Volume 8, No. 5, September 2019

General Information

  • ISSN: 2278-0149 (Online)
  • Abbreviated Title:  Int. J. Mech. Eng. Robot. Res.  
  • Editor-in-Chief: ​Prof Richard (Chunhui) Yang, Western Sydney University, Australia
  • Associate Editor: Prof. B.V. Appa Rao, Andhra University; Prof. Ian R. McAndrew, Capitol Technology University, USA
  • Managing Editor: Murali Krishna. B
  • DOI: 10.18178/ijmerr
  • Abstracting/Indexing: Scopus (since 2016), CNKI, Google Scholar, Crossref, etc.
  • E-mail questions to IJMERR Editorial Office.

Submissions

Please send your full manuscript to:

ijmerr@vip.163.com


Useful Documents

Paper Template

Copyright Transfer Agreement

Application For Reviewers

Contact us

International Journal of Mechanical Engineering and Robotics Research
E-mail: ijmerr@vip.163.com

Modeling and Characterization of Lathe Spindle Cutting Patterns with Crossed Roller Bearing Installed

Xiaozhong Song, Xianghua Zhou, Rahul Chaudhari, Stephen P. Johnson, and Mike Kotzalas
The Timken Company, North Canton, Ohio 44720, USA

Abstract—The cutting pattern is the primary surface profile remaining on a lathe-turned surface along the tool feed direction. It reflects the cutting depth variation of each feed step distance. Cutting pattern evaluation is an important part of the spindle inspection process for a newly built lathe machine and is widely used by machine tool builders. Yet, how the pattern is generated and affected by the bearing has not been clearly understood prior to the presentation of this study. Pattern evaluation currently is completed by running a cut test under designed cutting parameters and visual checking by experienced quality control personnel. But because these patterns are not clearly understood, their qualification and quantification become a challenge for the machine builders and bearing maker. In this paper, a bearing spindle cutting pattern model has been developed and presented for the characterization of crossed roller bearings in a lathe machine spindle, which clearly indicated how the pattern comes from and it could be quantified for evaluation comparison. The underlying theory was derived from the relationship of turning motion in part rotation and cutting tool feed in a straight line along the axial direction. The modeling algorithm uses spindle run out FFT to get the spindle bearing feature frequency’s motion in the circumference direction, which is then synchronized at each cutting spot along the feed direction to modulate the tool and work piece pattern track. The model has been validated by simulated bearing feature frequencies and benchmark machine tests. The model’s characterized pattern was found to match closely with the actual cut pattern

Index Terms—crossed roller bearing, lathe spindle bearing, spindle runout, cutting pattern, FFT analysis, modulation

Cite: Xiaozhong Song, Xianghua Zhou, Rahul Chaudhari, Stephen P. Johnson, and Mike Kotzalas, "Modeling and Characterization of Lathe Spindle Cutting Patterns with Crossed Roller Bearing Installed" International Journal of Mechanical Engineering and Robotics Research, Vol. 8, No. 5, pp. 660-666, September 2019. DOI: 10.18178/ijmerr.8.5.660-666