Home > Published Issues > 2019 > Volume 8, No. 6, November 2019 >

Compliance Matrix Based Analysis and Design of Suspension Systems for Chassis Development

Stefan Buechner and Markus Lienkamp
Institute of Automotive Technology, Technical University of Munich, 85748 Garching, Germany

Abstract—In the chassis development process, especially for suspension design, simulation has established to reduce both development time and costs. A number of characteristic values are used to characterize and benchmark suspension systems. For front suspension systems, the steering axis plays a vital role. However, two different kinds of steering axes with different meanings exist in literature. This paper presents a methodology for the analysis and design of suspension systems based on the compliance matrix within multi-body simulation. Characteristic values describing both steering feedback and toe behavior are each calculated from the compliance matrix. The characteristic values result from the kinematic and the elastic steering axis. The objective is to provide a comparison of both kinds of steering axes and the resulting characteristic values. The results demonstrate the different meanings of the steering axes and the corresponding characteristic values for suspension characteristics. While the kinematic steering axis defines the lever arms referring to steering feedback, the elastic steering axis is related to the toe behavior. The proposed methodology and the gained insights can be used to improve benchmarking suspension systems and further enhance suspension design.

Index Terms—chassis development, multi-body simulation, suspension analysis, compliance matrix, applied mechanics

Cite: Stefan Buechner and Markus Lienkamp, "Compliance Matrix Based Analysis and Design of Suspension Systems for Chassis Development" International Journal of Mechanical Engineering and Robotics Research, Vol. 8, No. 6, pp. 873-879, November 2019. DOI: 10.18178/ijmerr.8.6.873-879