Volume 8, No. 2, March 2019

General Information

  • ISSN: 2278-0149 (Online)
  • Abbreviated Title:  Int. J. Mech. Eng. Robot. Res.  
  • Editor-in-Chief: ​Prof Richard (Chunhui) Yang, Western Sydney University, Australia
  • Associate Editor: Prof. B.V. Appa Rao, Andhra University; Prof. Ian McAndrew, Capitol Technology University, USA
  • Managing Editor: Murali Krishna. B
  • DOI: 10.18178/ijmerr
  • Abstracting/Indexing: Scopus (since 2016), CNKI, Google Scholar, Crossref, etc.
  • E-mail questions to IJMERR Editorial Office.

Submissions

Please send your full manuscript to:

ijmerr@vip.163.com


Useful Documents

Paper Template

Copyright Transfer Agreement

Application For Reviewers

Contact us

International Journal of Mechanical Engineering and Robotics Research
E-mail: ijmerr@vip.163.com

Multivariable Optimization in Micro WEDM of Al 7000 Alloy Using Grey Relational Analysis

Prem Saran Satsangi 1 and Piyush Goyal 2
1. Mechanical Engg. Deptt. PEC University of Technology Chandigarh, India
2. PEC University of Technology Chandigarh India

Abstract—With advancement in technology, demand of materials having high tensile strength and high impact strength increases. Machining of these materials with the help of conventional methods, is rather difficult and non productive. To overcome this challenge, Non-conventional machining methods were discovered and wire electrical discharge machining (WEDM) is one of them. WEDM is one of the popular machining methods which is helpful in cutting complex geometries in hard to machine materials. Aluminium alloys are increasingly finding commercial usage in automotive and aerospace industries owing to light weight and high strength factors. Micro WEDM of Al 7000 series alloy which is widely used in commercial applications has been chosen as work piece material in the current study. Charge capacitance decides the energy input in a spark responsible for material erosion and machining accuracy in micro WEDM. Wire feed rate as a process parameter in micro WEDM has not been studied. Objective of present research is to study the effect of voltage, capacitance and wire feed rate on material removal rate and surface roughness while machining of Al 7000 series alloy. These two are important response parameters. Material removal rate tells us about the speed of machining process whereas surface roughness tells us about the finish of machined surface. Zinc coated brass wire of diameter 0.07mm is used on micro WEDM. Taguchi methodology has been chosen for design of experiment and L9 orthogonal array has been selected for present study. Replicates of experiment have been done to avoid any chances of random error. Analysis of variance and main effect plot have been used to find significant factors and their respective contribution on response variables. Multivariable optimization has been done using Grey Relational Analysis. Parametric levels are found at which both response parameters i.e. material removal rate and surface roughness have optimal values. The results obtained have been validated using conformational experiments. 

Index Terms—WEDM, Grey Relational Analysis, Optimization, Al 7000 alloy
 
Cite: Prem Saran Satsangi and Piyush Goyal, "Multivariable Optimization in Micro WEDM of Al 7000 Alloy Using Grey Relational Analysis," International Journal of Mechanical Engineering and Robotics Research, Vol. 8, No. 2, pp. 177-181, March 2019. DOI: 10.18178/ijmerr.8.2.177-181