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Abstract—The cutting force of the aluminum workpiece was 

forecasted using the Artificial Neural Networks (ANNs) 

methodology in this study. Two ANN structures, one with a 

single hidden layer and the other with a double hidden layer, 

were constructed using MATLAB codes. The Levenberg-

Marquardt back-propagation technique served as the 

training algorithm, employing a sigmoidal transfer function 

in the hidden layer and a purline transfer function in the 

output layer. The performance of the ANN models was 

assessed using Mean Squared Error (MSE) and coefficient 

of determination (R2). The experimental findings revealed 

that the cutting speed, feed rate, and depth of cut 

significantly influenced the cutting force. The optimal 

number of neurons in both single and double hidden layers 

was determined to be 6. The validation stage achieved the 

best performance with an MSE of approximately 0.002747 

for a single layer and 0.00144 for double hidden layers, both 

at epoch 5. In conclusion, both ANN structures 

demonstrated the capability to predict cutting force, with a 

preference for the double hidden layer structure.  

 

Keywords—depth of cut, feed, cutting force, artificial neural 

network 

 

I. INTRODUCTION 

The cutting force that is generated in manufacturing 

methods is an important parameter for evaluating the 

machining power and for dimensioning the components 

of the machine tool and the tool body [1, 2]. Many factors 

affect the cutting force and play a major role in 

determining it, for example, cutting speed, depth of cut, 

and feed [3, 4]. Therefore, it is necessary to control these 

factors to obtain a suitable cutting force that acts on the 

worked specimens. Controlling and reducing cutting 

force are very important to avoid several adverse effects 

like decreased tool life, high energy usage, and increased 

surface roughness that cause bad finishing surfaces [5]. 

Nowadays, artificial intelligence methodology is a 

modern method used to predict the cutting force in the 

machining process [6, 7]. Among these methodologies, 

artificial neural networks (ANNs) are a good technique 

for solving the nonlinear relationship between the input 
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and output variables in all the sectors of engineering, 

especially the industrial applications (turning, milling, 

grinding, etc.). Additionally, it has the ability to estimate 

the complex interactions between these variables [8, 9]. A 

few researchers were able to use this technique under 

different conditions and techniques at the level of the 

turning process. For example, Ibraheem M. Q. et al. [10] 

used an ANN structure consisting of four parameters as 

input to predict the cutting force in the turning process. 

These input parameters are named as: feed rate, depth of 

cut, work piece hardness, and cutting speed. The results 

showed that the ANN model recorded perfect agreement 

between the predicted and measured cutting forces for all 

the components (feed and radial). In the same manner, 

AL-Khafaji et al. [11] built ANN models to predict the 

cutting force that was generated during the turning 

process of the high-strength aluminum alloy 7075-T6. 

The input parameters of the ANN models were cutting 

speed, depth of cut, and feed rate. All the results showed 

that the predicted cutting force was in good agreement 

with the measured force, with a correlation coefficient 

(R2) equal to 1. 

An Adaptive Neuron-based Fuzzy Inference System 

(ANFIS) was used by Naresh et al. [12] to predict the 

cutting force during the Laser-Assisted Turning (LAT) 

process of AISI 304 stainless steel. The fuzzy ANFIS 

model was dependent on four input factors: cutting 

speeds, feed rates, depth of cut, and laser powers. Besides, 

these factors varied within the ranges of (25, 50, and 75) 

m/min, (0.025, 0.05, and 0.075) mm/rev, (0.5, 0.75, and 1) 

mm, and (0, 150, 300, and 450) W, respectively. The 

results achieved satisfactory accuracy between the 

predicted and measured cutting forces. Luis W. et al. [13] 

used polynomial regression and artificial neural networks 

to estimate the cutting force and Specific Energy 

Consumption (SEC) during dry high-speed turning of 

AISI 1045 steel under the influence of the materials of 

the cutting tool and cutting speed. The indications that 

were used for analyzing the prediction results depended 

on two metrics: R2 and Root Mean Square Error (RMSE). 

The results of the polynomial indicated that the models 

did not reach 70% in their representation of the variability 

of the data. In addition, the specific energy consumption 
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of the GC4225 tool was found to be higher than that of 

the CT5015 tool. 

Irgolic et al. [14] predicted the cutting force for milling 

functionally graded material using neural network 

methodology. The findings of the ANN model show that 

it is very reliable in predicting the cutting force with an 

error smaller than 10% under the effects of cutting speed, 

feed rate, and cutting depth. Kadirgama and Abou-El-

Hossein et al. [8] described the methodology of neural 

network methods to predict the cutting force in milling 

618 stainless steel under the influence of cutting speed, 

feed rate, axial depth, and radial depth. Firstly, the 

software of the design of experiments was used to 

provide the optimum experimental conditions. The 

predictive results between the experimental result and the 

neural network were compared. According to the 

comparison between the predicted and measured values 

of cutting force, the percentage of error showed that the 

ANN was acceptable for achieving its purpose. Kland et 

al. [15] developed a MATLAB code using interface and 

ANN to estimate the cutting force under the effect of 

cutting parameters such as speed, feed rate, and depth of 

cut. The results showed that all the cutting parameters 

have a significant effect on the cutting force. It can be 

concluded that the ANN gives precise results. 

Rastorguev and Sevastyanov et al. [16] used a feed-

forward ANN with a Bayesian regularization algorithm 

and an adaptive neuro-fuzzy inference system to predict 

the value of cutting force during hard turning of 

105WCr6 steel. In general, the results showed that the 

ANN model can predict the cutting force with high 

accuracy. Hanafi et al. [1] applied ANN methodology to 

predict the cutting force components in turning operations 

of PEEK CF30 using TiN-coated cutting tools under dry 

conditions. The machining parameters were cutting speed 

ranges, feed rate, and depth of cut.  The results indicated 

that the ANN model has the ability to predict the cutting 

force components in the turning of carbon fiber 

reinforced polymer (CFRP) composites. Alajmi and 

Almeshal et al. [5] developed three models to predict the 

cutting force for turning AISI 4340 alloy steel. These 

models were the Gaussian Process Regression (GPR), 

Support Vector Machines (SVM), and ANN 

methodologies. The GPR model demonstrated a reliable 

prediction of surface roughness for the dry turning 

method with R2 = 0.9843, MAPE = 5.12%, and RMSE = 

1.86%. The comparison between the three models 

showed that the GPR is an effective method that can 

ensure high predictive accuracy of the cutting force in the 

turning of AISI 4340. 

The main objective of this study is to forecast the 

cutting force in the turning process using Artificial 

Neural networks (ANNs) based on experimental 

investigation under the influence of cutting parameters 

like depth of cut, cutting speed, and feed. The novelty of 

this research lies in the compelling comparison between 

the predictive accuracy achieved by a single hidden layer 

and a double hidden layer, employing the Levenberg-

Marquardt back-propagation technique for estimating 

cutting force in aluminum workpieces. By systematically 

evaluating and contrasting the performance of these two 

architectures, this study provides valuable insights into 

the optimal network configuration for enhancing the 

precision of cutting force prediction in aluminum 

machining processes. 

II. EXPERIMENTAL PART 

An aluminum workpiece with a diameter of 30 mm 

and a length of 500 mm was selected and installed on 

lathe machine Type FI-1000AG/ZJ to achieve the cutting 

process under various cutting parameters, as shown in Fig. 

1. A High-Speed Steel (HSS) cutting tool with 

dimensions of 120 mm overall length, 16 mm shank 

diameter, 20 mm cutting edge length, 60° cutting edge 

angle, and 5 mm width was utilized. Under lubricated 

conditions, the turning process of aluminum involved the 

utilization of soluble oil coolant. The cutting force (Fc) 

was measured by using a force dynamometer (9265B) 

connected to a signal amplifier (5019B), both of which 

are branded Kistler. In addition, a data acquisition system 

was utilized for recording the data and transferring it to a 

computer.  

The cutting parameters included the cutting speed, feed 

rate, and depth of cut. Generally, the cutting speed ranged 

between 65 and 2000 meters per minute (m/min), the feed 

ranged between 0.2 and 0.45 millimeters per revolution 

(mm/rev), and the depth of cut ranged between 0.1 and 

0.3 mm. These ranges were determined based on the 

characteristics of the workpiece and the desired range of 

experimental conditions. Totally, 133 different conditions 

were tested during the experiment, and the measured data 

were collected. This number of tests was performed to 

cover a wide range of operating conditions, capture 

relevant variations, and ensure statistical significance. By 

addressing these points, a comprehensive understanding 

of the experimental design and its relevance to the 

research objectives is aimed at being provided. Almost 

half of these data are represented in Table I. It is 

noteworthy that the other machining force components 

(feed force Ff and passive force Fp) were not included 

because this study is focused on investigating only the 

main cutting force Fc. 

 

 

Figure 1. Schematic diagram of the experimental set-up for force 
measurement. 
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TABLE I. SAMPLES OF COLLECTED DATA 

Cutting force 

(N) 

Depth of 

cut (mm) 

Feed 

(mm/rev) 

Cutting speed 

(m/min) 
No. 

16.02 0.1 0.2 65 1 

31.99 0.2 0.2 65 2 

48.07 0.3 0.2 65 3 

24.12 0.1 0.3 100 4 

47.84 0.2 0.3 100 5 

72.21 0.3 0.3 100 6 

27.78 0.1 0.35 115 7 

56.32 0.2 0.35 115 8 

83.94 0.3 0.35 115 9 

32.05 0.1 0.4 190 10 

64.18 0.2 0.4 190 11 

95.99 0.3 0.4 190 12 

35.84 0.1 0.45 200 13 

72.09 0.2 0.45 200 14 

108.01 0.3 0.45 200 15 

127.87 0.1 0.4 240 16 

160.17 0.2 0.4 240 17 

192.32 0.3 0.4 240 18 

96.03 0.1 0.3 290 19 

119.88 0.2 0.3 290 20 

144.31 0.3 0.3 290 21 

143.98 0.1 0.3 300 22 

168.06 0.2 0.3 300 23 

191.79 0.3 0.3 300 24 

96.15 0.1 0.2 320 25 

112.03 0.2 0.2 320 26 

128.00 0.3 0.2 320 27 

167.91 0.1 0.35 380 28 

196.07 0.2 0.35 380 29 

224.20 0.3 0.35 380 30 

160.09 0.1 0.25 460 31 

180.24 0.2 0.25 460 32 

199.95 0.3 0.25 460 33 

192.04 0.1 0.3 500 34 

216.32 0.2 0.3 500 35 

240.18 0.3 0.3 500 36 

160.13 0.1 0.2 560 37 

191.89 0.2 0.2 560 38 

208.07 0.3 0.2 560 39 

200.14 0.1 0.25 730 40 

280.03 0.2 0.25 730 41 

299.86 0.3 0.25 730 42 

330.12 0.1 0.275 755 43 

374.03 0.2 0.275 755 44 

396.41 0.3 0.275 755 45 

431.78 0.1 0.3 860 46 

456.28 0.2 0.3 860 47 

480.15 0.3 0.3 860 48 

576.09 0.1 0.4 920 49 

608.03 0.2 0.4 920 50 

639.89 0.3 0.4 920 51 

288.19 0.1 0.2 1100 52 

304.01 0.2 0.2 1100 53 

320.27 0.3 0.2 1100 54 

479.78 0.1 0.3 1150 55 

504.04 0.2 0.3 1150 56 

528.18 0.3 0.3 1150 57 

319.99 0.1 0.2 1255 58 

352.03 0.2 0.2 1255 59 

368.00 0.3 0.2 1255 60 

456.27 0.1 0.3 1400 61 

480.03 0.2 0.3 1400 62 

503.87 0.3 0.3 1400 63 

335.79 0.1 0.2 1800 64 

352.00 0.2 0.2 1800 65 

399.91 0.3 0.2 1800 66 

672.06 0.1 0.4 2000 67 

736.17 0.2 0.4 2000 68 

III. THEORY OF ARTIFICIAL NEURAL NETWORKS 

Basically, the main function of artificial neural 

networks is to predict a linear or nonlinear relationship 

between input and output parameters [17]. In general, it 

consists of three layers named input, hidden, and output 

[18]. These layers are connected between them by nodes 

[19], as shown in Fig. 2. These nodes, connected by links, 

have weights and biases [20], whereas, the function of 

weight values is to interconnect the neurons, while the 

bias is used to specify the freedom degree of the system. 

Mathematically, the output parameters can be represented 

as a function of input parameters and weights as follows 

[19, 21]: 

1

n

i ji i

i

y f w x
=

 
=  

 
                            (1) 

where yi is the output, wji is the synaptic weights, and xi is 

the input parameter. 

 

Figure 2. Design of the neural network and connections between layers. 

The purpose of the transfer function is to transfer and 

translate the obtained signals from the hidden layer to the 

output layer, and then from the output layer as a final 

output. Three kinds of transfer functions are used in 

ANNs: linear, sigmoid, and hyperbolic tangent. The 

mathematical models of three types of transfer functions 

can be defined as [20]: 

1
( )

1 s

s s

s s

S linear function

f S sigmoid function
e

e e
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e e

−

+ −

+ −
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 
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  (2) 

IV. RESULTS AND DISCUSSION 

To achieve the main objective of this study, an 

experimental investigation was carried out to analyze the 

influence of cutting parameters on the cutting force. The 

experimental results showed that the cutting parameters 

have a significant effect on cutting force. As the cutting 

speed increases the cutting force increases. As shown in 

Fig. 3, the cutting force increases linearly with the depth 

of cut. However, the cutting force changed from 8 to 64 

N when the depth of cut varied from 0.05 to 0.4 mm at a 

constant cutting speed of 65 m/min and feed rate of 0.2 

mm/rev. The regression analysis of this relation is fitted 

by the equation (y = 160×x + 2×10−14) with R2 = 1. In 
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addition, the cutting force increases with increasing 

cutting speed in linear behavior. Nevertheless, it was 

changed from 16 to 320 N when the cutting speed varied 

from 65 to 1255 m/min at a constant depth of cut of 0.1 

mm and a feed rate of 0.2 mm/rev. The fitting equation 

that represents this relation can be expressed as (y = 

0.256×x + 5.593) corresponding to R2 = 0.9961 (see Fig. 

4). Furthermore, the cutting force will increase with an 

increase in feed rate and depth of cut. 

 

Figure 3. Variation of cutting force with depth of cut. 

 

Figure 4. Variation of cutting force with cutting speed. 

On the other side, a total of 133 measured datasets 

were used as input data to run MATLAB code for 

predicting the cutting force using the AAN methodology. 

These data were divided as follows: 70% for the training 

stage and 15% for each of the testing and validating 

stages. The Levenberg-Marquardt back-propagation 

technique was proposed as an algorithm to achieve the 

training stage. Two ANN structures were used: the first 

structure used a single hidden layer, while the second 

structure used a double hidden layer. Mean squared error 

(MSE) and coefficient of determination (R2) were 

considered the main indicators to evaluate the 

performance of ANN models. Firstly, the trial-and-error 

method was used to control the best neuron number in 

hidden layers. Mean Squared Error (MSE) served as the 

performance function for the network, quantifying the 

average squared difference between outputs and targets. 

Smaller MSE values indicated better performance, with 

zero denoting no error. During the training phase, the 

number of neurons in the hidden layer was systematically 

altered to identify the smallest MSE values for validation. 

By employing a trial-and-error method, the study 

identified the smallest MSE value of 0.0014 for 

validation when 6 neurons were present in the hidden 

layer. This trial-and-error approach enabled the 

determination of the optimal number of hidden layer 

neurons and the optimization of the network’s 

performance for accurate cutting force estimation. As 

shown in Fig. 5, the best neuron number in the hidden 

layer was 6 in each single and double layer. Therefore, 

the final structure of ANN was (3-6-1) and (3-6-6-1) for 

single and double hidden layers, respectively. 

Additionally, the neurons were activated by the sigmoidal 

transfer function in the hidden layer and the purline 

transfer function in the output layer. The sigmoid 

function is used in the hidden layer mainly due to its 

range of existence between 0 and 1. This range makes it 

particularly suitable for models aimed at predicting 

probabilities as output. Given that probabilities lie within 

the range of 0 and 1, the choice of the sigmoid function is 

considered appropriate. Also, the sigmoidal function was 

selected for the hidden layer because it allows for non-

linear transformations, enabling the network to capture 

complex relationships between input and hidden neurons. 

On the other hand, the purline function was chosen for 

the output layer as it provides a continuous output range 

suitable for regression tasks, such as predicting cutting 

force values. Including these reasons in the article will 

enhance the clarity of our methodology. 

 

Figure 5. Structure of ANN models. 

A. Performance of ANN Model with Single Hidden 

Layer 

Fig. 6 shows the best validation of the ANN model 

with a single hidden layer (3–6–1). As shown in the 

figure, the best performance in the validation stage was 

achieved with a mean squared error of 0.002747 at epoch 

5. The performance of the ANN model in a single layer is 

represented in Fig. 7. It was clear that the coefficient 

determination (R2) was recorded (0.931, 0.976, 0.891, 

and 0.932) for training, testing, validation, and all stages. 

The value of R2 gave an indication that the database was 

well trained. Therefore, the best performance of the 

validation stage was recorded at a good R2 of about 0.891. 

This means that the ANN model with a single layer has 
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good ability for predicting the cutting force under the 

mentioned cutting parameters. 

 

Figure 6. Best validation of the ANN model with a single hidden layer. 

 

Figure 7. Performance of the ANN model in four stages. 

B. Performance of ANN Model with Double Hidden 

Layer 

The best performance in the validation stage was 

achieved at about 0.00144 at epoch 5, as shown in Fig. 8. 

Although the R2 in the training stage with a double 

hidden layer was recorded at about 0.978, the R2 in the 

validation stage was recorded at 0.988. Fig. 9 shows the 

values of R2 for training, testing, validation, and all the 

stages of the ANN model. According to the value of R2, 

the ANN with a double hidden layer is a very accurate 

model for predicting the cutting force. 

 

Figure 8. Best validation of the ANN model with a double hidden layer. 

 

Figure 9. Performance of the ANN model in four stages. 

C. Comparison of Results 

The predicted results from the ANN model were 

compared with the measured results for the validation 

stage only. The number of data points for validation was 

considered to be 20 (15% of the data set). As shown in 

Fig. 10, the convergence is clear and precise between the 

predicted and measured cutting forces in the case of ANN 

with a double hidden layer. While the convergence 

between the graphs of predicted cutting force with a 

single layer and measured force is good. The absolute 

error between the predicted and measured cutting force is 

represnted in Fig. 11 and Table II. Whereas, it was 

recorded from a minimum value of about 1.97% to a 

maximum value of about 8.33% in AAN with a double 

hidden layer and was recorded from 1.19 to 13.04. This 

gives a great indication that the two structures of ANN 

have achieved the required accuracy. But the structure 

with the double hidden layer system is more accurate. 

 

Figure 10. Comparison between predicted and measured cutting forces. 

 

Figure 11. Absolute errors for experiment data in the validation stage. 
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TABLE II. COMPARISON BETWEEN THE PREDICTED AND MEASURED 

CUTTING FORCE IN THE VALIDATION STAGE FOR SOME OF THE TESTED 

PARAMETERS 

Error of 

Multi ANN 

(%) 

Predicted 

Force-ANN 

(N) 

Measured  

force 

(N) 

Feed 

(mm/rev) 

Depth  

of cut (mm) 

Cutting speed  

(m/min) 
No. 

Single Double Single Double 

9.72 7.98 520 530 576.13 0.4 1.8 920 1 
6.25 1.97 570 620 608.08 0.4 1.9 920 2 

4.68 4.68 670 610 639.86 0.4 2 920 3 

7.63 6.25 310 270 288.01 0.2 1.8 1100 4 
8.55 4.60 330 290 304.00 0.2 1.9 1100 5 

9.37 6.25 290 300 319.92 0.2 2 1100 6 

10.41 2.08 530 470 480.19 0.3 2 1150 7 
3.17 2.77 520 490 504.04 0.3 2.1 1150 8 

5.30 1.89 500 518 528.21 0.3 2.2 1150 9 

9.37 3.12 290 330 319.89 0.2 2 1255 10 

7.95 5.11 380 370 352.40 0.2 2.2 1255 11 

13.04 4.89 320 350 368.03 0.2 2.3 1255 12 

5.70 3.50 430 440 456.00 0.3 1.9 1400 13 
9.37 8.33 525 510 479.98 0.3 2 1400 14 

3.76 0.79 485 500 504.16 0.3 2.1 1400 15 

10.71 4.16 300 350 336.22 0.2 2.1 1800 16 
9.09 3.40 320 340 351.87 0.2 2.2 1800 17 

10.00 5.00 440 380 400.05 0.2 2.5 1800 18 

1.19 3.27 680 650 672.00 0.4 2.1 2000 19 
4.89 2.17 700 720 736.17 0.4 2.3 2000 20 

V. CONCLUSION 

In this work, the prediction of the cutting force of the 

turning process for an aluminum workpiece under the 

influence of cutting parameters (cutting speed, depth of 

cut, and feed) using the ANN methodology was achieved. 

The prediction process was conducted based on measured 

data from the experimental part. According to the analysis 

of the results, the following conclusions can be drawn: 

• From the experimental results, it can be observed 

that the cutting parameters (cutting speed, depth 

of cut, and feed) significantly affect cutting force; 

as cutting speed increases, the cutting force will 

increase. However, the cutting force has the same 

behavior with the depth of cut and feed. 

• The ANN models with single and double hidden 

layers can predict the cutting force with 

acceptable accuracy. 

• The ANNs with a double hidden layer are more 

accurate than a single hidden layer model. For 

example, the best performance in the validation 

stage was recorded at about a MSE equal to 

0.00144, while in the single layer it was recorded 

at about 0.002747. 

A comparison between different models based on 

artificial intelligence would be a valuable extension to 

our study in the future. A deeper understanding of their 

strengths, weaknesses, and performance in the context of 

the current research domain can be gained by exploring 

and evaluating alternative models. 
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