Professor of School of Engineering, Design and Built Environment, Western Sydney University, Australia. His research interests cover Industry 4.0, Additive Manufacturing, Advanced Engineering Materials and Structures (Metals and Composites), Multi-scale Modelling of Materials and Structures, Metal Forming and Metal Surface Treatment.
2023-08-16
2023-09-07
2023-06-28
Manuscript received September 10, 2022; revised October 4, 2022; accepted November 30, 2022.
Abstract—Aerodynamics related to the generation of drag due to flow separations that occurs at rear parts of vehicles is an important consideration in vehicle design. It includes flow separation, wake formation, and pressures, which, in this paper, are focused on the ones exerted on the model’s rear wall. The pressure reductions could differ significantly between vehicles’ front and rear walls. This pressure difference can generate a phenomenon of backward pull and an increase in drags. The effort to minimize backflow as well as to cater increasing pressure on vehicles’ rear wall can be achieved by applying active control, including attached blowing apparatus. The paper presents the analysis of the effect on the application of blowing active control on the aerodynamics on rear part of vehicles, which is represented by a modified Ahmed body, reversed in flow direction and altered dimensions. The research was conducted using a validated numerical simulation method with laboratory experiments at an upstream air speed of 16.7 m/s and blowing velocities of 0.5 m/s, 1.0 m/s, and 1.5 m/s. The results showed that the application of blowing active control was capable to reduce aerodynamic drag, with the highest decrease achieved in the model with a ratio of velocity UBL3/U0=0.09 of 12.187% for the computational method and 11.556% for the experimental one. Keywords—aerodynamic drag, blowing active control, vehicle model Cite: Rustan Tarakka, Nasaruddin Salam, Andi Amijoyo Mochtar, Wawan Rauf, Muhammad Ihsan, "On the Aerodynamics of Rear of Vehicle Model with Active Control by Blowing: Computational and Experimental Analysis," International Journal of Mechanical Engineering and Robotics Research, Vol. 12, No. 2, pp. 84-90, March 2023. DOI: 10.18178/ijmerr.12.2.84-90 Copyright © 2023 by the authors. This is an open access article distributed under the Creative Commons Attribution License (CC BY-NC-ND 4.0), which permits use, distribution and reproduction in any medium, provided that the article is properly cited, the use is non-commercial and no modifications or adaptations are made.