Home > Published Issues > 2021 > Volume 10, No. 8, August 2021 >

Investigation of Surface Roughness in Single Point Incremental Sheet Forming Considering Process Parameters

Mohanraj Murugesan, Krishna Singh Bhandari, Muhammad Sajjad, and Dong-Won Jung
Mechanical Engineering, Jeju National University, Jeju Island, South Korea

Abstract—Single point incremental forming (SPIF) is a die-less forming method in which the sheet is incrementally formed using the forming tool with predefined contour paths of the desired shape. Moreover, any complex parts can be manufactured using this method by modifying the tool paths and the forming tool dimensions because of its flexibility. This paper aims to investigate the surface quality of the incrementally formed parts using the statistical approach. The incremental forming process experiments were planned using the design of experiments approach considering central composite design with face-centered option. The surface roughness was then estimated using the Mitutoyo Surftest SJ-400 surface roughness tester in the tested samples; the response surface methodology was employed to construct the prediction model of surface roughness. Subsequently, the proposed empirical models were examined using numerical and graphical verifications. The predicted results showed a good agreement with the experimental results displaying a higher correlation estimation with moderate prediction error. The forming parameters, tool radius, and step size showed a significant impact on the surface finish than that of the feed rate parameter. The results displayed from the entire surface roughness measurements that the best surface finish was recognized for both cone angles in the test conditions of a 2.5 mm tool radius, a 0.2 mm step size, and a 2000 mm/min feed rate, respectively. On the other hand, the low surface finish was observed in the forming conditions of a 2.0 mm tool radius, a 0.8 mm step size, and a 1000 mm/min feed rate. The systematic approach to investigate the surface roughness in terms of the empirical model approach is reported here; it can be used for any chosen material to examine and to manufacture products in real-time industrial applications.

Index Terms—Single point incremental forming, forming tool, aluminum alloy, surface roughness, design of experiments, central composite design, response surface methodology, empirical model

Cite: Mohanraj Murugesan, Krishna Singh Bhandari, Muhammad Sajjad, and Dong-Won Jung, "Investigation of Surface Roughness in Single Point Incremental Sheet Forming Considering Process Parameters," International Journal of Mechanical Engineering and Robotics Research, Vol. 10, No. 8, pp.443-451, August 2021. DOI: 10.18178/ijmerr.10.8.443-451

Copyright © 2021 by the authors. This is an open access article distributed under the Creative Commons Attribution License (CC BY-NC-ND 4.0), which permits use, distribution and reproduction in any medium, provided that the article is properly cited, the use is non-commercial and no modifications or adaptations are made.