentiation of Equation (1), we get:





1

1
1 
















  am
...(22)
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If generally we consider (1-R) percentile,
then

R
ab








 





exp





1

1






















 
R

Ln
ab

...(23)

Dividing (22) by (23), we get

ab

am

R
Ln



































1

1

1
1

...(24)

Equation (24) is in a single unknown  and
can be solved by Goal Seek of Excel.
Substituting in (22) or (23) we may find .

ILLUSTRATIVE EXAMPLES
As a more il lustration of the modeling
approach outlined before, we apply our
approach on a new construction project. For
analysis of this example project, we focus on
the probability of successfully reaching the
end node in 28 months (588 working days),
and our formulation of the objective function

is    




26

1

n

n nFFZ . The dependence of each

F
i
(d

i
, k

i
) term on di  and ki has been

suppressed to simplify the notation. Table 1
summarizes the input data for the 26 tasks.
The optimistic duration (a) is the value of d

oi

for each task.

The most likely (m) and the pessimistic
time (b) to complete each tasks successfully
are the basis for speci fying the two
parameters of the Weibull distribution for
each task; given those two values, they solved

Task a m b NP NB E

1 6 9 15 630 60 0.8

2 9 15 22 100 5 1

3 12 18 26 200 7 0.2

4 18 25 34 1800 150 0.5

5 6 10 20 1260 125 0.8

6 8 14 24 420 2 0.2

7 11 15 30 250 15 0.7

8 15 18 30 220 4 0.5

9 18 28 35 220 6 0.4

10 24 30 52 200 4 0.6

11 14 22 30 330 8 0.2

12 20 30 50 300 10 0.2

13 12 17 25 240 9 0.5

14 12 18 25 280 3 0.5

15 17 22 36 800 15 0.8

16 29 35 45 330 8 0.4

17 21 30 40 210 12 0.5

18 6 14 18 180 18 0.2

19 12 15 21 150 12 0.2

20 14 18 26 200 14 0.7

21 17 22 35 440 17 0.8

22 20 25 42 400 12 0.9

23 5 10 14 500 10 0.2

24 17 22 34 560 12 0.3

25 24 30 37 440 18 0.5

26 6 13 18 320 8 0.4

Table 1: Input Data

for 
i
 and 

i
 for each task. The elasticity values

(E
i
) in Table 1 define the percentage reduction

in the scale parameter of 
i
 the distribution of

time to successful completion for each task,
resulting from a one percent increase in
resources applied to the task. The two
columns labeled Nominal Person-Days and
Nominal Budget (NB) specify the Aqi values
for the two resources for each task. We
applied our approach on this data, as to find
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the probability of completing the project during
the available period and resources. We
transfer our formulation into code for the
Genetic Algorithm. The Genetic Algorithm has
been implemented on Visual Basic under
Excel. The optimized results for task start

times, allowable durations, and resource
multipl iers, as wel l  as the result ing
probabilities for successful completion of
each task, are shown in Table 2. This set of
values results in a probability of success for
the project as a whole of 0.856.

Table 2: Result of Optimization from our Approach

Activity
Number

Activity
Duration Activity Start

Activity Total
Float

Activity
Resource
Multiplier

Activity Success
Probability

1 57.2408 0.35042 1.16299 0.64843 0.97717

2 58.4038 0 5E-05 2.0111 1

3 42.352 1.92206 16.0519 1.31611 0.99999

4 63.0923 58.4038 4.6E-05 0.6471 0.9747

5 27.9296 121.496 4.6E-05 0.76287 0.99628

6 41.8179 149.426 4.6E-05 1.56137 0.99314

7 58.8207 122.354 48.3069 1.53927 0.9979

8 37.3801 191.244 4.6E-05 2.1238 0.94889

9 46.2816 191.244 50.0871 1.66248 1

10 59.0873 228.624 3.1E-05 2.03212 0.99994

11 47.0753 228.624 12.012 1.51588 0.99142

12 44.5143 287.711 3.1E-05 1.42789 0.99932

13 44.6129 254.143 50.0871 1.2608 0.99027

14 54.7497 296.617 60.6192 1.54293 0.99932

15 49.6194 332.225 27 0.76792 0.99926

16 58.8427 332.225 0 1.82932 0.99991

17 61.1081 391.068 0 1.80904 0.99999

18 43.3313 407.101 27 1.36851 0.98528

19 43.0564 275.699 66.1056 0.97297 0.99904

20 66.7882 374.487 110.81 1.8453 1

21 67.315 350.863 66.1056 1.82511 0.99939

22 44.1771 452.176 0 3.31899 0.99742

23 19.4288 496.353 0 1.36792 1

24 47.6153 496.353 2.19623 1.89728 0.9981

25 63.5773 515.782 0 0.93341 1

26 33.1946 544.947 2.19623 1.9313 1

Probability of Success 0.85604

Project Available Time 588
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Period Available Manpower Consumed Manpower Available Budget Consumed Budget

1 2205 957.697 600 595.35

2 2205 1258.79

3 2205 1787.77

4 2205 1277.36

5 2205 1340.94

6 2205 1844.95

7 2205 1512.24

8 2205 1892.04

9 2205 2048.06

10 2205 287.272

Table 3: The Distribution of Resources Over the Periods

Also the distributions of resources over
each period are shown in Table 3.
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