Volume 3, No. 3, July 2014

General Information

  • ISSN: 2278-0149 (Online)
  • Abbreviated Title:  Int. J. Mech. Eng. Robot. Res.  
  • Editor-in-Chief: ​Prof Richard (Chunhui) Yang, Western Sydney University, Australia
  • Associate Editor: Prof. B.V. Appa Rao, Andhra University; Prof. Ian R. McAndrew, Capitol Technology University, USA
  • Managing Editor: Murali Krishna. B
  • DOI: 10.18178/ijmerr
  • Abstracting/Indexing: Scopus (since 2016), CNKI, Google Scholar, Crossref, etc.
  • E-mail questions to IJMERR Editorial Office.

Submissions

Please send your full manuscript to:

ijmerr@vip.163.com


Useful Documents

Paper Template

Copyright Transfer Agreement

Application For Reviewers

Contact us

International Journal of Mechanical Engineering and Robotics Research
E-mail: ijmerr@vip.163.com

Roof Strength Analysis of a Truck in the Event of a Rollover

Daniel Esaw and A G Thakur
Sanjivani Rural COE, Kopargoan, University of Pune

Abstract—In an event of a rollover of any vehicle , there are fatal injuries to the driver and passenger. Regulation & standards for FMVSS 216 and ECE R29 takes into the tests the cabin for roof strength. The roof strength is done is two ways either by quasi static or dynamic. This dissertation focuses on the rollover phenomenon by the quasi static approach. There is very little difference in results between quasi static and dynamic rollover. An un laden truck is used to simulate the rollover. A side platen is impacted to simulate the phase-1 of the rollover. Energy depending on the mass of the vehicle is imparted in phase-1. Phase I will end once this energy is completely absorbed by the cab. The phase-1, the cab mounts play an important role as the complete load is transferred to the frame . the cab mounts has a tendency to fail in this phase. In phase II the truck axle weight is given the load to the cab. Per FMVSS 216 and ECE R29 the load is ramped to 105% of the actual load. A 50th percentile dummy is used to check the intrusion of the cab into the survival space. Force versus displacement is plotted to analyze the strength of the cab. Energy plots will the component which has absorbed the maximum energy. The strain plots of the roof, back panel, floor, cab mounts are plotted and analyzed. After this whole exercise the cab is predicted to pass FMVSS216 or ECE R29 to have enough strength to withstand a rollover

Index Terms—Roof Strength analysis, Quasi static approach, Dynamic rollover

Cite: Daniel Esaw* and A G Thakur, "Roof Strength Analysis of a Truck in the Event of a Rollover," International Journal of Mechanical Engineering and Robotics Research, Vol. 3, No. 3, pp. 802-810, July 2014.