Robust Tracking and Human-Compliance Control Using Integral Sliding Mode Control and T-S Fuzzy Disturbance Observer

Seungkyu Park and Abner Asignacion Jr.
Dept. of Electrical Eng., Changwon National Univ., Changwon, Korea
Abstract—In recent years, as robots and humans have started to work together more frequently in the same space, robots must be controlled under the consideration of human safety. For the safety of human, robots must comply with human force. On the contrary, to be robust, robot control requires high impedance against nonhuman disturbances. The proposed controller aims to achieve compliance and high impedance in a control scheme. The proposed structure consists of an integral sliding mode control (ISMC) and a human disturbance observer (HDOB). For compliance, the human force is identified by HDOB and given to ISMC. If the sliding mode dynamics are affected by human disturbances, then compliance with humans is achieved. For high impedance, disturbances outside the human frequency range are decoupled by the ISMC, so robust tracking is achieved. A novel T-S fuzzy DOB is introduced to the ISMC to decrease the maximum nonlinear gain, and this leads to lower chattering by the SMC.

Index Terms—integral sliding mode, disturbance observer, compliance, robust robot control, human-compliance control, T-S fuzzy observer

Cite: Seungkyu Park and Abner Asignacion Jr., "Robust Tracking and Human-Compliance Control Using Integral Sliding Mode Control and T-S Fuzzy Disturbance Observer," International Journal of Mechanical Engineering and Robotics Research, Vol. 7, No. 4, pp. 374-378, July 2018. DOI: 10.18178/ijmerr.7.4.374-378
Copyright © 2016-2017 International Journal of Mechanical Engineering and Robotics Research, All Rights Reserved
E-mail: ijmerr@ejournal.net