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The present theory is based on a Higher-Order displacement model and the three-dimensional
Hooke’s laws for plate material. The theory represents a more realistic quadratic variation of the
transverse shearing and normal strains through the thickness of the plate. Nine-node Lagrangian
elements have been used for the purpose of discretization using a refined Higher Order Shear
deformation Theory (HOST12) that includes the effects of transverse shear deformations,
transverse normal deformation and rotary inertia. A C0 isoperimetric finite element formulation
is presented to calculate the required number of lowest natural frequencies of Functionally Graded
Plates (Functionally graded plates) subjected to in-plane pre-stress. The material properties of
the functionally graded plates are assumed to vary continuously from one surface to another,
according to a simple power law distribution in terms of the constituent volume fractions.
The formulation is applicable to thin as well as thick plates. The plate structure is idealized into
an assemblage of nine-noded iso-parametric quadrilateral elements with Twelve degrees of
freedom per node. Poisson’s ratio has been assumed to be constant throughout the thickness
and the material is assumed to be isotropic at a point. Hamilton’s principle is used for the
formulation. The effect of in-plane pre-stress is taken care by calculating the geometric stiffness
matrix. The same shape functions are used to calculate the elastic stiffness matrix, geometric
stiffness matrix and the element mass matrix. The consistent mass matrix is diagonalized by a
special mass lumping scheme which conserves the total mass of the element and includes the
effects due to rotary inertia terms. Subspace Iteration technique is applied to extract the natural
frequencies. Numerical results for first seven natural frequencies are presented for rectangular
and square plates under various boundary conditions. A parametric study has been carried out.
Variations of natural frequencies with the constituent volume fractions are presented. The results
show good agreement with three-dimensional analytical formulation.
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INTRODUCTION
Plates are structural elements whose thickness
is very small compared to other two
dimensions. In general, plates are loaded in
transverse direction. They are the major load
carrying members in most of the structures.
Plates made out of Functionally Graded
Material (FGM) have a gradual change in
material properties within the plate as a
function of position. The grading is done from
metal to ceramic. Generally the gradation in
plates is only in thickness direction. The
gradient in properties is caused by the position
dependent chemical composition. Extensive
application of FGM plates is found in structural
engineering. They are used in nuclear
reactors, automobiles, spacecrafts, solar
panels, thermoelectric instruments etc. An
accurate prediction of behavior of plates not
only improves the safety but also reduce the
material cost. Whole of aircraft body is made
of plates and shells stiffened by various types
of extruded sections at suitable intervals in
both directions. Most of the road vehicles and
railway engines as well as wagons are the
combination of stiffened plates and shells.
Similarly boilers and machines are basically
stiffened plates and shells. All these structures
are subjected to different types of dynamic
loads of varying time intervals causing
structures to vibrate. The vibrations of the
structures cause the reversible or at least
variable stresses in various components. The
variation of the stresses can cause fatigue
failure. If there are any pre-existing flaws or
cracks, their propagation also depends on the
number of loading cycles and stress levels in
each cycle. Hence it is extremely important to
know the natural frequencies of vibration as

well as response to the dynamic loads. Most
of the structures referred above are subjected
to the stresses due to static loads before being
subjected to the dynamic loads. These
stresses change the natural frequencies and
response to the dynamic loads. Hence, it is
necessary to take into account the pre-stress
in the vibration analysis. The determination of
the dynamic response of a plate structure or
shell is a problem of immense practical
signif icance in structural design. The
evaluation of its free vibration response
characteristics is a first step as a prelude to
the prediction of the forced response of the
system to any external excitations.

There are large varieties of forcing functions
or excitations depending on the industry and
working environment. Hence it is not advisable
to include them in the work of general nature.
Hence the present work is restricted to free
vibration response of pre-stressed plates. The
effect of pre-stress by in-plane forces is to
increase or decrease the stiffness for out of
plane deformation depending on whether the
stress is tensile or compressive.

The Classical Plate Theories that are based
on Kirchhoff hypothesis are inadequate to
predict the gross response characteristics of
moderately thick and thick composite plates
or highly anisotropic composite plates. In order
to get accurate gross responses from Mindlin
type first order shear deformation theory of
plates (the transverse shear strains
areassumed to be constant in thickness
direction), shear correction factors have to be
incorporated to adjust the transverse shear
stiffness for dynamic analysis of plates. Hence
the accuracy of solution depends on the
estimation of shear correction factors.
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In Third order Shear Deformation Theory
(TSDT), it requires no shear correction factors.
The theory also contains the FOST as a special
case. The displacement model that neglects
the transverse normal stress effect and
satisfying the zero transverse shear stress
conditions on the bounding planes of the plate,
thereby expressing the three displacements
of a point in the plate space in terms of only
five physical mid-plane displacement
quantities. With this, the displacement model
gives rise to second order derivatives of
transverse displacement in the energy
expression and hence displacement based
finite element formulation requires C1
continuous shape functions which are
computationally inefficient and are not
amenable to the popular and widely used iso
parametric formulation in the present day finite
element technology. The higher order plate
theory, HOST12 is based on the displacement
model that contains cubic variation of
displacements in each co-ordinate direction
and the three dimensional Hooke’s laws for
plate material. The theory represents a more
realistic quadratic variation of the transverse
shearing and normal strains through the
thickness of the plate. The theory does not
require any shear correction factor and
ultimately resulting in good estimation of shear
strain energy. The formulation is applicable to
thin as well as thick plates.

Nine-noded Lagrangian elements have
been chosen for the purpose of analysis using
a refined Higher Order Plate theory (HOST12)
that includes the effects of transverse shear
deformations, transverse normal deformation
and rotary inertia. Hence, in this present work,
the free vibration analysis of pre-stressed FG

plates using HOST12 is considered, which is
a gap found in the literature for vibration
analyses.

LITERATURE REVIEW
Many researchers, till now, used a variety of
methods to calculate the displacements and
to perform vibration analysis; these methods
include both analytical and numerical
methods. Here a review of literature pertinent
to the analysis of FGMs is carried out based
on analytical and numerical developments of
FG Plates.

Literature Based on FG Plates

FGMs can be classified based on grading
direction and grading function. The FGM can
be produced by continuously varying the
constituents of multi-phase materials in a
predetermined profile. An FGM can be defined
by the variation in the volume fractions. Most
of the researchers applied the following types
of gradation functions for the material
properties of FGMs.

Literature Based on Initial Stresses

Matsunga (2001) presented a global higher
order theory to analyze the natural frequencies,
modal displacements and stresses for cross-
ply laminated composite plates subjected to
initial in-plane stresses by taking into
consideration the effects of shear, normal
deformations and rotary inertia. He derived
equations of motion by using Hamilton’s
principle. Natural frequencies were obtained
by solving Eigenvalue problem numerically.
The buckling stresses were computed by
increasing the absolute values of compressive
stresses until the natural frequency becomes
zero. Yang et al. (2003) presented a large
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vibration analyses of pre-stressed FGM
laminated plates based on Reddy’s higher-
order shear deformation plate theory.

Literature Based on Finite
Elements

Fuchiyama et al. (1993) studied transient
thermal stress behaviour of FGMs with cracks
using an eight-node quadrilateral axi-
symmetrical element. The analysis of FG plate
including the effects of transverse shear
strains, rotary inertia and moderately large
rotations in the von-Karman theory was carried
out by Praveen and Reddy (1998), in which
plate finite element method was employed to
investigate the static and dynamic responses
of the FG plate by varying the volume fraction
of the constituents. Han and Liu (2002)
presented a computational method to
investigate wave propagation in FG plates.
The material properties were assumed as a
quadratic function in the thickness direction.
Della Croce and Venini (2004) presented a
hierarchic family of finite elements for the
analysis of Reissner-Mindlin FG plates based
on variational formulation by assuming
material properties to vary with the power law
in terms of volume fractions of the constituent.

EXPERIMENTAL SETUP

Functionally Graded Material

FGMs possess smooth variation of
mechanical properties such as modulus of
elasticity, Poisson’s ratio, coefficient of thermal
expansion, tensile strength etc. The concept
of FGM was proposed in 1984 by material
scientists in Japan for preparing thermal barrier
materials. The unique idea of a FGM was
proposed to prepare a new composite by using
heat-resistant ceramics on the high-

temperature side and tough metals with high
thermal conductivity on the low temperature
side, with a gradual compositional variation
from ceramic to metal. Therefore, FGMs are
composite materials with a microscopically
inhomogeneous character. Gradual changes
in their microstructure distinguish FGMs from
conventional composite materials. The
continuous change in composition results in
gradients in the properties of FGMs.

Structure: FGMs are heterogeneous
composite materials made of two materials
having entirely different characteristics. The
microstructure of an FGM varies from non
metal to metal as shown in Figure 1. Usually,
the non metal will be ceramics like Zirconia,
Silicon Carbide, Silicon Nitride and the metal
will be Aluminium, Stainless Steel, etc.

The primary aim of the project is to formulate
a finite element for FGM plates by using

Figure 1: The Microstructure of an FGM
Varies from Non-Metal to Metal

Note: (a) Shows the gradual and smooth variation of constituent
volume fraction from one surface to the other; (b) Shows an
FGM that has more ceramic volume. fraction and less metal
volume fraction; and (c) Shows an FGM that has equal
volume fractions of both ceramic and metal.
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HOST12. Many elements have been
formulated for FGM plates in past. Here the
aim is to formulate an element which is based
on HOST12. Results will be compared with
other theories such as FOST, TSDT and 3D
elasticity solutions to find the difference in error.
The objective of the work is to study the natural
frequency characteristics of the pre-stressed
functionally graded plates and to carry out
parametric study.

In parametric study, the effects of thickness
and aspect ratios on frequencies will be
studied as well as influence of the initial
membrane stresses on natural frequencies
under various boundary conditions will be
studied.

Vibration Analysis

The vibration problem can be formulated by
using Hamilton’s principle as follows:

(U – T) = 0

where U is the Strain Energy and T is the
Kinetic Energy.

In the FE analysis, U and T can be written
as:

U = 1/2{d}T [K
T
] {d} and

T = 1/2 2 {d}T [M] {d}

where [K
T
] and [M] are the total structural

stiffness matrix and mass Matrix respectively,
 is the natural frequency assuming harmonic
time dependent displacement. The matrices
[K

T
] and [M] are obtained by Assembling the

element stiffness and mass matrices
respectively. The Governing equation for the
natural vibration analysis (undamped) thus
becomes

[K
T
] {d} – 2 [M] {d} = 0

Subspace Iteration Technique

The subspace iteration technique is designed
to solve large eigenproblems. This technique
has been developed for the solution of the p
smallest eigenvalues and eigenvectors as
mostly required by dynamic analysis. In present
formulation, this technique is followed to solve
eigen problem. The solution procedure was
named subspace iteration technique, because
the iteration is equivalent to iterating with a q-
dimensional subspace and should not be
regarded as simultaneous iteration with an
individual vector.

In essence, the subspace iteration method
developed by Bathe (Petyt, 1990) consists of
the following three steps:

1. Establish q starting iteration vectors, q = 2p
where p is the number of required eigen
values.

2. Use simultaneous inverse iteration on the
q vectors and Ritz analysis to extract the
best eigenvalue and eigenvector
approximation from the q iteration vectors.

3. After iteration convergence, use the sturm
sequence check to verify that the required
eigen values and corresponding
eigenvectors have been calculated.

The selection of starting iteration vector in
step (1) and sturm sequence check in step (3)
are considered important parts of the iteration
procedures.

NUMERICAL
INVESTIGATION AND
RESULTS
Various numerical examples solved are
described and discussed for establishing the
accuracy of the various theories compared for
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Table 1: Summary of Numerical Examples

1. Static analysis Simply supported square plate To test stiffness matrix

2. Vibration analysis Simply supported square plate without pre-stress To test mass matrix and subspace
iteration technique

3. Vibration analysis Simply supported square plate with uniform axial
pre-stress To test geometric stiffness matrix

S. No. Type of Analysis Description Purpose

free vibration analysis of FG plates. Table 1
describes the various case studies carried to
evaluate the MATLAB program.

Case Study

Geometric Properties

Length, a: 4 m,

Width, b: 4 m and

Thickness, h: 1 m

Table 2 gives the various material
properties used for the analysis of functionally
graded plates.

This involves the following steps:

• Finite Element programming using

MATLAB 7.2, since no commercial

software package available supports the

model ing of  th is specia l  type of

materials.

• Finding out the natural frequencies of FG

plates and the influence of volume fraction

index, initial stresses, aspect ratio and the

slenderness ratio of the plate on the natural

frequencies.

Table 2: The Exponential Variation of Young’s Modulus

1. Aluminium 70 0.3 2707

2. Ceramic (Zirconia) 151 0.3 3000

3. FG Plate (Al + Ceramic) 70/151 0.3 2707/3000

S. No. Material Young’s Modulus, E(GPa) Poisson’s Ratio,  Density,  (kg/m3)

Table 3: Comparison of Natural Frequencies from Various Theories

1 0.0932 0.0932 (0.0) 0.0930 (–0.21) 0.0929 (–0.25)

2 0.2226 0.2226 (0.0) 0.2220 (–0.27) 0.2218 (–0.33)

3 0.3421 0.3421 (0.0) 0.3406 (–0.44) 0.3403 (–0.52)

4 0.4171 0.4172 (0.0) 0.4151 (–0.48) 0.4145 (–0.63)

5 0.5239 0.5240 (0.0) 0.5208 (–0.59) 0.5202 (–0.71)

6 – 0.6573 (–) 0.6525 (–) (–)

7 0.6889 0.6892 (0.0) 0.6839 (–0.73) 0.6827 (–0.90)

Mode 3D Elasticity Solution HOST12
TSDT (Reddy and

Cheng, 2001)
FOST (Mallikarjuna and

Kant, 1988)
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• Carrying out various case studies on the FE
model.

Validation of the Results

The accuracy of the program has been verified
by using the results available for isotropic and
homogeneous aluminium plate. The results are
validated based on the literature available.
Table 3 gives this comparison of non-
dimensional natural frequencies for first seven
modes of isotropic aluminium plate obtained
using HOST12 and other theories. It can be
concluded that HOST12 results are almost
equal to the 3D elasticity solutions. The error
associated with TSDT is less as compared to
FOST.

CONCLUSION
• The simple C0 iso-parametric finite element

formulation of an assumed higher order
displacement model HOST12, employed
herein is more accurate than CPT, FOST
and TSDT in predicting the natural
frequencies of any functionally graded
plates. The results obtained by HOST12 are
almost equal to Three Dimensional
elasticity solutions unlike other theories.

• In contrast to the FOST, the present HOST
does not require a shear correction
coefficient due to more realistic
representation of the cross-sectional
deformation

• On the basis of excellent agreement of the
present results with analytical results for
isotropic plates, it is fair to say that the
present theory is accurate in predicting the
natural frequencies of the functionally
graded plates. The error in predicting lower
modes is lower as compared to higher
modes.

• The volume fraction index, initial stresses,
aspect ratio and the slenderness ratio have
signif icant influence on the natural
frequencies of the functionally graded
plates.

• As the volume fraction index increases, the
natural frequencies of the functionally
graded plates keep decreasing. The natural
frequencies of the functionally graded plates
lie in between the values of natural
frequencies of the corresponding isotropic
materials used in the manufacturing of the
functionally graded plates.

• As expected, the natural frequencies of the
Functionally graded plates with tensile in-
plane load is predicted more than the plate
without load and similarly, the natural
frequencies of the Functionally graded
plates with compressive in-plane load is
predicted less than the plate without load.

• The second and third natural frequencies for
the case of plate without load are almost
same and similarly, the fifth and sixth
frequencies are also same. Same is the
situation for the plate with biaxial in-plane
loading. However, this is not the situation for
the case of plate with uni-axial in-plane load.

• As the thickness of FG plate decreases, the
difference in the results by various theories
decreases and hence the results remain the
same irrespective of the theory used
provided the plate is thin.
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