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Abstract—The purpose of this research is to design and 

implement a controller to achieve a desired displacement and 

velocity of a sprung mass in a suspension system dynamic 

model of a vehicle at certain times. In numerous applications, 

the dynamic response of the Skyhook model is considered the 

optimal response of a suspension system. As a result, in this 

project, the response of the Skyhook model is first improved 

by use of an LQR controller, and then using the sliding mode 

controller, the response of the realistic car model, 

represented by a Macpherson suspension system, is adjusted 

to the response of the LQR-controlled Skyhook model. In 

order to improve the performance of the suspension, the 

control force of the actuator in the Macpherson model is 

obtained by the sliding mode control method, via changing 

the order of the sliding surface equation. It has been proven 

that as the system response is optimized in the same way as 

that of the Skyhook template model with the LQR controller 

for various road disturbance functions.   

 

Keywords—LQR, macpherson, skyhook control, sliding 

mode control, suspension system, modelling 

 

I. INTRODUCTION  

Among the most essential characteristics of cars is their 

handling performance. The suspension and tire 

subsystems in vehicles are considered key elements in the 

dynamic modeling process while they contribute 

significantly to the model’s dynamic response [1]. The 

suspension system is a link between the car and its wheels, 

which basically supports the body weight and provides 

proper contact between the tire and the ground, as well as 

the reduction of excitations incurred by the road [2] which 

will lead to passengers’ comfort [3]. Due to this reason, 

attention to the design and control of suspension systems 

has become a favorite topic of automobile engineers, as 

well as increasing the stability of the car motion with the 

use of semi-active [4, 5] and active suspension systems [6, 

7].  

To achieve a certain level of comfort, a suspension 

system should render the car’s body movement 
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independent from the bumpiness of the ground. This is 

generally fulfilled by a passive suspension system 

consisting of a set of mechanical elements consisting of 

springs and dampers [8]. However, these elements are 

unable to adapt to variations in the terrain and hence, a 

predetermined response would be normally achieved. In 

compensation for this limitation, active and semi-active 

suspension systems have been introduced. Active 

suspension systems, which apply force through an 

actuator, have proven to be capable to reduce vertical 

passengers’ acceleration and improve the ride quality [9, 

10], if implemented in coordination with an effective 

control strategy [11]. 

Sam et al. [12] used the sliding mode control method 

for the linear quarter model of a car and finally, they 

compared the results with an optimal control method. The 

robustness favorability of sliding mode controllers to 

uncertainties used in suspension systems have also been 

reported by Chio et al. [13] and Wang et al. [14]. 

Considerable research has been accomplished in the 

context of active suspension systems robust control with 

sliding mode [15, 16] and fuzzy controllers [17, 18] as 

well. Du et al. [19] applied the robust control theory as 

another prevailing control method in the design of active 

suspension system controllers, with the inclusion of 

operator’s delay in the system modeling. Svaricek et al. 

[20] employed an adaptive robust control for a time-

invariant semi-active suspension system. The desired 

force signal, as a function of the estimated suspended mass, 

is obtained using the H∞ controller. Finally, the 

performance of the proposed controller has been 

compared with the Skyhook algorithm, which shows a 

satisfactory response. The skyhook control strategy, in 

which a virtual damper is placed between the sprung mass 

and the stationary sky, as a means to dampen the undesired 

vibratory motion of the suspended mass and as a tool to 

determine the expected damping force, has been 

introduced by Karnopp et al. [21]. A variety of novel 
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control methods have been developed to implement this 

strategy [22, 23]. 

Hurel et al. [24] discussed the fundamental 

development of a two-dimensional non-linear 

mathematical model of the MacPherson suspension 

system. This model includes the wheel mass, the moment 

of inertia about the longitudinal axis of the wheel, the 

geometry of the suspension and the lateral stiffness of the 

tire, which allows the analysis of kinematic parameters 

such as the camber angle. Finally, the results are verified 

by comparison of the presented model with the model 

created in the ADAMS software. Balkin et al. [25] studied 

the dynamic and kinematic modeling of the passive dual 

Wishbone suspension system and compared their results 

with a general model. Akbari et al. [26] applied an 

observer along with the sliding mode control strategy to a 

suspension system. Hong et al. [27] investigated a 

MacPherson suspension system with an adaptive control. 

The control strategy will adjust the gains with regard to 

the road conditions by use of a conventional skyhook 

control scheme. Furthermore, the utilization of heuristic 

methods such as metaheuristic algorithms or neural 

networks together with sliding mode, adapted for 

suspension systems leads to promising solutions as well 

[28, 29]. Hedrick [30] investigated the adaptive semi-

active suspension system with the desired Skyhook 

behavior for a Macpherson dynamic model.  

Despite a wide variety of suspension systems modelling 

in the literature, there has not been a specific focus on the 

comparison of different models’ behaviors and the 

application of various control strategies to reduce the 

speed, acceleration and jerk of the sprung and unsprung 

masses. Therefore in this research, by considering the 

rotational movement of the unsprung mass in dynamic 

equations, a conventional, a Skyhook and a Macpherson 

dynamic model for a suspension system have been 

developed. In addition, a control algorithm based on the 

Linear Quadratic Regulator (LQR) has been proposed to 

improve the system performance of the optimized 

Skyhook model. Finally, an observer is added for 

unavailable system’s states estimation. 

II. SYSTEM  MODELLING  

Since the requirement of any engineering research is the 

desire for industrial goals, in this research, a control 

system based on three suspension system models will be 

investigated. Therefore, in this section, the response of the 

conventional suspension system, the MacPherson 

suspension system, and an optimized Skyhook suspension 

system are obtained. 

A. Conventional Mode 

This system consists of a sprung mass and an unsprung 

mass as in Fig. 1, for which state variables are defined in 

Eq. (1).   
𝒙 = [𝑥1 𝑥2 𝑥3 𝑥4]𝑇 = [z𝑠 z𝑠̇ z𝑢 z𝑢̇]𝑇 (1) 

The corresponding dynamic equations of this system 

are as follows: 

𝑥1̇ = 𝑥2 

𝑥2̇ = −
𝑘𝑠

𝑚𝑠

(𝑥1 − 𝑥3) −
𝑐𝑝

𝑚𝑠

(𝑥2 − 𝑥4) 

𝑥3̇ = 𝑥4 

𝑥4̇ =
𝑘s

m𝑢

(𝑥1 − 𝑥3) +
𝑐𝑝

m𝑢

(𝑥2 − 𝑥4) +
𝑘𝑡

m𝑢

(𝑧𝑟 − 𝑥3) 

(2)
 

 
Fig. 1. The conventional suspension system 

Hence, the matrix coefficients 𝑨𝑪 and 𝑩𝑪, of the state 

space equation governing the conventional suspension 

system represented as 𝐱̇ = 𝑨𝑪𝐱 + 𝐁𝑪𝑧𝑟, are: 

𝐴𝐶 =

[
 
 
 
 
 

0

−
𝑘𝑠

𝑚𝑠

0
𝑘𝑠

𝑚𝑢

1

−
𝑐𝑝

𝑚𝑠

0
𝑐𝑝

𝑚𝑢

0
𝑘𝑠

𝑚𝑠

0
−(𝑘𝑠+𝑘𝑡)

𝑚𝑢

0
𝑐𝑝

𝑚𝑠

1
−𝑐𝑝

𝑚𝑢 ]
 
 
 
 
 

 

(3)
 

𝐵𝐶 = [0 0
𝑘𝑡

𝑚𝑢

0]
𝑇

 (4)
 

B. Macpherson Model 

The quarter car model of a Macpherson suspension 

system, introduced in [27] is shown schematically in Fig. 

2. 

First, the coordinates of points B and C are specified as 

key points: 

yB = lB(cos(θ − θ0) − cos(−θ0)) (5) 

zB = z𝑠 + lB(sin(θ − θ0) − sin(−θ0)) (6) 

y𝐶 = lC(cos(θ − θ0) − cos(−θ0)) (7) 

z𝐶 = z𝑠 + l𝐶(sin(θ − θ0) − sin(−θ0)) (8) 

where lB = 𝑂𝐵̅̅ ̅̅ , lC = 𝑂𝐶̅̅ ̅̅  and lA = 𝑂𝐴̅̅ ̅̅ . The initial 

angular position of the unsprung mass is denoted by θ0. α̃ 

is the summation of θ0  and α . The distance between 

points A and B could be calculated, which is the main 

difference between the dynamic equations of the 

conventional and MacPherson suspension systems and 

would result in a more realistic model. 
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l = √lA
2 + lB

2 − 2l𝐴lB𝑐𝑜𝑠 α̃ (9)
 

l̃ = √lA
2 + lB

2 − 2l𝐴lBcos ( α̃ − 𝜃) 
(10)

 

 
Fig. 2. The quarter car model of a Macpherson suspension system. 

In these equations, 𝑙  indicates the initial distance 

between A and B, and l̃ is the displacement between A and 

B from the equilibrium point (taking into account the 

counterclockwise rotation of the unsprung mass which is 

the chassis). Therefore, the spring deflection (∆𝑙 ), the 

displacement rate of the piston inside the damper (∆𝑙̇ ), and 

the change of the shape of the tire have been obtained by 

the following relations respectively. 

∆𝑙2 = (l − l̃)2 = 2al − 𝑏l(𝑐𝑜𝑠α̃ + cos(α̃ − 𝜃))
− 2{al

2 − albl(𝑐𝑜𝑠α̃
+ cos(α̃ − 𝜃)

+ bl
2𝑐𝑜𝑠α̃ cos(α̃ − 𝜃)}

1
2 

(11)

 

∆𝑙̇ = l̇ − l̃̇ =
blsin (α̃−𝜃)𝜃̇

2√(al−bl cos(α̃−𝜃))
 (12) 

zC − zr = zs + lC(sin(θ − θ0) − sin(−θ0)) − zr 
(13) 

where al = √lA
2 + lB

2
 and bl = 2lAlB. 

To investigate the dynamic characteristics of the 

suspension system, Lagrange equations will be used, 

hence the kinetic energy (T), the potential energy (V) and 

the dissipation energy (D) are first determined as follows: 

𝑇 =
1

2
msżs

2 +
1

2
m𝑢(ẏ𝐶

2 − ż𝐶
2) (14)

 

𝑉 =
1

2
ks∆𝑙2 +

1

2
kt(zC − zr)

2 
(15) 

𝐷 =
1

2
c𝑃∆𝑙̇  2 

(16) 

After substitution of Eqs. (11)–(13) into Eqs. (14)–(16), 

the following equations are derived: 

𝑇 =
1

2
(ms + m𝑢)żs

2 +
1

2
m𝑢lC

2𝜃̇2 + m𝑢lC cos(𝜃)𝜃̇ żs 

(17) 

V =
1

2
ks[2al − bl(cosα̃ + cos(α̃ − θ))

− 2{al
2 − albl(cosα̃

+ cos(α̃ − θ)

+ bl
2cosα̃ cos(α̃ − θ)}

1
2]2

+
1

2
kt(zs

+ lC(sin(θ − θ0)

− sin(−θ0)) − zr)
2 

(18) 

D =
cP[bl sin(α̃ − θ) θ̇]2

8(al − bl cos(α̃ − θ))
 (19) 

Lagrange Eq. (20) for obtaining differential equations 

of the Macpherson suspension system model with 

generalized coordinates defined as 𝑞1 = zs and 𝑞2 = 𝜃.  

d

dt
(
∂T

∂q̇i

) +
∂D

∂q̇i

+
∂V

∂qi

= Qi, i = 1,2 (20)

 

Substituting Eqs. (17)–(19) in Eq. (20), the governing 

differential equations are calculated as: 

(ms + m𝑢)zs̈ + m𝑢l𝐶𝑐𝑜𝑠(θ − θ0)θ̈

− m𝑢l𝐶𝑠𝑖𝑛(θ − θ0)𝜃̇
2

+ kt(zs

+ lC(sin(θ − θ0)

− sin(−θ0)) − zr) = 0 

(21)
 

mulC
2θ̈ + mulCcos(θ − θ0)zs̈

+
cPbl

2 sin(α̃ − θ) θ̇

4(al − bl cos(α̃ − θ))

+ ktlCcos(θ − θ0)(zs

+ lC(sin(θ − θ0)

− sin(−θ0)) − zr)

−
1

2
kslC sin(α̃ − θ) [bl

+
dl

√cl − dl cos(α̃ − θ)
]

= −lBfa 

(22) 

where 𝑐𝑙 = al
2 − alblcos(α + θ0)  and 𝑑𝑙 = albl −

bl
2cos(α + θ0) . By considering the following state 

variables: 

[x1, x2, x3, x4]
T = [zs, zṡ, θ, θ̇]T (23) 

The state-space representation of these differential 

equations could be written as: 

x1̇ = x2 

x2̇ = f1(x1, x2, x3, x4, fa, fd, zr) 

x3̇ = x4 

x4̇ = f2(x1, x2, x3, x4, fa, fd, zr) 

(24)
 

International Journal of Mechanical Engineering and Robotics Research, Vol. 13, No. 1, 2024

69



where 𝑓1 and 𝑓2 have been defined in [27]. 

Linearization 

By linearizing the nonlinear system around the 

equilibrium point using the Taylor expansion, the linear, 

time-variant and continuous state space equations of the 

Macpherson suspension system are expressed as follows: 

ẋ(t) = AMcx(t) + BMc1fa(t) + BMc2zr(t),    x(0)
= x0 

y(t) = Cx(t) 

(25)
 

where 

𝐀𝐌𝐜 =

[
 
 
 
 
 

0
∂f1
∂x1

0
∂f2
∂x1

1
∂f1
∂x2

0
∂f2
∂x2

0
∂f1
∂x3

0
∂f2
∂x3

0
∂f1
∂x4

1
∂f2
∂x4]

 
 
 
 
 

 

(26) 

𝐁𝐌𝐜𝟏 = [0
∂f1
∂fa

0
∂f2
∂fa

]
T

fa=0

=

[
 
 
 
 
 

0
lBcos(−θ0)

mslC + mulCsin
2(−θ0)

0
lB(ms + mu)

msmulC
2 + mu

2lC
2sin2(−θ0)]

 
 
 
 
 

 

(27) 

𝐁𝐌𝐜𝟐 = [0
∂f1
∂zr

0
∂f2
∂zr

]
T

zr=0

=

[
 
 
 
 
 
 

0
ktlCsin

2(−θ0)

mslC + mulCsin
2(−θ0)

0
lCmsktcos(−θ0)

(msmulC
2 + mu

2lC
2sin2(−θ0)]

 
 
 
 
 
 

 

(28) 

C. Skyhook Model with an LQR Controller  

In this section, assuming the use of the quarter car 

model, a modified Skyhook suspension system model 

with an LQR controller is studied as demonstrated in Fig. 

3. 

 

Fig. 3. The modified Skyhook suspension system model with an LQR 
controller. 

The progressiveness of this model as an ideal reference 

model is explained as follows: 

Firstly, the state variables of the Skyhook suspension 

system are considered in the form of the following 

equation: 

[x1, x2, x3, x4]
T = [zs, zṡ, zu, zu̇]

T (29) 

 

Secondly, the state-space representation of the 

corresponding differential equations is derived as per Eq. 

(30): 
x1̇ = x2 

x2̇ = −
ks

ms

(x1 − x2) −
cp

ms

(x2 − x4) ±
cp

ms

x2 +
fa
ms

 

x3̇ = x4 

x4̇ =
ks

mu

(x1 − x2) +
cp

mu

(x2 − x4) +
kt

mu

(zr − x3) −
fa
mu

 

(30) 

The matrices 𝑨𝑺−𝒉  , 𝑩𝟏𝑺−𝒉  and 𝑩𝟐𝑺−𝒉  for the state 

space equation governing the Skyhook suspension system 

represented as 𝐱̇ = 𝑨𝑺−𝒉𝐱 + 𝑩𝟏𝑺−𝒉, 𝑧𝑟 + 𝑩𝟐𝑺−𝒉, 𝑓𝑎, are: 

𝐀𝐒−𝐡 =

[
 
 
 
 
 

0

−
ks

ms

0
ks

mu

1

−
2cp

ms

0
cp

mu

0
ks

ms

0
−(ks+kt)

mu

0
cp

ms

1
−cp

mu ]
 
 
 
 
 

 

(31)

 

𝐁𝟏𝐒−𝐡 = [0 0
kt

mu

0]
𝐓

 (32)
 

𝐁𝟐𝐒−𝐡 = [0
1

ms

0
1

mu
]
𝐓

 (33)
 

The response of this model to the disturbance from the 

road is usually considered to be the optimal response. The 

justification for the adopted structure in Fig. 3 is as 

follows: The control algorithm must stabilize the depicted 

2DoF system by using an actuator. The actuator 

performance is restricted and its dynamics is quite 

challenging. Moreover, with fixed gains, the two control 

objectives, which are improvement of both the vehicle 

driving performance and ride quality, cannot be met. 

Therefore, to better improve the response of this system, 

an optimal control strategy based on an LQR for the 

introduced mathematical model is proposed. 

LQR controller 

The optimal control input 𝑢(𝑡) , is a state variable 

feedback regulator expressed as [31]: 

𝐮 = −𝐊𝐱 (34)
 

The optimization process involves the calculation of the 

optimal control input that will minimize the performance 

index J, which is defined as follows: 

𝐉 = ∫(𝐱𝐓𝐐𝐱 + 𝐮𝐓𝐑𝐮)

∞

0

dt (35)

 

The first term in the above equation denotes the 

requirement for the performance characteristics and the 

second term is due to the optimal control input limitations. 

For the minimization of the performance index, the matrix 

gain should be defined as the following [32]: 

International Journal of Mechanical Engineering and Robotics Research, Vol. 13, No. 1, 2024

70



𝐊 = 𝐑−𝟏𝐁𝐓𝐏
 

(36)
 

where 𝑷 is the solution to the following reduced-matrix 

Riccati equation: 

𝐀𝐓𝐏 + 𝐏𝐀 − 𝐏𝐁𝐑−𝟏𝐁𝐓𝐏 + 𝐐 = 𝟎 (37) 

In order to get the desired response from the sprung 

mass, the term related to the position of the sprung mass 

in the Q matrix has been chosen equal to 100,000. As a 

result, considering the Q and R weight matrices as the 

following: 

𝐐 = [

100000
0
0
0

0
1
0
0

0
0

1000
0

0
0
0
1

] , 𝐑 = 𝐈 (38)

 

The optimal state variables feedback controller for the 

Skyhook system will be defined as: 

𝐔 = −(𝐑−𝟏𝐁𝐓𝐏)𝐱 (39)
 

III. NUMERICAL EXAMPLE 

In order to simplify the relations, it is assumed that l𝐵 =
l𝐴cos (𝛼), l𝐶 = l𝐵 and θ0 = 0. As a result, the state space 

matrix coefficients defined by the Eqs. (26)–(28) are 

obtained as: 

𝐀𝐌𝐜 =

[
 
 
 
 
 0

0
0

−kt

mulC

1
0
0
0

0
kslC
ms

0
−(ms+mu)ks

msmu

−
kt

mu

0
cplC

ms

1
−(ms+mu)cp

msmu ]
 
 
 
 
 

 

(40)
 

BMc1 = [0
1

ms

0
−(ms+mu)

msmulC
]
𝑇

 (41)
 

BMc2 = [0 0 0
kt

mulC
]
𝑇

 (42)
 

The following values are considered for the parameters 

described by the corresponding state space equations for 

the three models as shown in Table I. 

TABLE I. THE SIMPLIFIED MACPHERSON MODEL PARAMETERS  

Parameter Value (unit) 

m𝑠 453 kg 

𝑘𝑠 17658 N/m 

𝑐𝑝 1950 Ns/m 

m𝑢 71 kg 

kt 18388 M/m 

l𝐶  0.37 m 

A step function, denoted by z𝑟  in Fig. 4, as the road 

disturbance has been applied to all three models in order 

to compare the systems’ behavior. The position of the 

sprung and unsprung masses could be seen in Figs. 4 and 

5 respectively. 

As can be observed from these figures, although the 

unsprung mass vibrates almost the same in all three 

models, the sprung mass oscillations for the Skyhook 

model with the LQR controller demonstrates a favorable 

response with a less overshoot and a faster settling time 

for a road disturbance with a step function. As a matter of 

fact, by comparison of the Macpherson model and the 

Skyhook model with the LQR controller, the latter 

model’s overshoot has been reduced by 68% and its 

settling time has been enhanced from 3 s to 2 s (34% 

enhancement). 

Another road disturbance input with a bump-shaped 

function is used for the suspension system models and the 

positions of the sprung and unsprung masses are 

demonstrated in Figs. 6 and 7 respectively. 

 
Fig. 4. Position of the sprung mass (𝑧𝑠) in the conventional, 

Macpherson and Skyhook suspension system models with a step road 

disturbance. 

 
Fig. 5. Position of the unsprung mass (𝑧𝑢) in the conventional, 

Macpherson and Skyhook suspension system models with a step road 

disturbance. 

 
Fig. 6. Position of the sprung mass (𝑧𝑠) in the conventional, 

Macpherson and Skyhook suspension system models with a bump road 

disturbance. 
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Fig. 7. Position of the unsprung mass (𝑧𝑢) in the conventional, 

Macpherson and Skyhook suspension system models with a bump road 

disturbance. 

The deviation of the sprung and unsprung mass 

response from the road input for all these 3 models are 

shown in Table II. 

TABLE II. THE SIMPLIFIED MACPHERSON MODEL PARAMETERS  

Model 
Deviation for the 

unsprung mass (%) 
Deviation for the 
sprung mass (%) 

Conventional 23 22 

Macpherson 22 21 
Skyhook 13 12 

The second case also confirms the fact that unsprung 

mass oscillations are the same for the suspension system 

models but the sprung mass vibrations vary for these 

models. The sprung mass response in the Skyhook model 

with the LQR controller shows the best behavior as it 

smoothly converges to the road input function with the 

least error compared to the other models. 

IV. CONTROL INPUT DESIGN WITH A SLIDING MODE 

CONTROLLER 

In this section, a control input for the Macpherson 

suspension system model is to be designed so that the 

model behavior follows that of a desired model. In the 

previous section, it was proven that the Skyhook 

suspension system model, optimized by an LQR 

controller, exhibited the preferred response which will be 

referred to as the desired system in this section. So, the 

control input design with the sliding mode control method, 

to achieve the desired dynamic behavior of the LQR-

optimized skyhook model will be discussed. 

A common sliding surface expression is as follows, 

which depends on only one scalar parameter, 𝜆. 

𝐒 = (
d

𝑑𝑡
+ 𝜆)𝑛x̃ (43)

 

where the error x̃ , as defined bellow, is the difference 

between the sprung mass displacement of the Macpherson 

model (x𝑀𝑐) and that of the ideal model (x𝑆−ℎ), which is 

the Skyhook system with the LQR controller.  

𝑥̃ = x𝑀𝑐 − x𝑆−ℎ 
(44) 

If the sliding surface differential equation order is 

chosen to be 𝑛 = 2, the sliding surface in Eq. (43) can be 

rewritten as: 

S = (
d

𝑑𝑡
+ 𝜆)2𝑥̃ => 𝑆 = (𝐷 + 𝜆)2𝑥̃

= (𝐷2 + 2𝜆𝐷 + 𝜆2)𝑥̃
= (ẍ𝑀𝑐 − ẍ𝑆−ℎ) + 2𝜆𝑥̇̃ + 𝜆2𝑥̃ 

(45) 

From the linearized Macpherson dynamic equations, 

ẍ𝑀 will be the following equation:  

ẍ𝑀𝑐 = 14.42𝜃 + 1.592𝜃̇ + 0.0022𝑓𝑎(𝑡) 
(46) 

By substituting Eq. (46) into Eq. (45), the control signal 

is derived as follows: 

𝑓𝑎(𝑡) =
1

0.0022
(ẍ𝑆−ℎ − 14.42𝜃 − 1.592𝜃̇ − 2𝜆𝑥̇̃ − 𝜆2𝑥̃) (47)

 

The comparison of the Macpherson suspension system 

response with the obtained control input and the LQR-

controlled Skyhook suspension system, as the ideal model, 

are shown in the following figures to the step road 

disturbance shown in Fig. 8. Figs. 8 and 9 illustrate the 

sprung mass displacement and velocity of both models 

respectively. 

 
Fig. 8. Sprung mass positions (𝑧𝑢) of the Macpherson model with 

the sliding mode controller and the Skyhook model with the LQR 

controller to a step road disturbance (𝑧𝑟). 

 
Fig. 9. Sprung mass velocites (𝑧̇𝑢) of the Macpherson model with 

the sliding mode controller and the Skyhook model with the LQR 

controller to a step road disturbance (𝑧𝑟). 

As is evident from these figures, when the sliding mode 

controller is applied to the Macpherson suspension system, 
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the displacement of the sprung mass caused by the road 

step disturbance, converges acceptably to that of the ideal 

model (the Skyhook suspension system with an LQR 

controller). Therefore, the optimization effect of the 

Macpherson model with the sliding mode controller has 

been clearly illustrated. 

Next, the system response to the road disturbance as 

defined in Fig. 10 has been obtained as can be seen from 

Figs. 11 and 12. 

 

Fig. 10. The second road disturbance (𝑧𝑟) function. 

It is seen that the response convergence of the 

Macpherson model with the sliding mode controller, both 

for sprung mass displacement and velocity, to the 

Skyhook model with the LQR controller has been 

substantially improved compared to the same results 

without the SMC. 

 
Fig. 11. Sprung mass positions (zu) of the Macpherson model with 

the sliding mode controller and the Skyhook model with the LQR 

controller to the second road disturbance (zr). 

 
Fig. 12. Sprung mass velocities (𝑧̇𝑢) of the Macpherson model with 

the sliding mode controller and the Skyhook model with the LQR 

controller to the second road disturbance (𝑧𝑟). 

V. CONCLUSION  

In this paper, a vehicle suspension system was modeled 

using three different approaches for the plant’s dynamics 

description namely; the conventional model, the 

Macpherson model and the Skyhook model with an LQR 

controller, for which the estimation of the control 

variables was based on the developed linearized model. 

After giving two road disturbance functions to as the input 

to these models, the sprung mass vibrations were 

compared and the Skyhook model was proved to be 

sufficiently effective and its performance was competent 

enough. Hence the Skyook model was chosen as the ideal 

model for the next step. 

In order to improve the Macpherson suspension system 

model, the control input for the damping force was 

redesigned using a sliding mode controller. In other words, 

by using a generalized control input from the sliding mode 

control method, on the MacPherson suspension system 

and matching its response with that of the LQR-optimized 

skyhook model, the verification for the application of this 

method on the MacPherson suspension system was 

established. It was determined that the semi-active 

Macpherson system could achieve a similar control 

performance as that of the chosen ideal model. The 

described control strategy can be extended to a verity of 

semi-active suspension systems. 
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